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6140, New Zealand, and Te Pūnaha Matatini, Department of Physics, University of

Auckland, Private Bag 92019, Auckland 1142, New Zealand

E-mail: shaun.hendy@auckland.ac.nz

Abstract

There is a great deal of interest in the use of nanostructured heterogeneous cata-

lysts, particularly those based on expensive precious metals, in order to maximise the

surface to volume ratio of the catalyst, potentially reducing cost without sacrificing

performance. When there is an abundance of reactant available, the effective reactivity

will depend on the surface density of the catalytically active sites. However, under

diffusion-limited conditions, catalytically active sites may compete for reactant, poten-

tially leading to diminishing returns from the use of nanostructures. In this paper we

apply a mathematical homogenization approach to investigate the effect of scale and

patterning on the effective activity of catalytic sites on a heterogeneous catalyst oper-

ating under diffusion-limited condition. We test these theoretical results numerically
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using Monte Carlo simulations, and show that in the continuum limit the theory works

well. In particular, in the limit where the mean free path is much less than the scale of

patterning of catalytically active sites, the effective rate constant is found to be equal

to the area-weighted harmonic mean of the rate constants on the surface. However, as

the length scale of the patterns becomes comparable to the mean free path length, the

simulations shows that the effective activity of the system can exceed the theoretical

limit suggested by the continuum theory.

Introduction

Heterogeneous catalysis is of fundamental scientific interest in chemistry and materials sci-

ence, as well as being of significant economic value to society.1,2 The effective performance

of a particular catalytic system can depend on the interplay between reactant availibility

and the surface area the heterogeneous catalyst.3 When there is a high concentration of

reactants in the system, one would expect that the effective catalytic activity of a nanopar-

ticulate catalyst by weight will increase with its surface area, suggesting that maximising

the surface to volume ratio of such a catalyst could reduce its cost without sacrificing per-

formance.4–6 This has stimulated a great deal activity in the search to fabricate high-surface

area nanoparticulate metal catalysts.7

However nanostructured catalysts do have their disadvantages. The high surface area of

a nanostructured catalyst may reduce its stability, which can be a drawback when operating

at high temperatures.8 Furthermore, under diffusion-limited conditions, reactants may not

be able to access the entire surface of a nanostructured catalyst9,10 if the depletion zone of

reactants about active sites on the catalyst start to overlap. Gas kinetic theory predicts

that the size of this depletion zone will scale as the mean free path of the gas molecules,11

so one might expect that under diffusion-limited conditions the effective reactivity of a

heterogeneous catalyst would depend on the structure of the catalyst at that scale.

In this paper we consider the problem of computing the effective performance of a catalyst
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under diffusion-limited conditions, given a particular spatial arrangement of catalytically

active sites on the catalyst surface. Indeed, the surface of a typical heterogenous catalyst

will possess active sites with a range of activities distributed across a range of length scales.

Under standard conditions, the mean free path of molecules in air is on the order of 100nm so

we might expect that nanostructured catalysts may behave differently under diffusion-limited

conditions to catalysts that are structured on larger or smaller length scales. In our model we

consider a surface with a periodic array of active sites of period L. We describe the kinetics

of the absorption of a reactant onto this catalytic surface using a Langmuir model, with

the catalytic process described by a series of distinct elementary steps, including adsorption,

reaction and desorption.

This theory developed here also applies to support that are covered by small catalytically-

active particles.12 Again, one may regard such a support as a catalyst with a heterogeneous

distribution of active "sites", where in this case each "site" represents a catalytically active

nanoparticle. In this case, one may have a great deal of control over how the particles are

distributed over the support (e.g. see13) or indeed the distribution may change over time

due to Ostwald ripening14 or other process associated with the catalytic reaction.15 Our

approach allows one to compute the effective catalytic activity of a support in terms of its

coverage by catalytically active particles.

We compute the effective activity of such surfaces under diffusion-limited conditions

using two approaches. In the first, we use a continuum diffusion equation to describe the

transport of reactants to the surface, and apply mathematical homogenization techniques16,17

to compute an effective activity in a limit where the pattern period L is much less than the

size of the depletion zone about the active sites, which is of order λ. The second approach

is to use kinetic Monte Carlo simulations,18 which allow us to test the predictions of the

continuum approach, and observe the break down of the continuum approximation as the

pattern period approaches the mean free path of the gas: L → λ. We also investigate the

effect of patterning of active sites on the catalyst surface (e.g. checkerboard and stripes).
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The continuum theory predicts that for a given density of active sites, the performance of

the catalyst depends only on the period of the pattern L and not the particular pattern.

The kinetic Monte Carlo methods allow us to test this prediction in the limit where L ∼ λ.

Figure 1: (An illustration of a catalyst surface, showing active sites (black) and non-active
sites (grey) distributed in a pattern of period L with adsorbed particles (white) and non-
absorbed particles (black).

Model and homogenization theory

We begin by describing the simple kinetic model used to describe the adsorption and cat-

alytic processes that take place on the catalyst surface, as suggested by (Figure. 1). The

catalyst surface consists of a patterned array of active sites, over which the activity can vary

periodically with period L. We assume a Langmuir adsorption process, which is a simplest

model of adsorption of materials onto a surface in which the only interactive forces are be-

tween the adsorbed molecules of the reactant and surface. We will also assume the system

has reached steady-state and is operating under diffusion-limited conditions.

We also make a number of assumptions to simplify the mathematics. Once the reactants

have adsorbed to the surface, we assume that they cannot diffuse on the surface before the
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catalytic reaction take place. In principle, desorption could occur, but in this work we will

assume that the desorption rate is negligible. Likewise, we assume that the catalytic conver-

sion process is also irreversible. These assumptions allow us to simplify the mathematical

problem so that results from homogenization theory can be applied, although this comes at

the expense of limiting the applicability of the model. For instance, we do not consider the

possibility that the catalytically active sites are not the most favorable sites for adsorption.

We will consider a binary pattern on the surface, with low activity sites and high activity

sites distributed periodically over the surface. Each site can only be occupied by one reactant

molecule at a given time (Fig. 1).3 We break the adsorption and catalytic processes down

into four steps with associated rate constants k1, k2, k3 and k4 respectively:

1. Adsorption a gas particle of type Ag collides with an active site Si and is adsorbed to

this site with probability k1:

Ag + Si → Ai,

2. The adsorbed particle desorbs from the surface to re-enter the gas phase without having

undergone catalysis with rate k2:

Ai → Ag + Si,

3. Adsorbed particles of type A are converted to particles of type B with rate k3:

Ai → Bi,

4. Particles of type B desorb from active sites with rate k4:

Bi → Bg + Si,

To simplify the analysis, we will assume that step (4), the desorption of the reaction

5
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product Bi, occurs much more rapidly than the reaction step (i.e. k3 � k4) and that step

(2), the desorption of the reactant is much slower than the reaction step (i.e. k2 � k3).

With these assumptions, the step (3) is the rate limiting reaction step at the surface. Under

these assumptions, the Langmuir equation for the fractional surface coverage θi of the site i

is:

dθi
dt

= k1 (1− θi)Q− k3θi, (1)

where Q is collision rate per unit area over the entire surface. The first term is the rate of

adsorption of particles that have diffused to the surface on an empty active site. The second

term is the rate of catalytic conversion over the surface. Under diffusion-limited conditions,

the fractional surface coverage θi � 1, so the steady state will be given by:

θi =
k1

k3

Q. (2)

In order to proceed further, we need to introduce a model to describe the transport of

the gas A to the catalyst surface. We use a Fickian diffusion equation, which describes the

flux of gas A as it is consumed at the catalyst surface:

∂ρA(r, t)

∂t
= D∇2ρA(r, t), (3)

where D is the diffusion coefficient and ρA is the density of the gas A. Under steady-state

conditions the density of gas A satisfies:

∇2ρA = 0. (4)

Before a steady state is achieved, the coverage of the catalyst surface is a function of time

and depends on the rate of adsorption and reaction of the reactants with the surface. Once

6
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a steady state is reached, the rate of adsorption becomes the same as the rate of conversion,

and the particle influx at the catalyst surface Γ (with unit normal vector ~n) is equal to the

average density of converted particles per unit time:

−D~n · ∇ρA |Γ= −d[Bg]

dt
=
k3θi
ai

, (5)

where we have used the fact that d[Bg ]

dt
is proportional to the second term on the right-hand

side of (Eq. 1). By balancing the flux of gas Ag into the site i with the rate of adsorption of

the gases by mass, we can obtain a steady-state boundary condition for the gas density, ρA

over the surface:

−D~n · ∇ρA |Γ= − k1Q

1 + k1Qai
k3

, (6)

where, according to gas kinetic theory, the collision rate is Q = 1
4

√
8kBT
πm

ρA |Γ, where m is

the mass and T is the temperature of the gas A.

Under adsorption-limited conditions (k1Qai � k3) the flux is proportional to the density

of the gas A near the surface:

−D~n · ∇ρA |Γ= −k1

4

√
8kBT

πm
ρA, (7)

which reduces to a simple mixed boundary condition for the density of gas A at the surface:

−l~n · ∇ρA |Γ= ρA, (8)

where the constant l = D
k1

√
2πm
kBT

has the dimension of length and can be interpreted as the

size of the region over which the gas A is depleted by adsorption and catalysis at the surface.

Gas kinetic theory tells us that D ∼ λv̄ where v̄ ∼
√

kBT
m

is the mean velocity of the gas

molecules and λ is the mean free path of the gas molecules. As a consequence, the length l

7
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is found to scale as the ration of mean free path to the probability of adsorption at an active

site:

l ∼ λ

k1

. (9)

The discussion above, in particular the boundary condition (8), applies to a catalytic

surface with a uniform distribution of active sites. However provided the distribution of

active sites across the surface varies slowly enough, we would still expect (8) to hold, with

l ∼ λ/k1 becoming a function of location on the surface. Conceptually we would regard the

probability of absorption k1 as varying across the surface on length scale L � λ. Regions

with high k1 would represent a high concentration of active sites on the surface, while regions

with low k1 would represent a low concentration of active sites.

We are interested in determining the effective activity of a catalytic surface with a density

of active sites that varies over the surface. By effective activity, we mean the activity of a

homogeneous surface (i.e. a surface with a constant k1) that would produce the same overall

rate of conversion of gas A as the heterogeneous surface when viewed macroscopically. To

compute the effective activity, we use homogenization theory, which provides a proscription

for obtaining the macroscopic properties of heterogeneous media in the presence of well-

defined microstructure by averaging over microscopic scales.19,20 In what follows, we assume

that l ∼ λ/k1 varies periodically over the catalytic surface with period L.

In this case we expect ρA/∇ρA ∼ L near the surface. Consequently, it is convenient

to introduce a dimensionless set of spatial coordinates x∗ = x/L. The scaled boundary

condition at the surface then becomes:

− l

L
~n · ∇∗ρA(r, t) = ρA, (10)

Thus the ratio of L/l ∼ (L/λ) k1 emerges as an important parameter in the effective perfor-

mance of the catalyst.
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By assuming (eq. 10) holds, two limiting cases can be examined. The first limit occurs

when l� L, so that the boundary condition reduces to:

ρA = O(
l

L
). (11)

which at zeroth order in l/L would give a purely diffusion-limited reaction. However by

calculating the first order correction in l/L we can obtain an effective reactivity of the

heterogeneous surface. By applying the asympototic homogenization method described in

Ref.20 (which amounts to making an expansion in powers of l/L and truncating at the first

order), the effective activity of the catalyst surface (say, the plane defined by z = 0) is given

by:

keff =
〈
k1(x, y)−1

〉−1

(12)

to first order in l/L, where the angle brackets indicate the average of the quantity k1(x, y)

over the surface. Note that in this case the effective activity is given by the area-weighted

harmonic mean of k1 rather than the arithmetic mean.

To examine the implications of (12), consider a surface composed of two types of region,

with adsorption probabilities kaand kb respectively, that are periodically arranged over that

surface. If a region of type a occupies an area fraction of φ on the surface, then the effective

activity is given by:

keff =
kakb

φkb + (1− φ)ka
. (13)

If the coverages of the sites are such that ka/φ � kb/(1 − φ) then this reduces to keff ∼

kb/(1−φ), so if the two regions occupy similar area fractions on the surface, but ka � kb, the

effective absorption probability scales with the smaller value kb. This is a direct consequence

of the harmonic mean appearing in (12).

9
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The second limit we consider occurs when L� l. Now the first-order boundary condition

becomes

~n.∇ρA = O
(L
l

)
. (14)

In this case it can be shown by homogenization (as shown in the Appendix) that the effective

adsorption probability is given by:

keff =
〈
k(x, y)

〉
. (15)

where now instead of the harmonic mean we have the arithmetic mean of k1.

Again it is instructive to consider a surface where reactants are more likely to adsorb in

regions of type a than regions of type b (so ka > kb). If the coverage of the regions of type a

is φ then keff = φka + (1− φ)kb. Again if are such that ka � (1− φ)kb/φ then keff ' φka

so the effective absorption probability of the surface scales with the larger value ka.

To summarise, homogenization theory predicts that the effective performance of a mi-

crostructured surface with adsorption probability Eqn. (7) will be that of a homogeneous

surface with keff :

−D
√

2πm

kBT
~n · ∇ρA(r, t) = keffρA, (16)

where keff =
〈
k1(x, y)−1

〉−1

, the harmonic mean, when L � l and keff =
〈
k(x, y)

〉
, the

arithmetic mean, when L � l. Note that in both cases the effective adsorption probability

will be independent of the particular pattern of active sites on the catalyst surface. In the

next sections we will test these predictions using kinetic Monte Carlo simulations. We will

also examine their applicability away from the continuum limit. We note, however, that

numerical solutions of the corresponding differential equations21 verify that the effective

activity calculated in the continuum limit is well-described by the expressions (12) and (15)

10

Page 10 of 19Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



in the appropriate limits. These numerical solutions also suggest that keff is bounded by

the two limiting expressions at intermediate values of L ∼ l.

Simulations

To test the theory developed in the previous section we have implemented the Langmuir

adsorption model (processes (1-4)) together with lattice diffusion of the gas A near the

surface using the kinetic Monte Carlo simulation method.22 We consider a cubic 40×40×40

lattice within a box with periodic boundary conditions in the x and y directions, and a

catalytically active surface at the boundary z = 0.23 The particles diffuse on the lattice,

where the lattice constant is chosen to be equal to the mean free path λ of the gas A. At the

top of the box we impose a reflecting boundary condition. The total number of particles in

the simulation box is kept constant at 1600 by replacing particles that are converted with

particles at the top of the simulation cell.

In the simulations presented here we have neglected process (2) (i.e. we have set k2 = 0)

and consider that process (4) is so rapid that it happens instantaneously (i.e. once conversion

occurs we simply delete the particle from the catalyst surface). There is no interaction

between the particles, except that only one active site on the surface can be occupied at any

given time. This leaves three rates to consider in the simulations: τ−1
D = D/λ2, the rate

of diffusion in the gas; k1Q, the rate of adsorption; and k3 = τ−1
c , the rate of conversion

of adsorbed particles. The time constant (τD) is the mean free time of the diffusing gas

particles, which we chose as our unit of time. The time constant (τc) is the relaxation

time of the catalytic conversion process, which occurs only at occupied actives sites. These

active sites on the catalyst surface (z = 0) are arranged in a periodic pattern or randomly

distributed to achieve a specified surface coverage.

We use a rejection-free kinetic Monte Carlo method24,25 to evolve the system to steady-

state, which typically requires 106 Monte Carlo steps. This was checked to ensure that the
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particle flux at the catalyst surface had settled to some steady value and that the density

gradient of the particles was approximately constant in the z-direction. We have considered

spatial variations in k1(x, y) over the surface, while considering τc to be constant everywhere.

We have tested patterns of different motif and coverage, together with variations in the period

L. When τc � τD the simulations can be used to test the expressions for the effective activity

under diffusion-limited conditions given in the previous section (equations (12) and (15)).

Results

We first consider the continuum limit, L� λ, with τc � τD, where we would expect (12) to

hold for finite values of k1. In Figure 2 we consider the effective activity of a series of checker

board patterns (such as those in the schematic in Fig. 1), where the period L is scaled from

2 to 20 λ and the surface coverage is varied from φ = 0 to 1. All sites on the surface are

active, but some have absorption probability k1 = 1.0 (with surface coverage φ) while others

have k1 = 0.5 (with surface coverage 1− φ). We choose τc = 0.1τD constant over the entire

surface. When l ∼ λ/k1 � L we would expect equation (12) to hold. As shown in the

figure, as L gets larger, the effective activity, and its dependence on the surface coverage,

indeed approaches that predicted by equation (12). This illustrates the effectiveness of the

homogenization approach in the continuum limit. Away from the continuum limit, when

L ∼ l the theoretical expression underpredicts the effective reactivity. In fact, as L → λ,

keff is found to increase. In other words, for a fixed average coverage of active sites, surfaces

with sites dispersed on scales comparable to λ are found to be more effective at capturing

reactant than surfaces where sites are more concentrated.

It is also interesting to consider cases where k1 = 0 on some parts of the surface, while k1

is finite elsewhere. In figure 3 we again consider the effective activity for a series of checker

board patterns as the period L increases from λ. Two curves are shown in the figure: in the

first, k1 = 1.0 on active sites, which have a coverage φ = 0.25, while in the second, k1 = 0.8
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Eqn (12)

Figure 2: The figure compares the effective activities for a range of different domain sizes as
a function of the surface coverage with effective reactivity predicted by equation (15). For
length scales L ∼ λ, the effective activity exceeds that predicted by (15) but as L gets larger,
the effective activity is well described by equation (15).

on active sites, which have a coverage of φ = 0.5. On all other sites k1 = 0, so adsorption is

not possible. Again τc = 0.1τD over the entire surface, although now process (3) only occurs

on active sites. In this case, we see that as λ/L → 0 the effective activity keff approaches

the value given by equation (15). Although L � λ in this limit, over much of the surface

L � l ∼ λ/k1 as k1 = 0 and equation (15) seems to provide a good description of the

effective activity. Away from the continuum limit, equation (15) again underestimates the

effective activity of the surface.

Finally, we have considered the effect of different patterns, as well as the case where

τc > τD, which is not covered by the theory developed in previous sections. We have

considered a variety of patterns, as shown in the inset of figure 4, including a selection of

checkerboard-type patterns, a pattern where active sites are randomly distributed over the

surface, and stripes. As in the previous case, we find that for the larger domain sizes the

effective activity is given by equation (15) for small τc, and that the effective activity of the

patterns with smaller length scales exceed those predicted by the theory. As τC increases

the effective activity decreases, as one might expect as the activity becomes reaction-limited

rather than adsoprtion or diffusion-limited. Also note that the effective activity is pattern
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L (units of λ)
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Figure 3: The relationship is shown between the effective activity keff and the domain size
L is shown for the case where k1 = 0.8 at 50% coverage (and k1 = 0 elsewhere) and the case
where k1 = 1.0 at 25% coverage. The patterns here have a checkerboard character. The
effective activity in the simulations approaches that predicted by equation (15) as λ/L→ 0
but exceeds this as L→ λ.

dependent, with the checked pattern with period L = 2λ outperforming the stripes and the

random pattern, which in turn outperform the patterns on larger length scales.

τ
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k
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Eqn (15)

Figure 4: The figure shows the effective activity of different patterns with a surface coverage
of active sites with k1 = 1.0 of φ = 25% and k1 = 0.0 elsewhere as τC is varied. In the range
of 0 < τC � τD, the larger length length scale regions approach agreement with equation
(15). For the patterns with periods comparable to the mean free path (λ), the effective
activity exceeds the limit predicted by equation (15) as τC → τD.
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Discussion and conclusions

We have found that the two approximate expressions (12) and (15) for the effective catalytic

activity of a surface with a heterogeneous distribution of catalytically active sites match

the simulations well in the limits where they are expected to be valid. For distributions

of active sites with length scales below the continuum limit we find that these expressions

underestimate the effective activity. In air, under standard conditions, the mean free path of

a gas molecule is of the order of 100 nm. Under these conditions, we would expect that the

continuum diffusion equation (3) provides a good description of variations in the density of

the gas at the catalyst surface on scales greater than 100 nm. Variations in the distribution

of active sites below this scale would produce variations in the density of the reactant gas

that would not be captured well by the continuum diffusion equations, as demonstrated by

the kinetic Monte Carlo simulations presented here.

Nonetheless, the effects of variations in the distribution of active sites above this scale

should be able to be captured by the continuum approach so it is interesting to consider

the implications of the continuum theory. Consider a distribution of small but high activity

particles (metal nanoparticles of diameter 10 nm, say, with k1 = ka) dispersed on larger,

less active oxide particles (e.g 1µm TiO2 particles, with k1 = kb � ka) for instance.26 Here

we might find a variation of activity on length scales, L, of greater than 100 nm, so the

continuum theory would be expected to be valid and equation (12) should hold. In this case

the fractional enhancement to the effective activity of adding the small particles to the larger

particles keff/kb is proportional to 1/(1−φ). The small particles essentially consume all the

reactant they encounter, so it is their coverage rather than their activity that determines the

enhancement to the effective activity of the larger particles.

In summary, we have applied a mathematical homogenization approach together with

kinetic Monte Carlo simulations to investigate the effect of scale and patterning on the effec-

tive activity of catalytic sites on a heterogeneous catalyst operating under diffusion-limited

conditions. The kinetic Monte Carlo simulations show that in the continuum limit the theory
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works well where applicable. In particular, in the limit where the mean free path is much less

than the scale of patterning of catalytically active sites, the effective rate constant is found

to be equal to the harmonic mean of the rate constant over the surface. However, as the

length scale of the patterns becomes comparable to the mean free path length, the effective

activity of the system can exceed the theoretical limit suggested by the continuum theory.

We expect that this work will have implications for the design and use of nanostructured

catalysts that need to operate under diffusion-limited conditions.
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Appendix

In this appendix, we consider the homogenization of equation (10) in the limit where the

period L becomes small compared to the far field. We introduce a function ` = `(x, y) which

varies over the catalyst surface ΓL. We assume that some appropriate boundary condition

holds on some plane Γfar in the far field, but will neglect it for the purposes of the calculation.

The boundary condition of interest is:

−`(x, y)~n · ∇ρ = ρ, on the catalyst surface ΓL. (17)
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In weak form, with this boundary condition, equation (4) can be written:

2

∫
Ω

∇ρ · (∇u) dV +

∫
ΓL

1

`(x, y)
ρ u dΓ = 0 (18)

where Ω is the domain bounded by the parallel planes ΓL and Γfar and u is an arbitrary

test function. The homogenization limit is obtained when the the period L/H → 0, where

H is the far field distance (see21 for instance). In this limit, one can consider a sequence of

equations of the form of (18) each corresponding to a surface ΓL with a smaller period L. In

this limit the second term weakly converges to its average over a single period:

∫
ΓL

1

`(x, y)
ρ u dΓ→

∫
Γ0

〈
1

`(x, y)

〉
ρ u dΓ (19)

The strong form of this homogenized boundary condition, which will hold in the limit L�

l ∼ H, is thus

−~n · ∇ρ =

〈
1

`(x, y)

〉
ρ, onΓ0. (20)

Thus, in terms of k1, we can write equation () in this limit as:

−D
√

2πm

kBT
~n · ∇ρA(r, t) = keffρA, (21)

where

keff =
〈
k(x, y)

〉
. (22)
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