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A continuum state variable theory to model the size-dependent surface
energy of nanostructures

Mostafa Jamshidian,∗a Prakash Thamburaja,b and Timon Rabczukc

We propose a continuum-based state variable theory to quantify the excess surface free energy density throughout a nanostructure.
The size-dependent effect exhibited by nanoplates and spherical nanoparticles i.e. the reduction of surface energy with reducing
nanostructure size is well-captured by our continuum state variable theory. Our constitutive theory is also able to predict the
reducing energetic difference between the surface and interior (bulk) portions of a nanostructure with decreasing nanostructure
size.

Introduction — With the rapid progress of nanoscience
and nanotechnology in recent years, nanomaterials have seen
growing interests from experimental & theoretical perspec-
tives1,2. This is due to metallic nanostructures such as
nanoplates, nanowires and nanoparticles exhibiting unique
physio-chemical properties due to the surface effects arising
from their large surface to volume ratio3. Such unique prop-
erties are mainly attributed to the excess surface free energy
(or surface energy).

Physical experiments and atomistic simulations have gener-
ally demonstrated that surface energy reduces with decreasing
nanostructure size4–11. Furthermore, thermodynamic models
based on density functional theory (DFT) calculations and the-
oretical approaches also show that the surface energy reduces
with decreasing size of a nanostructure1,9,12–15. In particular,
Ouyang et al. 13 and Liang et al. 5 have developed thermody-
namic models by dividing the surface energy into the chemical
and structural parts related to surface dangling bond energy
and surface strain energy, respectively, and predicted that the
size-dependent behaviour of the surface energy is dominated
by its chemical part. By just considering the chemical part
of the surface energy, Xiong et al. 9 have developed a model
based on the bond broken rule and the relaxation of bonds to
predict the size-dependent surface energy of nanoparticles.

Bhatt et al. 15 have postulated that the aforementioned size-
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dependent effect is caused by the decreasing energetic differ-
ence between the surface and interior of the nanostructure. Al-
though such a claim makes physical sense, theoretical models
available in the literature are not able to verify this claim be-
cause these models do not describe the variation of the surface
energy density within the nanostructure.

In this paper, we develop a continuum theory to quantify the
variation of the surface energy density within a body through
a surface effect variable (to be defined later). The develop-
ment of the present theory closely mirrors the modeling of
grain boundaries through a diffuse interface approach16. Fur-
thermore, the size-dependent surface energy of nanoplates and
spherical nanoparticles are analytically determined from our
continuum theory, and compared to the results obtained from
numerical simulations and physical experiments.

Continuum-based framework — we denote ∇, Div and ∇2

as the gradient, divergence and Laplacian operators, respec-
tively. The magnitude of a vector b is denoted by |b|. For
simplicity, we develop our continuum theory under isothermal
conditions and in the absence of deformation, body forces, and
heat fluxes/sources.

After a free surface is created, the free surface will relax and
the surface free energy is minimized via a dissipative process
of atomic rearrangement of surface and near surface atoms.

Let λ represent the dimensionless surface effect variable
associated with the free (or external) surface of a continuum
body where 0 ≤ λ ≤ 1. The quantity λ measures the influence
of the free surface on the atomic rearrangement i.e. the higher
the value of λ , the higher the degree of atomic rearrangement
caused by the creation of the free surface. Accordingly, we
expect the value of λ to be maximum at the free surface, and
minimum at locations deep in the bulk region of the material.
Hence, we set λ = 1 at the free surface, and λ = 0 at loca-
tions which do not undergo atomic rearrangement due to the
creation of the free surface.

The surface effect variable also represents a measure of
how tightly (or loosely) bounded the atoms are. Thus, λ = 1
corresponds to atoms which are loosely bounded like surface
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atoms whereas λ = 0 corresponds to atoms which are tightly
bounded like bulk atoms i.e. atoms which are not affected by
the presence of the free surface.

Since the structural portion of the surface energy density
due to surface relaxation has a minor effect on the size-
dependent behavior of a nanostructure’s surface energy den-
sity9,13, we take the total Helmholtz free energy per unit vol-
ume as ψ = ψchem where ψchem represents the chemical por-
tion of the excess surface free energy density9,13, and

ψchem = ψλ +ψg. (1)

The potential (or coarse-grained) portion of ψchem i.e. ψλ

represents the bulk chemical energy of the material. We re-
quire that ψλ vanishes and achieves a minima for λ = 0.
Hence, we set ψλ = (1/2)ωλ 2 where the constant-valued
height of the parabolic potential ψλ i.e. ω > 0 has units of
energy per unit volume.

Let the vector m = ∇λ . We choose the gradient portion of
ψchem i.e. ψg = (1/2)κ |m|2 where κ > 0 (units of energy per
unit length) is a constant-valued gradient energy coefficient
associated with the free surface. Note that ψg penalizes the
presence of the free surface, and it introduces a characteristic
length scale for the size effect phenomenon observed for the
surface energy.

Thus, the total Helmholtz free energy per unit volume is
given by

ψ = ψchem = (1/2)ωλ 2 + (1/2)κ |m|2 (2)

and the evolution equation for the surface effect variable in the
Ginzburg-Landau framework is of the form

λ̇ = β−1
{

Div
(

∂ψ
∂m

)
− ∂ψ

∂λ

}
(3)

where β > 0 is the damping coefficient for the atomic rear-
rangement process caused by the creation of the free surface.
Substituting Eq. 2 into Eq. 3 yields

λ̇ = β−1 f λ , f λ = κ∇2λ −ωλ . (4)

The quantity f λ represents the driving force for atomic re-
arrangement caused by the creation of the free surface. At
steady-state, the surface effect variable will cease to evolve.
Hence, under steady-state conditions, we have

λ̇ = β−1 f λ = 0 =⇒ l2
s ∇2λ −λ = 0 (5)

where ls =
√

κ/ω represents the characteristic length scale
for the atomic rearrangement process caused by the creation of
the free surface. Generally, ls can depend on type of material,
structure (crystalline/amorphous) and crystal orientation.

Note: the rigorous continuum thermodynamics derivation
of the constitutive theory is shown in the Supplementary Ma-
terial17, and all ensuing analyses are conducted assuming

steady-state conditions have been met. Results from numer-
ical simulations of the equilibration process of the surface ef-
fect variable are also shown in the Supplementary Material17.

Determination of model parameters — consider a semi-
infinite body which spans between z = 0 and z = +∞ along
the z-axis. The planar free surface of this body coincides with
the plane z = 0. For this body, Eq. 5 reduces to the one-
dimensional form

l2
s

d2λ
dz2 −λ = 0. (6)

We impose the boundary conditions λ = 1 at z = 0 i.e. at the
free surface, and λ = 0 for z → ∞ i.e. far away from the free
surface. Using these boundary conditions, we can solve Eq. 6
to give

λ = exp(−z/ls ) . (7)

Substituting Eq. 7 in Eq. 2 gives the surface energy density of
the semi-infinite body as

ψ = ω exp(−2z/ls ) . (8)

In order to relate the model parameters ω and κ to the bulk
surface energy, γ∞

s (or γ∞
s (hkl) for single crystalline bodies),

we write
γ∞

s =
∫ ∞

0
ψ dz = (1/2)

√
κω . (9)

Note that ls =
√

κ/ω represents a physical length scale which
describes the extent of the atomic rearrangement in the mate-
rial due to the creation of the free surface. Hence, the con-
stitutive model parameters {ω,κ} are related to the physical
parameters {γ∞

s , ls} by

ω = 2γ∞
s /ls and κ = 2γ∞

s ls. (10)

Example 1: Nanoplate — consider a cuboid-shaped
nanoplate of thickness h f cf. inset of Fig. 1. The nanoplate
has periodic boundary conditions imposed in directions-x and
y, and a free surface at planes z = ±h f /2. Under these con-
ditions, we can use Eq. 6 to determine the equilibrium profile
for the surface effect variable field within the nanoplate. Using
the boundary conditions λ = 1 at z = ±h f /2, we solve Eq. 6
to obtain

λ = cosh
(

z
ls

)
/

[
cosh

(
h f

2ls

)]
. (11)

Substituting Eq. 11 into Eq. 2 along with the use of Eqs. 10
gives the surface energy density as

ψ =
2γ∞

s

ls
cosh

(
2z
ls

)
/

[
1+ cosh

(
h f

ls

)]
. (12)

For z = ±h f /2, note that ψ −→ 2γ∞
s /ls as h f −→ ∞. Finally,

using Eq. 12, we have the size-dependent surface energy, γs
given as

γs = (1/2)
∫ +h f /2

−h f /2
ψ dz = γ∞

s tanh
(

h f

2ls

)
. (13)
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Fig. 1 Normalized surface energy of a (111)-oriented Si nanoplate
as a function of the nanoplate thickness. The DFT results with
γ∞

s = γ∞
s (111) = 2Jm−2 12 are plotted along with a continuum

theory fit using the fitting parameter ls = 0.32nm.

From Eq. 13, we can see that γs −→ γ∞
s for h f → ∞, and γs = 0

if h f = 0. Therefore, the surface energy for relatively thick
nanoplates (h f ≫ ls) reaches the bulk value of γ∞

s and as the
thickness of the nanoplate decreases, the size-dependent sur-
face energy also exponentially decreases to reach zero at zero
nanoplate thickness.

Example 2: Spherical nanoparticle — A spherical nanopar-
ticle of outer radius r f is considered in a spherical coordinate
system with its origin coinciding the nanoparticle center. Let
(r,θ ,ϕ) respectively denote the radial coordinate, polar an-
gle and azimuthal angle. Symmetry condition with respect to
coordinates θ and ϕ implies that ∂λ/∂θ = ∂λ/∂ϕ = 0 i.e.
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Fig. 2 The continuum theory fit using the fitting parameter
ls = 4.7nm to the DFT results for the size dependent surface energy
of rutile TiO2 nanoparticles 15.

λ = λ̂ (r), and therefore Eq. 5 reduces to

l2
s

r2
d
dr

(
r2 dλ

dr

)
−λ = 0. (14)

The surface effect variable is subjected to the boundary con-

ditions
dλ
dr

= 0 at r = 0 due to symmetry with respect to the

origin, and λ = 1 at r = r f . Consequently, the solution to
Eq. 14 is then

λ =
( r f

r

) sinh(r/ls)
sinh(r f /ls)

. (15)

Substituting Eq. 15 into Eq. 2 and using Eqs. 10 gives the sur-
face energy density as

ψ =
2γ∞

s

ls

[ r f

r

]2
{

1
2sinh2(r f /ls)

}
[cosh(2r/ls)−

(ls/r)sinh(2r/ls) + (ls/r)2 sinh2(r/ls) ]. (16)

For r = r f , note that ψ −→ 2γ∞
s /ls as r f −→ ∞. Finally, using

Eq. 16, we have the size-dependent surface energy, γs given as

γs =
1

4πr2
f

∫ 2π

0

[∫ π

0

[∫ r f

0
ψr2 dr

]
sin(θ)dθ

]
dϕ

= γ∞
s

[
coth

(
r f

ls

)
− ls

r f

]
. (17)

From Eq. 17, we can see that γs −→ γ∞
s for r f → ∞, and

γs = 0 if r f = 0. Hence, the surface energy for relatively large
nanoparticles (r f ≫ ls) reaches the bulk value of γ∞

s and as the
radius of the nanoparticle decreases, the size-dependent sur-
face energy also decreases to reach zero at zero nanoparticle
radius.

Verification, results & discussion — To verify the analytical
solution for the surface energy of a nanoplate i.e. Eq. 13, we
use the first-principle calculations of Lu et al. 12 based on the
DFT to estimate the surface energy of a (111)-oriented single
crystal Si nanoplate as a function of nanoplate thickness cf.
Fig. 1. The (111)-oriented Si nanoplate has a bulk surface en-
ergy of γ∞

s = γ∞
s (111) = 2Jm−2. Using the fitting parameter

ls = 0.32nm, we can see from Fig. 1 that the analytical solu-
tion for the size-dependent surface energy of a nanoplate i.e.
Eq. 13 is able to accurately fit the DFT results12.

To verify the analytical solution for the surface energy of a
spherical nanoparticle i.e. Eq. 17, we first use the DFT results
of Bhatt et al. 15 for the variation of the normalized surface
energy of rutile TiO2 nanoparticles with respect to nanoparti-
cle diameter shown in Fig. 2. Using Eq. 17, we can see that
the continuum theory is able to accurately quantify the DFT
results using the fitting parameter ls = 4.7nm cf. Fig. 2. The
comparison of the analytical solution given by Eq. 17 with re-
spect to the analytical model of Bhatt et al. 15 which character-
izes the size-dependent surface energy of spherical nanoparti-
cles is also given in the Supplementary Material17.
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Fig. 3 The continuum theory fit using the fitting parameter
ls = 0.212nm and the experimental bulk surface energy
γ∞

s = 2.45Jm−2 18 to the MD results for the size dependent surface
energy of (110)-oriented single crystal Ni nanoparticles 10.

In addition to the DFT results, we have also used the molec-
ular dynamics (MD) simulation results of Luo et al. 10 based
on the modified analytic embedded atom method for the vari-
ation of the surface energy of (110)-oriented single crystal
Nickel nanoparticles with respect to nanoparticle diameter
shown in Fig. 3 for further verification of the analytical so-
lution in Eq. 17. The original data for the surface energy in
Fig. 3 are normalized with respect to the experimental bulk
surface energy γ∞

s = 2.45Jm−2 18. Using Eq. 17 with the fit-
ting parameter ls = 0.212nm reveals that the continuum theory
is able to quantitatively reproduce the MD results with a high
degree of preciseness cf. Fig. 3.

We have further examined the continuum theory predictions
with respect to the experimental results of Crowe et al. 6 . Via
probing the phonon confinement in sub-3nm partly crystalline
and partly amorphous silicon nanoparticles, Crowe et al. 6 re-
vealed the size dependent surface energy of partly crystalline
and partly amorphous silicon nanoparticles cf. Fig. 4. The
experimental bulk surface energy γ∞

s = 1.2Jm−2 19 is used to
plot the normalized surface energy variations with respect to
the nanoparticle diameter in Fig. 4. Using the fitting parameter
ls = 0.203nm in Eq. 17, we observe that the continuum the-
ory well describes the experimental results within the range of
experimental error cf. Fig. 4.

Using Eqs. 12 and 16, we can plot the variation of the
surface energy density within a nanoplate and a spherical
nanoparticle cf. Fig. 5. By defining a bulk zone as a region
having infinitesimal surface energy density, we can see from
Fig. 5 that samples Ah and Ar consist of distinct bulk and sur-
face zones since these samples have characteristic dimensions
significantly larger than ls. However, as shown in Fig. 5, sam-
ples Ah, Bh, Ch, Ar, Br and Cr consist of only a surface (or
non-bulk) zone since the excess surface free energy density
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Fig. 4 The continuum theory fit using the fitting parameter
ls = 0.203nm and the experimental bulk surface energy
γ∞

s = 1.2Jm−2 19 to the experimental results for the size dependent
surface energy of partly crystalline and partly amorphous Si
nanoparticles 6.

throughout these samples are finite.
Furthermore, for the chosen nanostructure sizes in Fig. 5,

we can ascertain that the surface energy density at the free sur-
face of the nanostructure decreases with reducing nanostruc-
ture size, and the surface free energy density at the interior of
the nanostructure increases with reducing nanostructure size.
Hence, the energetic difference between the free surface and
interior of a nanostructure decreases with reducing nanostruc-
ture size, and this result agrees well with the hypothesis of
Bhatt et al. 15 .

Conclusion — Our continuum theory is able to accurately
fit the size-dependent surface energy of nanoplates and spher-
ical nanoparticles determined from DFT & MD simulations,
and also physical experiments. The advantage of our contin-
uum theory is that it can be readily integrated into a computer
code to model the effect of surface energy density within bod-
ies of arbitrary geometries. As future work, we will integrate
the present model into the coupled finite-element and phase-
field framework of Thamburaja and Jamshidian 20 to study the
influence of external surface energy on grain-growth in poly-
crystalline metals.
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