
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/pccp

PCCP

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Page 1 of 11 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



sands or even millions of reaction rates. With continuing ad-
vances in computing power, it has become feasible to automate
these searches.

One approach used the growing string double-ended method17

to search for possible transition states.18 While there is an in-
creased computational cost associated with the transition state
search, the use of the string method negates the need for a path
analysis step to validate the transition state. This method has
been extended to the construction of detailed mechanisms, where
the user controls the mechanism generation with restrictions such
as barrier height limits.19 Adoption of this method is limited to
those with access to software with reliable double-ended meth-
ods. Zimmerman has further developed these methods to create
a single-ended transition state search.20 This makes use of driving
coordinates from reactants to find intermediates, from which the
transition state can be found using the growing string method.

Zádor and Najm instead use a rule-based approach to direct
atoms from a reactant configuration towards the product, using
energy calculations at each step to determine the location of the
transition state.21 This method is best suited to reaction systems
with a small number of atoms, such as the exploration of a pres-
sure dependent reaction network.

The AARON code automates transition state searches to screen
potential organocatalysts.22 A catalyst structure is provided by
the user and mapped onto a parent catalyst structure for which
the transition state geometry is already known, then a series of
partially constrained semiempirical and DFT optimizations allow
the new transition state to be found.

Maeda and Morokuma used an artificial force to push react-
ing molecules together, to probe the potential energy surface
around atoms, predicting reactions and finding their transition
states.23,24 This Artificial Force Induced Reaction method re-
quires many random starting orientations.

The methods highlighted above explore the potential energy
surface for a given set of atoms, finding many reaction pathways
for a few reactants. These are not well suited to automated mech-
anism generation where it is routine to have many reactions of
the same type but with varying reactants. For such applications,
we propose an alternative method to estimate transition state ge-
ometries using molecular group contributions. The group contri-
butions are used to predict inter-atomic distances in the reaction
center of the transition states.

Estimated 3D geometries are constructed from the predicted
distances using distance geometry. Optimization and validation
of the transition state estimates have also been automated. Hy-
drogen abstraction reactions from a diisopropyl ketone combus-
tion model,25 previously developed using RMG, were used to test
the method, with transition states found for over 65% of the 1393
reactions.

Methods

Geometry estimation and optimization

Distance geometry.

The open-source cheminformatics toolkit RDKit26 was chosen for
its speed and accuracy as a conformer generation tool.27. The

distance geometry approach used in RDKit is described by Blaney
and Dixon.16 This approach uses a molecular bounds matrix con-
taining upper and lower bounds on distances separating each
atom pair.

Distances separating reactive atoms undergo significant change
during a reaction, but the rest of the molecule remains relatively
unaffected. As a result, distances between the reactive atoms are
unknown at the transition state, but existing methods can be used
to determine the remaining distances.

For hydrogen abstraction reactions, three atoms lie in the reac-
tion center: the abstracted hydrogen (H), the atom bonded to the
abstracted hydrogen (X), and the radical abstracting the hydro-
gen (Y). The three distances separating each reactive atom pair
are denoted as dXH, dHY, and dXY. Estimating these distances
allows the entire transition state geometry to be created using
distance geometry. Typically the geometry is specified manually,
but we demonstrate here a group contribution method to estimate
the required reaction center distances.

Molecular group organization.

Molecular groups were used to predict distances separating re-
active atoms of transition states. The molecular groups were or-
ganized in a hierarchical tree structure, so that distance predic-
tions were made using the most relevant available data. The tree
was limited to reactions with only atom types (elements) of C,
H, and O, but can be expanded to include other atom types by
adding the appropriate groups. Two trees were used as hydro-
gen abstraction reactions are bimolecular and the reaction center
distances are dependent on both reactants. The head nodes (top
groups) for the trees were X_H_or_Xanyrad_H and Y_anyrad. The
X_H_or_Xanyrad_H tree described the reactant where X is a wild-
card atom of any atom type, with zero or more radical electrons,
bonded to an H atom (the hydrogen to be abstracted), and the
Y_anyrad tree described the abstracting radical of any atom type,
with one or more radical electrons. Child nodes were added to be
more detailed than the parent nodes, for example, a child of the
X_H_or_Xanyrad_H node is X_H (here X is any element but has
no radical electrons), itself having a child H2.

The structure of the molecular group tree was first taken from
the kinetics database of the RMG software. This tree structure
was developed to make efficient use of sparse data for estimat-
ing kinetic parameters relevant to hydrocarbon combustion. The
development of this tree involved several researchers making in-
dependent modifications over a number of years to provide im-
proved kinetic estimates for specific fuels. Sometimes modifica-
tions were made with the aim of minimizing disruption of the
existing tree, rather than of optimizing the overall tree struc-
ture. The uncoordinated nature of the modifications has led to
a tree structure that is hierarchical, but lacks obvious logic in its
structure, and was certainly not optimized for transition state dis-
tances. For example, the O_H group has descendants that are
peroxides except for the peroxyradical group (Orad_O_H), which
is instead a sibling group.

A new tree structure was also developed for comparison to the
RMG designed structure. The new design was built to under-
stand the effect of the tree structure. The same starting head
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nodes were used for the new tree as they described all possible
reacting molecules for the hydrogen abstraction family. Care was
taken to ensure subsequent generations had a single characteristic
defined across all sibling nodes, and that characteristics thought
to be more important were defined earlier (higher in the tree).
For example, the children of the head nodes specified the ele-
ments of the wildcard atoms (X and Y), but no bonding or radical
electrons were specified because, while important, they are less
critical than the wildcard atom types. This meant that child nodes
to X_H_or_Xanyrad_H were H2, C_H, and O_H (the X is defined
as H, C, or O), while the children of Y_anyrad were Hrad, Orad,
and Crad. The following two generations defined the radicals
and bonding. For the X branch of the tree the bonding was de-
fined first, then the radicals; on the Y branch the radicals were
defined first, then the bonding. This convention was continued
until the bonding on the nearest neighbor atoms were defined
(the R groups in R_X_H and R_Y_rad).

Both the original and the updated trees are available in the
supplementary material.†

Group additive distance estimation.

Reaction center distances were collated from previously opti-
mized transition state geometries, creating a training set. Values
for molecular groups, organized in a hierarchical tree, were cal-
culated using values from the training set by linear least squares
regression, using the distances for every reaction in the training
set that match the molecular group. The base value is stored in
the top level node, and the value for a descendant is stored as a
correction to the top level node value. This means the value of
a given node is calculated as the sum of the base value and the
node’s correction.

The linear least squares regression calculates group values by
finding the best fit to the available training data. For each set of
distances in the training set, the reactants are matched to groups
in the group tree. All groups that match the X_H_or_Xanyrad_H
reactant are paired with the groups that match the Y_anyrad re-
actant, and the sum of each pair and a base value is set equal to
the training distances. This creates a system of equations where
the variables are the group values and the known values are the
training data. The regression is conducted using the linear alge-
bra package in numpy, finding the group values that best fit the
data.28 A detailed description of the least squares regression is
available in the supplementary materials.†

The reaction CH4 + C2H5 is used as an example. Table 1
shows the sections of the molecular group tree relevant to this
reaction. The most specific group that matches each reactant
is found by descending the tree. CH4 matches the C_methane

group in the X_H_or_Xanyrad_H tree, while C2H5 matches the
C_rad/H2/Cs\H3 group in the Y_anyrad tree. An explanation of
the naming convention, and complete tree definitions, are pro-
vided in the supplementary material.† The distance estimates are
calculated by summing the top node value and the group correc-
tion for each reactant, predicting respective values for dXH, dHY,
and dXY as 1.388Å, 1.331Å, and 2.721Å.

Table 1 Part of the hierarchical molecular group tree for transition state

distances trained using 1071 transition state distances calculated using

B3LYP/6-31+G(d,p). The full tree is in the supplementary material†

Group dXH dHY dXY
Base 1.336010 1.336330 2.667560
L1: X_H_or_Xanyrad_H

L2: X_H –0.002556 0.002864 0.000227
L3: H2 –0.327434 –0.045046 –0.369886
...
L3: Cs_H 0.007461 0.023642 0.032296
L4: C_methane 0.076680 –0.051468 0.028801
L4: C_pri 0.025511 –0.002230 0.025031
L5: etc.

L4: C_sec –0.026003 0.069757 0.044341
L4: C_ter –0.025676 0.062321 0.034956
L5: etc.

L2: Xrad_H 0.094987 –0.106435 –0.008430
etc.

L1: Y_anyrad
...
L2: Y_rad 0.002857 –0.002500 0.000277
L3: H_rad –0.044160 –0.330263 –0.371926
...
L3: Cs_rad 0.024200 0.007289 0.032625
L4: C_methyl –0.050813 0.075919 0.028607
L4: C_pri_rad –0.001792 0.025273 0.025176
L5: C_rad/H2/Cs –0.032772 0.051719 0.021617
L6: C_rad/H2/Cs\H3 -0.024753 0.045959 0.024509
L6: C_rad/H2/Cs\Cs2\O –0.125966 0.025305 –0.097425

etc.

Transition state geometry estimation.

With the distances between atoms at the reaction center esti-
mated using molecular group values as described in the previous
section, transition state geometry estimates can be created via
distance geometry (Figure 1). For a pair of reactants, a bounds
matrix is first generated in RDKit for the stable species, compris-
ing upper and lower limits on the distances between each pair of
atoms. For the distances dXH, dXY, and dHY, the values in the
bounds matrix are updated to be the distance prediction as de-
scribed earlier, ± 0.05Å. Some combinations of upper limits from
these edits may conflict with previously set lower limits, particu-
larly lower limits between a reactive atom (X, H, or Y) and some
non-reacting atoms, forming an inconsistent bounds matrix. In
these cases the conflicting lower limits are reduced to be in agree-
ment with the previous edits. Finally, a triangle inequality algo-
rithm is used to smooth the bounds matrix.

Transition state estimates are created by randomly “embed-
ding” the atoms in 3D space such that they satisfy the bounds
matrix. Repeating this process allows multiple conformers to be
created. The conformer geometries are then optimized using a
UFF force field calculation constrained by the bounds matrix. The
lowest energy conformer according to the UFF calculation is se-
lected as the transition state estimate. While the accuracy of the
force field energy calculation is low, it is sufficient for conformer
selection.

Transition state validation.

An algorithm was created to control the transition state refine-
ment and validation. The geometry estimate resulting from the
constrained force field optimization, is used as the initial guess
for a transition state optimization using electronic structure meth-
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Further comparison tested the performance of the molecu-
lar group trees for small training sets. The largest training set
(1071TS) was randomly sampled to create many smaller train-
ing sets containing data from 44 transition states. With each of
the smaller training sets, group values were trained and distances
were predicted then compared to known distances from validated
transition states. This was done using both the original and new
tree structures.

Computational Chemistry

Estimated geometries were refined in RDKit using universal force
fields (UFF).32 Geometry optimization and path analysis calcula-
tions were run using B3LYP33,34 with the 6-31+G(d,p)35,36 basis
set in the Gaussian 0937 quantum chemistry package.

Results and Discussion

Transition state geometries were successfully estimated using

the distance estimates

The algorithm was tested on the DIPK reactions with the groups
trained with the training set named ‘230TS’, and found 658 of
the 1,393 transition state geometries. 597 of the resulting ge-
ometries were not already in 230TS, making a set 827TS when
added to the training set. The set 827TS was used to retrain the
group values, with the algorithm again tested on the DIPK reac-
tions, where 734 transition states were found, of which were 244
unique to the training data. The additional 244 transition states
allowed the creation of the 1071TS set. Over the 2 test runs, 907
transition states of the 1,393 reactions were found and validated,
expanding the training data from 230 to 1,071 transition states.

Increasing training data improves the group value predic-

tions.

The reaction center distances from the 907 transition states found
using the algorithm were compared to distances estimated by
molecular group values at differing training set sizes (Figure 3).
The root-mean-squared (RMS) error for each of the 3 distances
decreased when the training set containing transition state data
was increased from 44 up to 1,071 entries. There was little
improvement in the estimated values when the training set ex-
panded from 827 geometries to 1,071 in comparison to the earlier
expansions of the training set.

The observed improvement in the distance predictions as the
groups were trained with more data was consistent with our hy-
pothesis. With a larger training set, some untrained groups now
have data and some trained groups have more data, improving
their accuracy. If the group was newly trained, the algorithm
would use more relevant and specific group values, improving
the predicted distances. This was observed in the improvement
in the distance predictions moving from 44TS to 230TS. With
new training data, previously trained groups improve as more
data are used to train the group values, as seen when comparing
the groups trained using 230TS and 827TS. Little improvement
in the RMS error for predictions made with 827TS and 1071TS
shows that the 827TS groups were relatively well trained so the
extra data from 244 transition state geometries had little effect

on group value predictions.

The observations show certain data are more desirable when
expanding a training set for molecular group values. For example,
if the reactions of interest are hydrogen abstractions from the OH
group of an alcohol, the training set should contain such reactions
with different types of radicals abstracting the hydrogen. If the
training set contains data from a large number of transition states
for hydrogen abstractions from alkanes by an alkyl radical, little
will be gained by adding a transition state for ethyl abstracting a
hydrogen from methane. Both the reactions of interest and the
available data should be considered when adding new data to a
training set.

Tree structure and data diversity affect prediction accuracy

The modified group tree was trained using the same 4 train-
ing sets, and distance predictions were made for comparison to
the 907 optimized transition states (Figure 4). Predictions made
with the modified structure showed the same trends previously
reported: The error decreased as the training sets grew, but the
change from 827TS to 1071TS was minimal. The new tree struc-
ture produced better estimates than the original for small data
sets, where the data is most erroneous. The original tree provides
marginally better estimates when trained using large data sets,
but the new tree structure is expected to match this accuracy if
more detailed groups (more branches in the tree) are added.

The differences in error observed with the two trees shows the
importance of the structure to the distance predictions. While the
new tree structure improves the distance predictions from smaller
training sets, other tree structures might be able to further im-
prove the predictions.

1,000 new training sets containing data from 44 transition
states were created by randomly selecting data from the 1071TS
training set. The new training sets were used to train both the
original and new molecular group trees, and reaction center dis-
tances were predicted for comparison with the 907 known TS. In
over 85% of the 1000 cases, the modified tree had a lower RMS
error than the original tree. The probability distribution of the
RMS errors (Figure 5) show that the predictions should be more
accurate if made using the modified tree instead of the original
tree structure, given the small size of the training set.

The RMS error attained using the 44TS training set was 0.181
Å with the original tree and 0.124 Å with the modified tree
(Table 2). Comparing with the probability distributions in Fig-
ure 5, which peak around 0.09 Å, shows that the probability of
randomly selecting from 1071TS the 44 transition states used
in 44TS is very low, i.e. they are strongly correlated and non-
random. This lack of variety in the 44TS set is what leads to the
large RMS errors: some specific groups were well trained, but the
overall tree was poorly trained. This shows that the value of each
transition state in a training set decreases when a similar transi-
tion state already exists in that training set, i.e. it is important
to have a variety of structures in the training data, distributed
evenly across the tree.
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