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Quantum mechanical alternative to Arrhenius equa-
tion in the interpretation of proton spin-lattice relax-
ation data for the methyl groups in solids†

Piotr Bernatowicz,∗a Aleksander Shkurenko,a,b Agnieszka Osior,c Bohdan Kamieński,c

and Sławomir Szymański∗c

Theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring prob-
lem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for
extreme cases of low torsional barriers where special quantum effects are at stake, the relax-
ation behaviour of the nuclear spins in methyl groups is controlled by thermally activated classical
jumps of the methyl group between its three orientations. The temperature effects on the relax-
ation rates can be modelled by Arrhenius behaviour of the correlation time of the jump process.
The entire variety of relaxation effects in protonated methyl groups has recently been given a
consistently quantum mechanical explanation not invoking the jump model regardless of the tem-
perature range. It exploits the damped quantum rotation (DQR) theory originally developed to
describe NMR line shape effects for hindered methyl groups. In the DQR model, the incoherent
dynamics of the methyl group include two quantum rate, i.e., coherence-damping processes. For
proton relaxation only one of these processes is relevant. In this paper, temperature-dependent
proton spin-lattice relaxation data for the methyl groups in polycrystalline methyltriphenyl silane
and methyltriphenyl germanium, both deuterated in aromatic positions, are reported and inter-
preted in terms of the DQR model. A comparison with the conventional approach exploiting the
phenomenological Arrhenius equation is made. The present observations provide further indi-
cations that incoherent motions of molecular moieties in condensed phase can retain quantum
character over much broader temperature range than is commonly thought.

1 Introduction
Since the late 50s of the past century proton spin-lattice relax-
ation of the methyl group in solids has been recurrently addressed
from different perspectives, becoming one of the most thoroughly
approached theoretical problems in nuclear magnetic resonance
(NMR) spectroscopy.1–12 For the instances of low torsional barri-
ers where substantial quantum tunneling effects are at stake, sev-
eral quantum mechanical treatments were reported.2,5,6,9,11,12

Nevertheless, in the interpretation of experimental relaxation
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data, the quantum theories have invariantly been augmented
with the familiar model of classical random jumps of the methyl
rotator between its three equivalent orientations.9,13,14

However, the jump model has recently proved insufficient
for exact description of NMR line shape effects in variable-
temperature spectra of even very strongly hindered methyl
groups. On the other hand, the competing, consistently quan-
tum mechanical theory of damped quantum rotation (DQR))15,16

was shown to be adequate not only in low-temperature solids17,18

but also in liquids above 170 K.19–22 In place of the single clas-
sical rate constant characterizing the jump process, the DQR
model employs two rate parameters. These are the rate constants
of certain coherence-damping processes in the system of spin-
space correlated torsional/rotational (TR) states of the methyl
group treated as a hindered quantum rotator. Both these rate
processes are evidenced in the line shapes of hindered methyl
groups. The prototypes of these processes were earlier recognized
as the mechanisms of broadenings of the inelastic and quasielas-
tic lines in incoherent neutron scattering (INS) spectra of tun-
nelling methyl groups.23–25 In the context of NMR spectroscopy,
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the above mentioned quantum rate constants can be used to
quantify the degree of nonclassicality in the observed incoher-
ent dynamics of methyl groups and similar threefold molecular
rotators. Namely, if these constants happen to be equal, the DQR
line shape equation assumes its familiar Alexander-Binsch form
founded just on the jump model.26,27 The departures from unity
of their ratio can therefore be used as the mentioned measure of
nonclassicallity. The highest values of this parameter reported so
far exceed 5,18 which means that the problem of a breakdown of
the jump model is by no means marginal. This finding prompted
one of the present authors to readdress the considered relaxation
problem in terms of the DQR model.12 The obtained relaxation
equation for the methyl group protons has proved formally iden-
tical with the Haupt equation.6 However, unlike in the work by
Haupt and a related study by Diezemann,11 both addressing ex-
tremely low temperatures, the rate parameter entering it remains
well-defined over practically the whole temperature range of in-
terest in the line shape and relaxation studies. This parameter
is one of the two rate constants of the DQR model, and as such,
when taken alone, has no direct connections to the rate constant
of the jump process. A preliminary, yet unequivocal experimental
confirmation of the validity of this recent approach has already
been reported.12

In this work, proton spin-lattice relaxation rates were mea-
sured for two polycrystalline substances selectively deuterated
in non-methyl positions, methyltriphenylsilane (MTPSi-d15) and
methyltriphenylgermanium (MTPGe-d15). Each of them contains
two crystllographically inequivalent methyl groups in the unit
cell, suffering different hindering potential. The temperature be-
haviours of the relaxation rates have been interpreted in terms
of both the conventional jump model employing the Arrhenius
equation and the DQR model.

To give sufficient background for the considerations of this pa-
per, a rather comprehensive outlook of the DQR theory seemed
necessary because in its former presentations in the literature
some topics of primary relevance to the present context were only
briefly touched. A consistent recapitulation of its relevant aspects
involving only threefold rotators will be given in the Theory sec-
tion and the Appendix. The interpretation of our current experi-
mental results and the relevant details of the applied, rather non-
standard methodology will be reported under the heading Results
and Discussion.

2 Theory

The system of interest in this work, i.e., the methyl group, isolated
from its environment, can to a good accuracy be described by the
Mathieu hamiltonian for a planar threefold rotator,

Ĥϕ =− h̄
2I

d2

dϕ2 +
V
2
(1− cos3ϕ), (1)

where ϕ is the torsional/rotational (TR) coordinate, I is the mo-
ment of inertia, and V is the amplitude of the torsional poten-
tial. Cyclic permutations of the rotator particles correspond to
changes of ϕ by multiples of±2π/3 and leave the hamiltonian un-
changed. Because pairwise particle exchanges can be discarded

as unfeasible under the considered conditions, its feasible symme-
try group28 is isomorphic with C3, and its eigenstates transform
according to the three irreducible representations, A, Ea, and
Eb = E∗a , of C3. The E eigenstates belonging to the complex con-
jugate representations come as degenerate Kramers pairs which,
for the energy levels below the potential barrier (the torsional lev-
els), are only slightly shifted in energy with respect to the A eigen-
states. These shifts, i.e., the tunnelling splittings, grow in abso-
lute magnitude with growing torsional energy, and their signs al-
ternate. The peculiar arrangement of the torsional sublevels into
nearly degenerate triplets, with considerable splittings between
such sequential multiplets, is one of the distinctive features of
threefold quantum rotators determining their dynamic properties
in condensed environments. In what follows, the eigenenergies
and eigenstates of the above hamiltonian will be denoted by h̄ωΓ

p
and |pΓ >, respectively, where Γ stands for A, Ea, and Eb.

2.1 Overview of DQR model

Below, a brief recapitulation is given of the DQR theory in its
version for threefold quantum rotators. Its full exposition can
be found in Refs.15,16, where the latter involves a general N-fold
rotator.

The DQR theory addresses a "big system" composed of two
parts: the quantum system of interest which, in its version of
our present interest, is the hindered threefold rotator described
above, and the macroscopic environment of the rotator acting as a
quantum mechanical thermal bath influencing its dynamics. The
rotator is placed in the external magnetic field of a NMR spec-
trometer. The impact on the TR states of such fields is negligible.

The bath comprises the lattice vibrations or phonons which can
cause instantaneous perturbations of the torsional potential. It
can be modelled by an infinite set of harmonic oscillators. The
rotator-phonon interactions had been quantified by a number of
authors approaching the INS and nuclear spin relaxation prob-
lems from a quantum mechanical perspective.6,23–25 The hamil-
tonian of the rotator-phonon couplings which must conform with
the threefold symmetry of the rotator, has the form:

Ĥϕ
rp = ∑

k
(QkλSk sin3ϕ +QkλCk cos3ϕ), (2)

where Qk are mass-weighted coordinates of the lattice oscilla-
tors and the scalars λCk and λSk describe couplings of these co-
ordinates to the two modes, cos3ϕ and sin3ϕ, of perturbations
of the torsional potential. The individual terms in the rotator-
phonon hamiltonian fluctuate in the interaction representation,
and these fluctuations induce vibrational relaxation and dephas-
ing processes in the rotator subsystem.

The effects of the bath on the interested dynamic behaviour
monitored in NMR experiments can be presented as a side effect
of the vibrational relaxation/dephasing processes stimulated by
the perturbations described above.15,16 These vibrational effects
are described by the equation of motion for the density matrix of
the rotator embedded in the phonon bath, derived using a variant
of the Nakajima-Zwanzig theory.29,30 A brief description of the es-
sential properties of this crucial equation of motion is given in the
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Appendix. Below, only a qualitative account of these properties is
given.

The reduced over the bath density matrix, describing the per-
turbed rotator embedded in an external magnetic field of a NMR
spectrometer, will be denoted by ρ̂ϕs, where the superscripts in-
dicate its dynamic dependence on the space coordinate ϕ and the
spin coordinates correlated with the former according to the Pauli
principle. It operates in the state space spanned by the TR eigen-
states of the isolated rotator, of symmetries A, Ea, and Eb of C3,
all of which are delocalized over all three minima of the torsional
potential, and are correlated with spin states of symmetries A,
Eb, and Ea, respectively. Taking these eigenstates to be the basis
states, on any stage of its evolution the reduced density matrix
can be expanded into the set of all possible coherences between
pairs of the basis states, thus

ρ̂
ϕs(t) = ∑

ΓΓ′pp′αα ′
CΓΓ′

pp′αα ′(t)Ĉ
ΓΓ′

pp′αα ′ , (3)

where CΓΓ′

pp′αα ′(t) are complex numbers describing time-dependent
amplitudes of the coherences

ĈΓΓ′

pp′αα ′ = |pαΓΓ >< p′α ′Γ′Γ′|= (|pΓ >< p′Γ′|)(|αΓ >< α
′
Γ′|),

(4)
with Γ denoting the spin symmetry correlated with space symme-
try Γ. According to the symmetry types of the space basis states,
the coherences ĈΓΓ′

pp′αα ′ can in a natural way be classified into nine
symmetry partitions: three homogeneous partitions (Γ,Γ) and six
inhomogeneous ones, (Γ,Γ′), where Γ 6= Γ′. Each space coherence
|pΓ >< p′Γ′| is associated with an appropriate number of spin co-
herences |Γα >< Γ

′
α ′|. For instance, coherence |pA >< p′Ea| will

occur in combinations with 8 spin coherences |αA >< α ′Eb|, be-
cause the eight methyl proton spin states classify into four states
of symmetry A, two of symmetry Ea, and two of symmetry Eb.

The DQR model is based on the observation that the free evo-
lution of ρ̂ϕs(t) proceeds on two totally different time scales. One
is compatible with the rates of the vibrational relaxation and de-
phasing processes in the rotator system which typically occur in
the 10−10 - 10−12 s range. The other is much longer and, contrary
to the former, commensurate with the time scale of NMR experi-
ments. The physical reasons for such a discrepancy between the
time scales are recapitulated in the Appendix. In these consid-
erations the spin-dependent interactions are immaterial and are
neglected.15 They are included on a later stage of the reasoning.

In the above context, the spin parts of the basis vectors can be
dropped with no loss of accuracy, what implies a reduction of the
size of the density matrix. The purely space density matrix will
be denoted by dropping superscript "s" at ρ̂ϕs(t). The evolution
of ρ̂ϕ (t) under action of interactions not engaging nuclear spins
can be concisely described in the Liouville space spanned by the
space coherences mentioned above,

d|ρϕ � /dt = (−iLϕ +Rϕ )|ρϕ � (5)

where |ρϕ � is a column vector composed of the matrix elements
of ρ̂ϕ , and the square matrices Lϕ and Rϕ are Liouville represen-
tations of the Mathieu hamiltonian and the rotator-bath interac-

tions transformed into a vibrational relaxation/dephasing matrix,
respectively.

As discussed in the Appendix, the evolution matrix Tϕ =

−iLϕ +Rϕ in Eq. (5) consists of independent diagonal blocks de-
scribing the individual symmetry partitions. In each such subma-
trix, one of its eigenvalues is sharply distinct from the remain-
ing eigenvalues. While the smallest of the latter are of absolute
magnitude of typical vibrational relaxation/dephasing rates, the
unique eigenvalue is either exactly zero or has absolute magni-
tude compatible with NMR time scale. The zero eigenvalues oc-
cur for the homogeneous partitions. A consideration of the above
properties of Tϕ and other relevant details of its structure dis-
cussed in the Appendix summarizes in the following conclusions
involving evolution of ρ̂ϕ (t) after any external stimulation driving
the system out of its thermal equilibrium state.

(i) The coherences that live long enough to be relevant to
NMR are not just the individual space coherences that could be
expected to occurr in isolated rotator but appropriate weighted
combinations thereof, appearing as a side effect of the rapid vi-
brational relaxation/dephasing processes.

(ii) In each symmetry partition there is only one long-lived
space coherence (understood as a combination of appropriate
space coherences |pΓ >< p′Γ′| from the partition).

(iii) The long-lived, and in fact, infinitely long-lived space co-
herences in the homogeneous partitions (Γ,Γ) are Boltzmann
combinations of the self-coherences |pΓ>< pΓ| representing level
populations,

ĈΓΓ(T ) =
1

ZΓ
∑
p

exp(−h̄ω
Γ
p /kBT )|pΓ >< pΓ|, (6)

where ZΓ is the corresponding partition function

(iv) At low temperatures the long-lived space coherences in
the inhomogeneous partitions (Γ,Γ′) can be roughly described as
Boltzmann combinations of the coherences |pΓ >< pΓ′| between
the torsional sublevels on the sequential torsional levels,

ĈΓΓ′(T )≈ 1
Z ∑

p
exp(−h̄ω

/
pkBT )|pΓ >< pΓ

′|, (7)

where ωp = (ωΓ
p +ωΓ′

p )/2 and the partition function Z is defined
accordingly. At higher temperatures, the weighting factors enter-
ing the above coherences can only be evaluated numerically by
diagonalizing Tϕ

In absence of spin-dependent interactions, the free evolution of
the long-lived coherences in the six inhomogeneous partitions are
damped oscillations,

CΓΓ′(t) =CΓΓ′(0)expθ
ΓΓ′ t (8)

where CΓΓ′(t) is the complex amplitude of long-lived coherence
ĈΓΓ′(T ) contributing to ρ̂ϕ (t). The complex quantities θ ΓΓ′ de-
scribing the oscillation frequencies and damping-rate constants
of these peculiar coherences are the uniquely small eigenvalues
of the individual partitions (Γ,Γ′) of Tϕ . They obey the following
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relationships:

θ
AEa,b = θ

∗Ea,bA ≡ i∆− kt

θ
EaEb = θ

EbEa ≡−kK , (9)

The coherences in partitions (A,Ea,b) and (Ea,b,A) were once
dubbed "tunnelling coherences" because at any temperature
their dominating components are "primitive" coherences between
tunnelling-split torsional sublevels. By analogy, the coherences
in partitions (Ea,b,Eb,a) were named "Kramers coherences". They
evolve without oscillations what is a reminiscence of the perfect
degeneracy of the Kramers pairs on the sequential torsional lev-
els.

The peculiar properties of methyl groups and similar molecular
rotators, evidenced in NMR spectra and spin-lattice relaxation ef-
fects, are described by the three DQR quantities ∆, kt , and kK . At
low temperatures, the oscillation frequency ∆ of the tunnelling co-
herences is approximately given by Boltzmann combination of the
tunnelling splittings on the two lowest torsional levels. Even in
this temperature limit, no simple expressions could be proposed
for the damping-rate constants kt and kK . At any temperature that
might be of interest in NMR studies all of the three above DQR
parameters can be modelled numerically using one set of param-
eters. In the once reported simple but physically well-justified
approach15 to be also used presently, this set include only four
items: the amplitude, V , of the torsional potential, two parame-
ters measuring the strengths of the sine and cosine-type modes
of perturbations of the torsional potential, and one parameter
describing the harmonic bath.15 A detailed description of these
parameters will be given later on.

If each of the long-lived coherences discussed above is aug-
mented with spin coherences of appropriate symmetries, the ob-
tained in this way spin-space Liouville manifold will have the
same dimension as the purely spin manifold for the system of
nuclei in the rotator. The complete equation of motion, includ-
ing the spin-dependent interactions, given in Eq. (27) in the Ap-
pendix, can be represented in this spin-space manifold in the form
adjusted for the purposes of NMR, i.e., with neglected short-lived
coherences. The spin-dependent interactions now appear in the
equation of motion as first order corrections, which level of ap-
proximation is more than adequate here.15 The obtained den-
sity matrix, ρ̂ ′, will include only the coherences that are rele-
vant to NMR. However, the equation of motion governing the
evolution of ρ̂ ′ will still involve delocalized rotator and as such
it will be inconvenient in use. The troublesome dependence on
the space variable of both ρ̂ ′ and the entities governing its evo-
lution is no longer dynamic and can be removed by integration
over this variable. If this operation is applied in combined with
the uncorrelation-recorrelation technique proposed earlier,15,31

the final equation of motion obtained in this way will involve the
rotator localized in one of its three equivalent potential energy
minima. In this equation, ρ̂ ′ is transformed into purely spin den-
sity matrix ρ̂ of the same dimensions, and the operators governing
its evolution are transformed into their familiar counterparts in-
volving localized rotator. The final equation of motion converted

to its spin state space form reads:

dρ̂/dt = − i[Ĥ +
∆

3
(Ĉ+Ĉ−1), ρ̂] (10)

− kK

3
(2ρ̂−Ĉρ̂Ĉ−1−Ĉ−1

ρ̂Ĉ)− kt − kK

2
(ρ̂−Û ρ̂Û),

where Ĉ is the operator effecting cyclic permutation of the spin
variables of the three particles in the rotator, Û is an unitary, self-
inverse operator

Û =
1
3
[1̂−2(Ĉ+Ĉ−1)], (11)

and Ĥ is the standard spin hamiltonian describing the Zeeman,
chemicals shift anisotropy (CSA) and dipole-dipole (DD) inter-
actions in the (localized) rotator specifically oriented in the ex-
ternal magnetic field. The term multiplied with ∆ describes the
apparent couplings (i.e, the Heisenberg couplings) between the
nuclei in the rotator, arising from the coherent rotational tunnel-
ing. For spin-1/2 nuclei these couplings appear as the familiar
J-couplings.32

The equation of motion in Eq. (10) establishes a unique plat-
form for a precise quantification of the actual departure of the
considered incoherent dynamics from the classical limit. For
kt = kK it becomes the familiar Alexander-Binsch equation based
on the classical jump model. This is a remarkable property of the
DQR formalism because in none of its stages has the concept of
jumps been introduced. However, as is commented further on
in the Discussion subsection, the jump model emerging from the
formalism of the DQR theory is not identical with that introduced
ad hoc in the conventional descriptions of the methyl group dy-
namics. Nevertheless, for practical purposes it is convenient to
consider it as the classical limit of the DQR approach. The mag-
nitude of deviation of the ratio kt/kK from the "classical" value 1
can thus serve as a precise measure of the degree of nonclassi-
cality of the observed dynamics. As has already been mentioned,
the values of this ratio exceeding 5 were determined from fits of
the discussed equation to the experimental spectra of a hindered
CH3 group.18 With properly modified spin hamiltonian, Eq. (10)
is also valid for methyl groups in molecules freely tumbling in
fluids. For several systems containing extremely hindered methyl
groups, investigated in solution, the experimentally determined
values of kt/kK also noticeably deviate from 1.19–22

2.2 Spin-lattice relaxation in the DQR approach

For kt and kK greatly exceeding the intra-group DD couplings,
and with included nonsecular terms of the DD interactions, the
equation of motion in Eq. (10) is a valid spin-lattice relaxation
equation, if applied to the difference density matrix describing
deviations of the system from the state of thermal equilibrium
with the environment.12 In its formulation aimed at the descrip-
tion of line shape effects it would be impractical in use for the
spin relaxation, because of considerable redundancies occurring
in it in the above limit. In the cited paper, its Liouville space ver-
sion with an alternative formulation of the dissipative terms was
Fourier-transformed to the frequency domain, where the redun-
dancies could be eliminated by considering the structure of its ma-
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trix representation at zero frequency. Upon return to the time do-
main, spin-lattice relaxation matrix was obtained. It involves pro-
tonated methyl group specifically oriented in the external mag-
netic field. The obtained relaxation matrix has the same form
as that reported once by Haupt.6 However, in place of a quantum
mechanical correlation time appearing in the latter, having impre-
cise meaning9 except for the case where only the lowest torsional
level is populated, now there appears the quantum-rate constant
kt which remains consistently defined over the whole temperature
range of interest in relaxation (and line shape) studies of methyl
groups. The finding that for protonated methyl groups only the
processes measured by kt are relevant is in line with an earlier re-
sult by Diezemann11 who addressed the same limiting instance as
that investigated by Haupt. For polycrystalline materials, the ini-
tial relaxation rate constant calculated for the relaxation matrices
obtained in the DQR approach is given by12

1
T1

=
9d2

40

−2

∑
m=2

m2kt

k2
t +(∆−mω0)2 , (12)

where d = µ0γ2
H h̄/4πr3 is the DD coupling constant between

methyl group protons (separated by r ≈ 0.180 nm). For ∆ = 0
and kt replaced by the inverse correlation time τ−1 of the classi-
cal jumps, it is known as the Bloembergen-Purcell-Pound (BPP)
expression.33,34

For protonated methyl groups relaxing by the DD mechanism,
addressed in the DQR approach, the Kramers quantum process
could contribute to relaxation in the presence of non-negligible
inter-molecular DD interactions.12

Details of a preliminary validity test of the considered spin-
lattice relaxation theory, relevant for the findings reported in this
work are given in the Discussion subsection.

3 Experimental and computational proce-
dures

The syntheses of selectively deuterated in the aromatic posi-
tions methyltriphenylsilane (MTPSi-d15) and methyltriphenylger-
manium (MTPGe-d15) are described in the Electronic Supplemen-
tary Information (ESI). To the best of the present authors’ knowl-
edge, MTPGe in its protonated and selectively deuterated forms
was synthesized for the first time. Details of the X-ray diffraction
and NMR measurements are given in the ESI.

For MTPSi, quantum chemical calculations of torsional barri-
ers for the methyl groups were carried out at the DFT/B3LYP/6-
311G(2d,p) level of theory using the Gaussian 09 package.35 The
calculations were performed for clusters of 6 molecules, includ-
ing the hosting molecule, whose fragments are most proximate to
the methyl group of interest. In the calculations, crystallographic
coordinates of all non-hydrogen atoms were assumed, and the hy-
drogen atoms’ positions were optimized on the above mentioned
level of theory. For each nonequivalent methyl group the pro-
file of the torsional barrier was calculated for 10◦ increments of
the torsional angle, keeping all the remaining atomic coordinates
fixed at their crystallographic (or, for protons, optimized) posi-
tions. For both groups, the calculated torsional energy data fairly
fit with the potential in Eq. (1). The fits are shown in Fig. S1 of

the ESI.

4 Results and discussion
4.1 Model compounds
Both MTPSi and MTPGe crystallize in the P21/c space group, with
8 molecules in the unit cell, where the asymmetric unit comprises
2 molecules. The crystal structure of MTPSi is known.36,37 For
MTPGe it was determined in this work. The asymmetric units of
the unit cells of MTPSi and MTPGe are shown in Figs. 1a and
1b, respectively. In both cases the molecules in the asymmetric
unit are interrelated by a non-crystallographic translation. The
quantum chemical calculations for MTPSi revealed that the tor-
sional barriers for the methyl groups in these molecules are con-
siderably different, 862 cm−1 for molecule A and 744 cm−1 for
molecule B. The torsional barriers evaluated from the relaxation
data for MTPGe-d15 are also different. In this compound labels A
and B were assigned to the methyl groups with higher and lower
torsional potential, respectively.

Fig. 1 Views along crystallographic axis a of the asymmetric units in the
crystal structures of MTPSi (a) and MTPGe (b). For molecules A and B
of MTPSi the calculated torsional potential amplitudes are 862 and 744
cm−1, respectively.

MTPSi and MTPGe were chosen as model compounds because
there had been facile routes to obtain them in the selectively
deuterated forms where only the methyl group protons are left.
One more reason rendering these substances suitable models for
the present purposes was that in both of them the neighbour-
hoods of the methyl groups have approximate three-fold symme-
tries. For such structural arrangements it could be anticipated
that the torsional potentials would be fairly approximated by sim-
ple cosine functions of the torsional angles. These predictions
were confirmed by the above mentioned quantum chemical calcu-
lations for MTPSi. On this basis, the simple cosine potentials were
assumed for all methyl groups in the investigated compounds,
what facilitated the interpretation of relaxation data in terms of
the DQR model.

Because for either compound the smallest intermolecular dis-
tances between the methyl protons are similar for groups A and B
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and are rather large, with the smallest value of about 0.35 nm, in-
termolecular contributions to spin lattice relaxation of intergroup
dipolar interactions could be neglected. These convenient prop-
erties of the crystal structures were also taken into account when
use of the considered compounds as models was considered. The
problem of model selection has been given so much attention be-
cause it is of a primary importance in the present studies designed
to pursue subtle effects predicted by a novel relaxation theory.

4.2 Theoretical fits of experimental data
The interpretation of the spin-lattice relaxation data was made
under the standard assumption that, in consequence of the rapid
spin diffusion, the initial recovery rate is a weighted average of
contributions from both methyl groups. Because these occur in
equal amounts, the initial rate constant is given by:

1
T1

=
1
2
(

1
T1A

+
1

T1B
). (13)

For both compounds, the observed magnetization recovery curves
could be fitted with a bi-exponential model

M(t) = M−M1 exp(−k1t)−M2 exp(−k2t). (14)

With decreasing temperature, the relative contribution of the
faster recovering component was decreasing. At all temperatures,
the two-component model afforded a perfect description of the
whole recovery curve, including its most interesting initial frag-
ment. The initial recovery rate constants were approximated by

1
T1

=
M1k1 +M2k2

M1 +M2
. (15)

Fig. 2 Experimental spin lattice relaxation rate constants for MTPSi-d15
(squares) with superposed theoretical best-fit curves obtained in the
DQR (solid line) and BPP (dotted line) fits.

The temperature-dependent experimental relaxation data for
MTPSi-d15 and MTPGe-d15 are displayed in Figs. 2 and 3, respec-
tively. In the figures, the continuous solid curves represent best
least squares fits of the quantum mechanical expression

1
T1

=
9d2

80

−2

∑
m=2

m2ktA

k2
tA +(∆A−mω0)2 +

m2ktB

k2
tB +(∆B−mω0)2 , (16)

obtained by substituting for 1/T1A and 1/T1B in Eq. (13) the right
hand sides of Eq. (12) with values of kt and ∆ specific for the
individual methyl groups A and B; the DD coupling constant d
was assumed the same for both groups. In the fits with Eq. (16)
(to be further referred to as the DQR fits), the values of d and
of the parameters defining the temperature dependences of ktA,B

and ∆A,B were adjusted. For each group the modelling of the
temperature dependences of its specific DQR quantities involved
two adjustable parameters, out of the four parameters employed
in the theoretical model. Thus, five parameters were adjusted in
these fits. In the next subsection it will be explained why such a
reduction of the number of adjustable parameters is justified.

The dotted curves in Figs. 2 and 3 represent best least squares
fits of the weighted sum of the standard BPP expressions,

1
T1

=
9d2

40 ∑
m=1,2

m2τA

1+(mτAω0)2 +
m2τB

1+(mτBω0)2 , (17)

with the assumed Arrhenius behaviour of the correlation times
τA,B,

1
τA,B

=
1

τ0
A,B

exp(−EA,B/kBT ). (18)

Like in the DQR model, in this conventional model, to be further
named the BPP model, five parameters were fitted: the Arrhenius
parameters for groups A and B, and d, again assumed to be the
same for both groups.

One of the principal results of this work is that the DQR fits are
at least as good as the BPP fits. Some superiority of the quan-
tum approach over the conventional one can be seen in Fig. 3
for the low-temperature data for MTPGe-d15. At these tempera-
tures, the experimental temperature trend, although somewhat
obscured because of experimental errors, appears to be better
reproduced by the DQR fit. Similar, but less pronounced effect
occurs for the conventional and DQR fits shown in Fig. 2.

4.3 Details of the DQR fits

In these fits, the crucial step involves numerical evaluation of
the smallest eigenvalue of partition (A,Ea) of the superopera-
tor Tϕ = −iLϕ +Rϕ entering Eq. (5) whose matrix elements are
given in Eq. (28) in the Appendix. Results of such calculations
for the methyl group, obtained using a simplified formalism de-
veloped mainly for treatment of data obtained from line shape
studies, were already reported.12,15,18,38 Presently the formalism
has been extended to improve its performance in the high temper-
ature range where the considered dynamics tend to the classical
limit, with the ratio kt/kK approaching 1. To this end, apart from
the low-frequency coherences between the nearly degenerate tor-
sional states, mentioned explicitly in the Appendix, further TR co-
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Fig. 3 Same as Figure 2, but for MTPGe-d15.

herences, ones engaging different TR states, have been included
in the relevant block of Tϕ . (They are optically inactive, yet their
homogeneous counterparts would generally be detectable in the
infrared/far infrared range.) For inert molecular rotators like the
benzene ring, the inclusion of coherences between different TR
states appears to be of a critical significance for the calculated
rate constants to have physical sense.39 For the methyl groups
it has minor significance unless, such as in the present case, the
dynamics near the classical limit are of interest. These peculiar
features of the methyl group, as compared to rotators with large
moment of inertia, are concerned with substantial differences be-
tween the corresponding frequency spectra. In the latter case the
frequency gap separating the coherences between nearly degen-
erate torsional sublevels from those between different TR levels
is relatively small as compared to the off-diagonal elements of
Rϕ between the diagonal elements describing the considered fre-
quencies. For the methyl group, the difference is larger such that
the corresponding off-diagonal elements of Rϕ are roughly non-
secular and can play less prominent role in shaping the consid-
ered dynamics.

Of an indirect significance for the interpretation of the results
of the DQR fits are also calculations of kK as the unique eigen-
value of partition (Ea,Eb) of Tϕ . Like for partition (A,Ea), apart
from the perfectly degenerate coherences between the Kramers
sublevels, the coherences oscillating with nonzero TR frequencies
were presently included in the diagonalized block of Tϕ . The cal-
culated unique eigenvalue remains a purely real quantity because
these oscillating coherences come in pairs differing only by signs
of their oscillation frequencies.

The matrix elements of Tϕ given in Eq. (28) in the Appendix
are dependent on the matrix elements of the rotator-phonon
hamiltonian in Eq. (2) between the eigenvectors of the Mathieu

hamiltonian in Eq. (1). Evaluations of the latter involve numer-
ical calculations of integrals of the form < pΓ|cos3ϕ|p′Γ > and
< pΓ|sin3ϕ|p′Γ > . The relevant eigenvectors were calculated in
the basis of exponential functions exp i3( j+m)ϕ, with m = 0,1,2
depending on the symmetry type, using the standard variational
approach. In the present case 81 basis functions were used, i.e.,
j =−40,−39, ...,40. The assumed moment of inertia was that of a
perfectly tetrahedral methyl group, with the C-H bond lengths of
0.109 nm. The other quantities defining the matrix elements of
Tϕ are the spectral density functions JX (ω), where X stands for
C (cosine) and S (sine) modes of perturbations of the torsional
potential.

To evaluate them in a reasonable way, in Ref.15 the discrete
phonon frequencies were described by a continuum, with func-
tion D(|ω|) measuring density of bath oscillators of frequency ω.
Accordingly, the discrete rotator-phonon couplings λ X

k in Eq. (2)
were replaced by continuous (scalar) functions λ X (ω), where
ω ≈ ωk. Additionally, independence of these couplings of the
propagation directions of the individual lattice vibrations was as-
sumed. Then, with no further approximations beyond that the
lattice oscillators are perfectly harmonic, the considered spec-
tral density functions could be obtained in the following closed
form:15,40

JX (ω) =
π[λ X (ω)]2D(|ω|)

h̄ω[exp(h̄ω/kBT )−1]
. (19)

A suitable parametrization of λ X (ω) poses a challenge because lit-
tle is known about microscopic details of the effects they measure.
Similar problem involves function D(|ω|) in molecular crystals of
complicated structure. For the latter a modified Debye model was
used. Namely, in place of the the rapid decay of the density of
lattice oscillators above the Debye cut-off frequency ωc, an expo-
nential decay with ωc measuring the decay rate was assumed,15

thus
D(|ω|) =Cω

2 exp(−|ω|/ωc). (20)

In this way, by taking a value of ωc falling above the true Debye
frequency not only the genuine lattice vibrations but some in-
tramolecular low-frequency oscillators can be taken into account
as factors possibly influencing the considered torsional potential.
Finally, to minimize the set of model parameters, independence of
the rotator-phonon couplings λ X (ω) of the phonon frequency was
assumed. By renormalizing them with an account of the phonon
densities,

fX =
λ X

2

√
N

2h̄ωc
, (21)

where N is the integral of D(|ω|) in the limits between −∞ and ∞,
the spectral density functions dependent on only two parameters
were obtained,15

JX (ω) =
2π f 2

X ω exp(−|ω|/ωc)

ω2
c [exp(h̄ω/kBT )−1]

. (22)

(Unfortunately, in Eq. (39) in Ref.15 describing the renormaliza-
tion, there have been overlooked typos; they do not proliferate
to the final expression for the spectral density in Eq. (40) in the
cited paper.) In Eq. (22), fX measures the effective impact on the
torsional potential of not only the lattice but some intramolec-
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ular vibrations as well, and ωc roughly defines the upper limit
of available energy quanta exchanged between the rotator and
its surrounding. The physical meaning of fX as a measure of
the rotator-phonon couplings becomes clear if one considers that,
with temperature tending to 0, the value at time 0 of the quan-
tum correlation function reproduced from the density function in
Eq. (22) converges to f 2

X .15

Trial calculations of the values of kt and ∆ with the above
parametrization of the matrix elements of Tϕ show that for the
torsional potentials high enough to hold at least three torsional
levels the calculated values remain virtually insensitive to the in-
dividual values of fC, fS, and ωc if the following ratio of their
squares is kept constant,

f 2
C + f 2

S
ω2

c
= const., (23)

while ωc and the ratio fC/ fS can be varied within rather broad
limits of 350 - 700 cm−1 and 0.5 - 2, respectively. (The units
of cm−1 used for quantities whose natural units are rad s−1 are
practical in the present context.) The same involves the calcu-
lated values of kK . With increasing temperature, the values of kt

and kK show a limiting Arrhenius behaviour, with the ratio kt/kK

invariably approaching from top the "classical" value 1. Simulta-
neously, the ratio ∆/kt rapidly tends to 0. The latter behaviour
can be interpreted as a sort of thermal quenching of the coher-
ent tunneling even if the values of ∆ itself remain large or show
apparently divergent oscillations with increasing temperature.12

It was noticed earlier that if ∆/kt is close to 0, ∆ can be dropped
from the denominators in the spin-lattice relaxation rate expres-
sions like that in Eq. (12), regardless of the relative magnitudes
of ∆ and ω0.12 (If |∆| is comparable with kt yet small against the
Larmor frequency, it can obviously be discarded.)

In view of the above correlations between the parameters defin-
ing the interested dynamics, the quantum fits presented in Figs. 2
and 3 were performed for fixed value of ωc = 600 cm−1 and for

fC = fS ≡ f , (24)

with f optimized. The other optimized parameter was V , the
amplitude of the torsional potential. In this way, the number of
fitted parameters per one methyl group remains effectively the
same as in the BPP fits. For altered proportions of fC to fS, and
for assumed values of ωc = 400 and 700 cm−1, the fits delivered
values of V and of the ex post calculated ratio in Eq. (23) vary-
ing only within the limits of the corresponding standard errors
also evaluated in the fits. The rms errors of the fits remained
unchanged.

For the two investigated substances, the optimized values of
the quantum and Arrhenius parameters, and of the DD coupling
constant are collected in Table 1. All the values are given to the
last significant digit.

4.4 Discussion

The values of d extracted in both sorts of the fits are mutually
consistent. The HH distance reproduced from them is 0.187 -
0.188 nm, somewhat above the standard distance 0.180 nm. The

discrepancy can to a large extent be attributed to the vibrational
corrections to the DD couplings, the ubiquity of which is well doc-
umented the in reported relaxation studies. The obtained values
of d indirectly confirm the absence in the investigated materials
of other relaxation mechanisms than that by intra-group DD in-
teractions.

The good quality of the presently reported DQR fits provides
first unequivocal confirmation of the validity of this model for
a variety of methyl groups experiencing diverse torsional poten-
tials. The only previous test involving raw experimental data
had been performed yet before the theoretical model was pub-
lished,38 and concerned an extremely hindered methyl group.
In such context its confrontation with the standard BPP model
lacked sufficient grounds. The already mentioned direct demon-
stration of its correctness was based on processed relaxation data
taken from the literature.12 Namely, temperature trend of the
rate parameter extracted from proton relaxation data for a methyl
group, believed to be the inverse correlation time of the jump pro-
cess, with assumed Arrhenius dependence on temperature,41 was
compared with the trends of the DQR parameters kt and kK de-
termined in Ref.18 from variable-temperature spectra of the same
material, measured at lower temperatures. The relaxation and
line shape investigations involved a single crystal of selectively
deuterated methylmalonic acid in a fixed orientation in the ex-
ternal magnetic field.41. The Arrhenius trend obtained from the
relaxation data have proved to exactly continue the temperature
trend of kt extracted in the DQR line shape fits using Eq. (10). A
confusion with the trend of kK also determined in the line shape
fits was unlikely because in the low temperature range the ra-
tio kt/kK exceeded 5 (see Fig. 2 in Ref.12). These observations
not only confirm the DQR model of spin-lattice relaxation but its
full consistency with the DQR line shape theory as well. More-
over, the temperature trends of kt , kk, and ∆ determined from the
spectra could be reproduced theoretically using the already men-
tioned simplified version of the DQR formalism, limited to the
coherences between torsional sublevels.18 Hence, results of sim-
ilar calculations using the improved version of the formalism, to
be discussed below, appear trustworthy.

In Fig. 4 plots of the values of kt determined in the DQR fits
for groups A in MTPSi-d15 and B in MTPGe-d15 are shown. Of
the four types of methyl groups investigated presently, the for-
mer suffers the highest torsional potential, 920 cm−1, and the lat-
ter the lowest, 483 cm−1. For group B in MTPGe-d15, Arrhenius
plot of the values of 1/τ obtained in the BPP fit is also shown.
The differences between the compared curves are most notable
in the region of low temperatures, where also the corresponding
theoretical curves describing the relaxation rates in Fig. 3 differ
substantially, and where the DQR curve goes closer to the exper-
imental points. For group A in MTPSi-d15, the temperature trend
of kt shown in Fig. 4 closely follows the Arrhenius law and co-
incides with the trend of 1/τ obtained in the BPP fit. Thus, the
DQR model is fully capable of reproducing the Arrhenius trends
and also deviations from it, which can occur for methyl groups
experiencing low torsional barriers. Both sorts of temperature be-
haviour of kt , the nearly perfect Arrhenius trend and one showing
significant deviations from such trend, could be consistently mod-
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TABLE 1. Results of the BPP and DQR fits to the spin-lattice relaxation data for MTPSi-d15 and MTPGe-d15.a

Cmpd. Group dBPP 1/τ0 E dDQR f V Vcalc Eb

kHz 1012s−1 kJ mol−1 kHz cm−1 cm−1 cm−1 kJ mol−1

A 4 9.25 200 920 862 9.8
Si -18.4 -18.1

B 0.8 6.11 90 720 744 7.6
A 2 6.23 140 663 - 6.9

Ge -18.1 -18.1
B 1 3.93 100 483 - 4.9

aThe DQR fits were performed for the fixed value 600 cm−1 of the cut-off frequency ωc of the bath oscillators; bE is the difference
between the experimental amplitude, V , of the torsional potential V (1− cos3ϕ)/2 and the calculated zero-point energy in this

potential, expressed in kJ mol−1.

Fig. 4 Temperature dependences of the values of kt for methyl groups A
in MTPSi-d15 and B in MTPGe-d15 (solid and dashed lines,
respectively), reproduced from results of the corresponding DQR fits.
Dotted line: the values of 1/τ for group B in MTPGe-d15, reproduced
from results of the BPP fit.

elled with the same number of adjustable parameters, i.e. two, in
each case. To obtain any departures from linearity for 1/τ one
would have to augment the Arrhenius equation with another em-
pirical term. Therefore, the superiority of the DQR model in the
interpretation of relaxation data for the methyl groups appears
unquestionable.

Nevertheless, if cases with extremely low torsional barriers are
excluded, a superficial inspection of the BPP and DQR fits in Fig. 2
may lead to the conclusion that the complicated DQR approach is
essentially needless in the interpretation of the spin-lattice relax-
ation for such methyl groups. However, if the question is posed
what sort of knowledge about the system can be delivered by the
conventional approach, the answer is not obvious. In such ap-
proach, the obtained preexponential Arrhenius factors are hard to

Fig. 5 Correlation between Arrhenius preexponential factors in column
4 of Table 1 and the corresponding DQR quantities ( f/ωc)

2 measuring
relative strengths of impact of the environment on the dynamics of the
methyl groups A and B in MTPSi-d15 and MTPSi-d15.

be interpreted. In the DQR model, the parameter f evaluated in
the fits, even if not interpretable as such, gives some insight into
relative susceptibilities of the investigated methyl groups to the
perturbations by the environment. Because, as shown in Fig. 5,
the obtained values of ( f/ωc)

2 are in a nearly perfect linear cor-
relation with the Arrhenius prefactors 1/τ0, the present results
allow one to interpret the latter accordingly, i.e., as measures of
the impact of environment on the considered dynamics of methyl
groups. This observation is one of the main results of this work.

On the other hand, the relationship between the evaluated Ar-
rhenius activation energy and the genuine potential barrier (the
assessment of which is one of the main targets of such relaxation
studies), is still not obvious. The commonly adopted belief, con-
sistent with the concept of jumps over potential barrier, is that the
activation energy equals the energy gap between the zero-point-
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energy (ZPE) and top of the barrier. However, it appears unten-
able in view of the data for group B in MTPSi-d15. The Arrhenius
activation energy obtained in the BPP fit, shown in column 5 of
Table 1, substantially differs from the value given in column 10,
calculated by subtracting the (calculated value of the) ZPE from
the torsional barrier evaluated in the DQR fit. The former is by
some 20 percent lower than the latter. By and large, the activa-
tion energies delivered by the BPP fits for all four methyl groups
come consistently lower than those calculated from the potential
amplitudes evaluated in the DQR fits. Note that for MTPSi-d15

the latter values are in a fair agreement with those calculated us-
ing a quantum chemistry method. However, given the necessary
simplifications made in the latter calculations, the experimental
values appear to be closer to reality. (Because of the presence
of heavy Ge atoms in the corresponding molecular clusters, for
MTPGe theoretical evaluations of the torsional potentials were
not undertaken.)

In view of the above discussion, further comments on the jump
model are in order, because its validity in the interpretation of
relaxation data for the methyl groups is generally considered un-
questionable, at least for the groups experiencing torsional barri-
ers above 400 - 500 cm−1. As was mentioned in the comment to
Eq. (10), in the DQR approach, the jump process emerges from
the quantum dynamics if kt ≈ kK . In this perspective, it has to
be viewed as a composite construct because even in the above in-
stance the corresponding quantum rate (i.e., coherence-damping)
processes evolve separately. In the DQR relaxation theory for pro-
tonated methyl groups, only one of the two constitutive parts of
the jump process understood in the above way stimulates the
spin-relaxation effects. The other part, measured by rate con-
stant kK , is inactive (although for the DQR relaxation theory to
be valid, not only kt alone but kK as well should be much greater
than 2πd 12). In the conventional interpretation of the relaxation
data it is believed that the correlation time τ entering the relax-
ation expressions characterizes just the jump process understood
as one of classical jumps over the barrier. (In practical applica-
tions of the Haupt approach to weakly hindered methyl groups,
the jump process is invoked in the interpretation of relaxation
rates at high temperatures9,13,14). This is, however, hardly jus-
tified even if the relevant dynamics of the methyl group are in
the "classical" regime of kt/kK ≈ 1. Even if the Arrhenius equa-
tion is used in the interpretation of the relaxation data, the ex-
tracted values of 1/τ will approximately be equal to kt . Unlike
for the classical jump process, the apparent activation energies
for kt are only loosely related to the barrier height. The mag-
nitude of this rate constant is predominantly controlled by the
tunnelling splittings at the individual torsional levels the methyl
rotator randomly samples in the course of time. In the DQR ap-
proach, damping of the tunneling coherences associated with kt

has much in common with the mechanism of residual line broad-
enings in fast exchange limits of multisite exchange processes in-
vestigated in NMR spectroscopy.15 In both cases, the lifetime of
the emerging, dynamically averaged coherence is limited by the
effects of frequent jumps of the quantum system between its in-
stantaneous states characterized by different oscillation frequen-
cies - Larmor frequencies in the individual exchanged sites or dif-

ferent tunnelling frequencies at different torsional levels. For this
reason, the evaluated Arrhenius activation energies will generally
fall below the gap between the potential maximum and ZPE, as
has actually taken place for all four methyl groups investigated
presently.

Fig. 6 Temperature dependences of the ratios ∆/kt for methyl groups A
in MTPSi-d15 and B in MTPGe-d15 (increasing trends, solid and dashed
lines, respectively), plotted against right Y axis, and of the
corresponding ratios kt/kK plotted against left Y axis.

If kt and kK are substantially different, the very notion of jumps
of the methyl rotator completely loses grounds in the spin-lattice
relaxation (and line shape) studies. Even for the most strongly
hindered of the methyl groups investigated presently, the dynam-
ics underlying the observed relaxation behaviour are noticeably
far from the classical limit at low temperatures, below, say, 120
K. This can be seen in Fig. 6, where the calculated ratios kt/kK for
this group and group B in MTPGe-d15 (the least hindered group)
are plotted. For the former, this ratio drops from about 2 at 80 K,
to about 1.5 at 120 K, and only above 150 - 170 K the "quantum"
jump process starts to emerge from the quantum rate processes.
The dynamics of the least hindered group remain strongly non-
classical in the broad temperature range 55 - 120 K, with kt/kK

dropping from a value above 7 at 55 K to about 2 at 120 K. Thus,
even at relatively high temperatures the considered stochastic dy-
namics still retain their evidently quantum character. The popu-
lar view that at elevated temperatures molecular rate processes
in condensed phases are necessarily classical needs to be revised.

In Fig. 6, there are also shown plots of the values of ∆/kt against
temperature, calculated for the two "extreme" methyl groups.
These plots depict the processes of quenching of the coherent
tunnelling under impact of the environment. For both groups,
these temperature trends stabilize at values slightly different from
0, what may reflect some imperfections of the theoretical model.
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Nevertheless, in both cases the coherent tunnelling becomes prac-
tically overdamped above 200 K and its impact on the denomina-
tors of the relaxation expressions like that in Eq. (12) (the so
called Haupt denominators) would be negligible, regardless of
the magnitude of the applied magnetic field determining the Lar-
mor frequency. For the least hindered group, below 100 K |∆|
is comparable to or even strongly exceeds kt . In this range, the
values of |∆|/2π are at least of the order of the applied Larmor fre-
quency, 500 MHz. The divergence of the low-temperature trends
of the theoretical relaxation rate constants, shown in Fig. 3, is
caused by both the already discussed deviation of kt from the Ar-
rhenius law and the nonnegligible contribution of |∆| to the Haupt
denominators at the considered temperatures.

Unfortunately, unlike in the case of methylmalonic acid com-
mented on in the foregoing, for the presently investigated sub-
stances the appropriate reference data from line shape studies
could not be obtained. As is well known,41 in the instances of low
torsional barriers even if the incoherent dynamics can be frozen at
low temperatures, large coherent tunnelling effects appearing at
such temperatures affect the spectral patterns in almost the same
way as rapid incoherent processes do at elevated temperatures.

5 Conclusions
The results of this work show that the conventional interpretation
of the spin lattice relaxation data for the methyl groups, based on
the jump model combined with the Arrhenius law, may be decep-
tive despite the fact that a fair reproduction of the experimental
relaxation data can be achieved. The proposed alternative model,
fully consistent with the DQR line shape theory, affords at least
as good description of the experimental data as the conventional
model. As compared with the latter, the DQR approach can give
a more reliable assessment of the torsional barriers for methyl
groups placed in environments of approximate threefold symme-
tries. It can also deliver some estimates of the rotator-phonon
interactions. Its most notable advantages as compared to the con-
ventional approach involve an insight into the true nature of the
underlying dynamics of the methyl groups. One of the most im-
portant inferences from the present studies is that the thermally
activated incoherent processes stimulating the spin-lattice relax-
ation can retain quantum character over much wider temperature
range than is generally thought. Accordingly, the hitherto unques-
tioned status of the jump model has been challenged. This does
not mean that the use of the Arrhenius equation in the spin-lattice
relaxation studies on methyl groups also lacks grounds. However,
the Arrhenius parameters evaluated in such studies need to be in-
terpreted in terms of the DQR model along the lines sketched in
this work.

The proposed quantification of the tendency of the relevant dy-
namics to the classical limit, although involving an object of a
limited interest, falls in line with the still open fundamental de-
bate about the quantum to classical transition in the dynamic be-
haviour of microscopic objects. The relative indifference to the

destructive impact by the condensed environment of the quan-
tum effects in the investigated systems is probably related to the
fact that these effects are controlled by the symmetrization postu-
late. The current approach to the problem of the classical limit in
quantum mechanics is the decoherence theory.42 Unfortunately,
the systems which, like the methyl groups, include identical par-
ticles, are not in the focus in this theory, if the possible role of
the symmetrization postulate is concerned. Therefore, a deep-
ened discussion of the observations reported in this paper must
be postponed.

6 Appendix
In a formal presentation of the DQR theory, a systematic use of
the Liouville representation of quantum mechanics is indispens-
able. The Liouville space describing the evolution of the super-
ket |ρϕs� representing ρ̂ϕs is spanned by coherences defined in
Eq. (4) which form a complete orthonormal set of basis superkets,

ĈΓΓ′

pp′αα ′ ≡ |pp′αα
′
ΓΓ
′�= |pp′ΓΓ

′� |αα
′
ΓΓ′�, (25)

where |αα ′ΓΓ′ �≡ |αΓ >< α ′Γ′|. The scalar product of two su-
perkets, |A� and |B�, � A|B�, representing the respective
operators Â and B̂, is given by

� A|B�= TrÂ†B̂, (26)

where the superbra � A| equals |A �†. Hence the coherence
amplitudes CΓΓ′

pp′αα ′(t) entering Eq. (3) are the scalar products
� pp′αα ′ΓΓ′|ρϕs(t)�.

In the Liouville space, the considered equation of motion, in-
volving also the short-lived coherences irrelevant to NMR, reads:

d|ρϕs� /dt = [−i(Lϕ +Lϕs)+Rϕ )|ρϕs�, (27)

where Lϕ is the Mathieu superhamiltonian generated by the
hamiltonian in Eq. 1, Rϕ describes the vibrational relax-
ation/dephasing processes in the rotator subsystem, and Lϕs is
the superhamiltonian of spin-dependent interactions of the rota-
tor particles, including DD, quadrupole (for spin >1/2 nuclei) and
Zeeman interactions with an account of the CSA effects. Because
Eq. 27 conforms with the requirements of the symmetrization pos-
tulate, it involves delocalized TR states. The superhamiltonian
Lϕs is small against the remaining terms in the right hand side of
Eq. (27). In particular, it is small in comparison with the vibra-
tional relaxation/dephasing rate constants entering Rϕ . Hence
the spin-dependent interactions and, accordingly, the spin parts
of the basis coherences, can be neglected as irrelevant for the
identification of the time scale relevant to NMR. They will be in-
cluded at a later stage of the reasoning as first-order corrections
understood in the sense of time-independent perturbation calcu-
lus. The resulting equation of motion is given in Eq. (5). In the
basis not including spin coherences, the matrix elements of the
superoperator Tϕ =−iLϕ +Rϕ are given by
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� pp′ΓΓ
′|Tϕ |qq′ΓΓ

′�= − δpqδp′q′ iω
ΓΓ′

pq′ (28)

+ [XΓΓ′

qpp′q′ +XΓ′Γ
q′p′pq−∑

t
(δp′q′X

ΓΓ
qtt p +δpqXΓ′Γ′

q′tt p′)],

where the elements of Lϕ , ωΓΓ′

pq′ = ωΓ
p −ωΓ′

q′ , occur only on the
diagonal and

XΓΓ′

uvv′u′ = < uΓ|cos3ϕ|vΓ >< v′Γ′|cos3ϕ|u′Γ′ > JC(ωΓ′Γ′
vu )

+< uΓ|sin3ϕ|vΓ >< v′Γ′|sin3ϕ|u′Γ′ > JS(ωΓ′Γ′
vu ),(29)

with JC,S(ω) denoting spectral density functions which character-
ize the cos (C) and sin (S) modes of perturbations of the torsional
potential, described in Eq. (2). These are quantum-mechanical
spectral densities dependent on the lattice temperature, T , and
obeying the Boltzmann-weighting relationship,

JC,S(ω) = exp(−h̄ω/kT )JC,S(−ω). (30)

Following the assumption made in related contexts,23,24 cross-
correlations of the sine and cosine terms have been neglected.
The elements � pp′ΓΓ′|Tϕ |qq′Γ′′Γ′′′ �, where either Γ 6= Γ′′ or
Γ′ 6= Γ′′′ are identically zero. This is because the matrix elements
of the rotator-phonon hamiltonian, of the form < pΓ|C,S|p′Γ′′ >
and < pΓ′|C,S|p′Γ′′′ >, where C and S stand for cos3ϕ and cos3ϕ,
respectively, which would occur in such matrix elements of Tϕ ,
are identicaly zero. This is a consequence of conservation of
the threefold symmetry even under action of the environment.
Accordingly, Tϕ in Eq. (5) is decomposed into nine indepen-
dent blocks concerned with the individual symmetry partitions,
, Tϕ(|Gamma,Γ′), such that the corresponding partitions of the den-
sity superket |ρϕ � evolve idependently.

The only matrix elements that can couple the symmetry par-
titions of Tϕ (in the Liouville space with restored spin degrees
of freedom) come from these terms in the spin-dependent su-
perhamiltonian Lϕs which violate the threefold symmetry of the
spin-independent interactions (although Lϕs is symmetric under
simultaneous cyclic permutations of the space and spin coordi-
nates). All these elements are of the order of magnitude of the
CSA and the dipole-dipole, and/or quadrupole interactions in the
protonated or deuterated methyl groups. The C3-symmetric part
of the Zeeman interaction, which exceeds the remaining spin-
dependent interactions by few orders of magnitude, does not con-
tribute to the coupling elements. The temporary neglect of this
relatively large term is justified also by the fact that it commutes
with the remaining superoperators in Eq. (27).

The possibility for certain coherences to survive the destruc-
tive action of the environment stems from peculiar features of
the spectra of the individual partitions of Tϕ . The spectra are
defined as the eigenproblems of the relevant (complex-valued,
non-Hermitian) matrices:

Tϕ(ΓΓ′)|λΓΓ
′�= θλΓΓ′ |ΓΓ

′�, (31)

where λ enumerates the eigenvalues and the associated eigen-
supervectors |λΓΓ′� which are linear combinations of the basis
coherences |pp′ΓΓ′�.

For each partition, precisely one of the eigenvalues is sharply
distinct from the remaining eigenvalues if the respective absolute
magnitudes are compared. The dominating terms in the "homoge-
neous" partitions (Γ,Γ) of Tϕ are matrices of master equations for
the level populations. Their off-diagonal elements are of the form
� ppΓΓ|Tϕ |qqΓΓ� and the diagonal elements are sums of the
off-diagonal elements in the corresponding columns, taken with "-
" sign. Accordingly, for each such partition the unique eigenvalue
equals exactly zero, and its associated eigen-coherence is the
Boltzmann combination of the self-coherences |ppΓΓ � whose
operator counterpart is given in Eq. (6). The remaining eigenval-
ues have absolute magnitudes at least of the order of vibrational
relaxation and/or dephasing rates.

As can be seen in Eq. (28), the relevant sets of matrix ele-
ments in the "inhomogeneous" partitions Tϕ(ΓΓ′), (Γ 6= Γ′) are
arranged in similar patterns as their counterparts in the mas-
ter equations in the homogeneous partitions, and involve ele-
ments of the form� ppΓΓ′|Tϕ |qqΓΓ′� which have similar mag-
nitudes as their homogeneous counterparts � ppΓΓ|Tϕ |qqΓΓ�
and � ppΓ′Γ′|Tϕ |qqΓ′Γ′ �. Now the self-coherences describing
level occupancies are replaced by the basis coherences between
degenerate or nearly degenerate sublevels of different symme-
tries at the sequential torsional levels. In an isolated rotator, such
coherences would evolve with zero or very low frequencies, as
compared to the torsional/rotational frequencies. In general, the
spectra of the inhomogeneous partitions have similar structure
as those of the homogeneous partitions. In the inhomogeneous
analogs of the master equations the sums of the off-diagonal ele-
ments in individual columns only approximately match the corre-
sponding diagonal elements. Moreover, in the partitions (A,Ea,b)

and (Ea,b,A) the diagonal elements contain the generally small
imaginary terms which are the tunnelling splittings at the individ-
ual torsional levels. Now, instead of the zero eigenvalue there ap-
pears one unique eigenvalue with relatively small absolute magni-
tude while the remaining eigenvalues are similarly large as their
counterparts in the homogeneous partitions. The notice of the
similarities between environment-induced dynamics of the level
populations and those of the low- or zero-frequency coherences
between the torsional sublevels was one of the main incentives to
develop the DQR approach.

In the main text, the discussed above peculiar eigenvalues
and their associated eigen-coherences (i.e., the tunnelling and
Kramers coherences), are denoted by θΓΓ′ and |ΓΓ′ �, respec-
tively, i.e., by dropping in Eq. (31) label λ . The eigenvalues obey
the relationships in Eq. (9).
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If the long- and short-lived coherences determined above are
augmented back with appropriate spin coherences, an equivalent
basis set in the discussed Liouville space will be obtained (it may
prove necessary to orthogonalize the sets of short-lived coher-
ences in the individual partitions, before augmenting them with
the spin parts). The complete equation of motion in Eq. (27)
(i.e., with included spin-dependent terms), represented in this
new basis set, will in a natural way decompose into two practi-
cally independent equations of motion. The matrix elements still
connecting them can come only from the spin-dependent interac-
tions, excluding the C3-symmetric part of the Zeeman interaction.
These elements can safely be neglected because they are small in
comparison with the difference in the time scales on which the
corresponding coherences evolve. For NMR, of relevance is only
the equation involving the long-lived coherences. Further pro-
cessing of this equation to obtain it in a working form is described
in the main text.
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