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Journal Name

ABCluster: The Artificial Bee Colony Algorithm for
Cluster Global Optimization†

Jun Zhang∗a and Michael Dolg∗a

Global optimization of cluster geometries is of fundamental importance in chemistry and an in-
teresting problem in applied mathematics. In this work, we introduce a relatively new swarm
intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field.
It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to
control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb–
Born–Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for
long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while
for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy
surface of large clusters. We have released an efficient, user-friendly, and free program “ABClus-
ter” to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and
might become a useful tool for chemists to study clusters.

1 Introduction
A cluster is an aggregate composed of a few to several million
identical or different structural units like atoms and molecules.
Clusters have attracted intense attention from scientific commu-
nities1,2 due to their practical and theoretical interest. In practise,
clusters are of micro- to mesoscopic size, which leads to many
amazing properties. For instance, gold clusters can help building
novel materials3 and the icosahedral 13-atom platinum cluster
has anomalous large diamagnetic susceptibility4. Theoretically,
clusters can be used to explore the size-dependence of properties
from atomic to bulk level: Atomic clusters have been studied to
predict the melting temperatures of neon and argon solids5 as
well as crystal growth6. Besides their wide applications, clusters
are also attractive per se. They can have fascinating geometries7,
sometimes behave like a “superatom”8, and be challenging cases
for accurate quantum chemical methods9.

Among the various aspects, searching the global minimum
(GM) of a cluster is an important and fundamental topic, since the
GM dominates for low temperature, at which many experiments
involving clusters are performed. Unfortunately a GM search is
usually a rather difficult task. The potential energy surface (PES)
of a cluster containing N structural units has 3N degrees of free-
dom (DOFs). The number of local minima (LMs) increases expo-
nentially with N 1,10, and the complex distribution of these huge

a Theoretical Chemistry, University of Cologne, Greinstr. 4, 50939 Cologne, Germany.
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† Electronic Supplementary Information (ESI) available: [...TODO...]. See DOI:
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number of LMs makes the PES locally very rugged, making an
“ergodic” sampling on the PES of large clusters by computer sim-
ulation nearly impossible. In fact, even by nature such ergodicity
cannot be realized in the lifetime of the universe, according to,
e.g. an estimation for a short peptide11. However, nature can
indeed fold a protein to its native structure (which often is the
GM) in several seconds, which raises Levinthal’s paradox12,13.
Anyway, a successful deterministic search for the GM of a large
cluster is usually impossible.

Mathematically, searching the GM of a cluster is a typical un-
constrained global optimization problem, which is widely en-
countered in scientific, engineering, economic and social re-
searches. The variables to be optimized are the position vectors
or coordinates X ≡ (r1, · · · ,rN) ≡ (x1,y1,z1, · · · ,xN ,yN ,zN) of the
cluster, and the objective function is the potential energy function
U (X). Almost all popular algorithms for global optimization are
nondeterministic, which means that the chance of the obtained
solution being the true GM is beyond a significant probability.
In the context of cluster optimization, these algorithms fall into
two groups: biased and unbiased ones. In a biased algorithm,
the characters of the known GMs are used as much as possible.
For example, for intermediate-size Lennard-Jones (LJ) clusters,
based on the observation that the decahedral and icosahedral
structures are more favored than the face-centered cubic (fcc)
ones, a lattice construction scheme (LCS) can locate the putative
GMs of LJN (N = 150 to 1600) very efficiently14–16. However,
such strategy is not transferable to other kinds of clusters, since
clusters of the same size can have GMs of quite distinct topol-
ogy for different potentials and sometimes no reference GMs are
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known. The unbiased algorithm is more general and makes no
assumptions on what the GM should look like. Some algorithms
perform the search with an individual cluster, e.g. basin hop-
ping (BH)17,18, Monte Carlo minimization (MCM)19 and simu-
lated annealing (SA)20, althought SA is not as efficient as BH and
MCM in this field. Other algorithms are the population-based
ones. These algorithms manipulate the entire population (a col-
lection of clusters with different geometry) and improve the in-
dividuals by some strategies to search the solution space. After
a number of iterations, the GM will appear with some probabil-
ity. One category are the evolutionary algorithms (EA)21, such as
the genetic algorithm (GA)22 and differential evolution (DE)23.
These algorithms mimic the biology evolution in nature, gener-
ating offsprings (clusters with new geometry) by crossover (e.g.
“cut-and-splice”24) or mutation of the individuals. Only the ones
with high fitness (i.e. sufficiently low energy) can survive and in
the best case after several generations (iterations) the offspring
with highest fitness (the GM) will dominate the population. They
have been widely applied for clusters and the interested read-
ers are refered to several excellent reviews1,25,26 and literatures
therein. Another category are swarm intelligence algorithms27,
including particle swarm optimization (PSO)28, etc. They have
been applied to, e.g. prediction of crystal structures29. Very re-
cently, some algorithms taking permutation space into account
for the global optimization of multicomponent clusters have been
proposed30–32.

All optimization methods mentioned above have been proven
to be efficient and successful for specific kinds of clusters. How-
ever, there remain still some problems to be solved in this field.
First, many algorithms need a lot of input parameters which usu-
ally have to be set empirically and require a deeper knowledge
of the method. The performance of the algorithms depends on
the quality of the parameters significantly. Second, some codes
can work well with a few kinds of potentials but not with oth-
ers. Third, except for a few cases like CALYPSO29, GMIN33,
OGOLEM34, G42+35 and some codes in the ASE project36 there
is no black-box program for nonexperts to perform the global op-
timization of clusters readily.

The purpose of the present work is dual. First, we introduce
a relatively new optimization technique which was proposed in
2005, i.e. the artificial bee colony (ABC) algorithm37, to the field
of GM search of clusters. We have modified it for our problem and
its performance is examined. Second, we introduce ABCluster
(ABC for Clusters), which is an efficient, user-friendly and free
software to perform the global optimization of clusters by the ABC
algorithm. It will be shown that ABCluster is a powerful tool for
the global optimization of various kinds of clusters.

2 Theory

2.1 Potential Energy Functions

As mentioned above, searching the GM of a cluster of size N is
actually the unconstrained global optimization of the potential
energy function of 3N variables:

U (X) =
N

∑
i< j

u2
(
ri j
)
+

N

∑
i< j<k

u3
(
ri j,rik,r jk

)
+ · · ·+uN

(
r12, · · · ,rN−1,N

)
(1)

X≡ (r1, · · · ,rN)≡ (x1,y1,z1, · · · ,xN ,yN ,zN) (2)

Here, U (X) can be a first-principle or phenomenological poten-
tial. In this work we only consider the latter. Many phenomeno-
logical potential functions contain only the pairwise interaction
u2 (r) term in (1). The canonical Lennard-Jones or Morse po-
tential belongs to this class. However, in modern computational
chemistry the polarization and delocalization of the structural
units of a cluster, i.e. the many-body terms beyond u2 (r)38,39,
must be taken into account, since otherwise the properties of the
clusters computed may turn out to be very inaccurate5,40. There-
fore, many-body potentials will also be considered. In our pro-
gram ABCluster, the following potentials will be examined (from
here on the cluster of size N interacted by the potential “U” will
by denoted by UN):

1. Coulomb–Born–Mayer potential (CBMN). Two-body poten-
tial. CBMN are very suitable for a description of ionic clus-
ters. The exponential term (Born–Mayer potential41) re-
flects the Pauli repulsion. Here q, B and ρ stands for the
charge, repulsion strength, and repulsion range of the parti-
cles, respectively.

UCBM =
N

∑
i=1

N

∑
i< j

(
e2

4πε0

qiq j

ri j
+Bi j exp

(
−

ri j

ρi j

))
(3)

2. Lennard-Jones potential42 (LJN). Two-body potential. This
classic “12–6” potential is widely used to describe the dis-
persion interaction in chemistry. It is also a very important
benchmark model to test the performance of global opti-
mization algorithms. Here ε and σ are the pair well depth
and the equilibrium distance, respectively.

ULJ =
N

∑
i=1

N

∑
i< j

4εi j

((
σi j

ri j

)12
−
(

σi j

ri j

)6
)

(4)

3. Morse potential43 (MN). Two-body potential. This is a more
advanced form than the harmonic potential for the descrip-
tion of the vibration of molecules, since it also considers an-
harmonic effects. The parameters ε, r0 and β are the pair
well depth, equilibrium distance and force range, respec-
tively. A smaller β indicates a longer force range. Usually
n = 2. A larger n leads to a steeper potential well.

UM =
N

∑
i=1

N

∑
i< j

εi j

(
exp
(
−nβi j

(
ri j− r0

i j

))
−nexp

(
−βi j

(
ri j− r0

i j

)))
(5)

4. Z potential44 (ZN). Two-body potential. This is inspired by
an earlier potential proposed by Dzugutov45,46 which was
designed to study glass formation. Unlike CBM, LJ and M
potentials, they contain minima as well as maxima, which
make the close-packing energetically unfavourable and lead

2 | 1–9Journal Name, [year], [vol.],

Page 2 of 9Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



to amorphous structures. Here, rc is a cutoff distance beyond
which the interaction disappears (denoted by the Heaviside
function θ

(
rc− ri j

)
), and kF is the wave vector at the Fermi

level.

UZ =
N

∑
i=1

N

∑
i< j

(
a

eαri j

r3
i j

cos
(
2kFri j

)
+b
(

σ

ri j

)n
+V0

)
θ
(
rc− ri j

)
(6)

5. Gupta potential47 (GN). Many-body potential. This is de-
rived from a second-moment approximation of tight-binding
theory and is a very important potential for modeling metals,
consisting of a repulsive short-ranged pairwise term (the ex-
ponential part) and an attractive embedded-atom term (the
square root part). The parameters in the potential are fitted
to bulk properties.

UG =
N

∑
i=1

 N

∑
j=1
j 6=i

Ai j exp
(
−pi j

(
ri j

di j
−1
))
−
√

ρ (ri)

 (7)

where:

ρ (ri) =
N

∑
j=1
j 6=i

ξ
2
i j exp

(
−2qi j

(
ri j

di j
−1
))

(8)

The functional form of the potential has deep implications on
the shape of the GM. An interesting example is that for a Gupta
cluster of N = 13, whose two different sets of parameters for gold
can lead to an icosahedron and a disordered GM, respectively.
The form further affects the difficulty to locate the GM. On the
PES, the number of LMs does not only increase exponentially with
the cluster size N as mentioned above, but it also increases as
the force range of the potential decreases48,49. Thus, the search
of GMs is easier for long-ranged potentials like CBM. For short-
ranged or multimodal ones, the PES can be of multi-funnel topog-
raphy (see Figure 1), like LJ75

50 or ZN
44, leading to GMs of a

less compact or even hollow shape44. This is because the finite
force range and the presence of the maxima lead to the existence
of many barriers, making the PES rather rugged. Thus, the GM
search algorithm may be trapped in the deep funnel of a LM by
these barriers51,52.

In order to increase the efficiency of the GM search algorithm,
two strategies have been applied. First, a good initial guess. A
“perfect” GM search algorithm should locate the GM from an ar-
bitary initial guess. However, due to the high complexity and di-
mension of the PES mentioned above, this may take an extremly
long time for some potentials. Thus, besides the random initial
guess, one could also include a “seed guess”, which is formed e.g.
by adding atoms to the GM structures of clusters of smaller sizes.
In fact, for some disordered metallic clusters, the global optimiza-
tion cannot succeed without such seeds53. In the present work for
most cases we did not make use of seeded guesses in order to in-
vestigate the efficiency of the unbiased algorithm. Second, one
should “smooth” the PES to reduce its ruggedness1. In this work
we use54:

Ũ (X) = min : {U (X)} (9)

where “min” means performing a local optimization of U starting
from X. As shown in Figure 1, this removes the barriers along
the downhill movement towards a funnel, making the optimiza-
tion more efficient54. This transformation resembles the Lamar-
ckian genetic algorithm used in the molecular docking software
AutoDock55, and has been widely applied in the global optimiza-
tion of clusters. Unfortunately, (9) cannot remove the barriers be-
tween different funnels, which is the main bottleneck of a global
optimization algorithm. In the following, the ABC algorithm will
be used to search for the GM of clusters, which is the essential
function of our program ABCluster.

Fig. 1 An illustration of a typical PES topography. The original PES U
has 3 funnels with different ruggedness and width, with the true GM
located in funnel 1. After smoothing we get Ũ , then the barriers along
the downhill movement toward a funnel are removed since the PES
becomes staircase-like, see e.g. funnel 3. However, the barriers
separating different funnels still exist.

2.2 Artificial Bee Colony Algorithm in ABCluster

The artificial bee colony (ABC) algorithm, which is a swarm in-
telligence based one, was first proposed by Karaboga in 200537.
It was inspired by the foraging behavior of honey bee colonies.
In these colonies, the honey bees want to find the best nectar
sources. To efficiently achieve this, the bees are specialized for
different tasks. In the model of the ABC algorithm, there are
three kinds of bees: employed, onlooker and scout bees. Each
bee can find nectar and estimate its “quality”. More importantly, it
can share this information to other bees by, e.g., a waggle dance.
This communication between the individuals is fundamental to
the random and feedback behaviors of the colony. In one search
cycle, the employed bees look for new nectar sources based on
their own as well as other bees’ knowledge. Then, the onlooker
bees communicate with the employed bees and look for new nec-
tar sources around the “good” ones. Based on the feedback from
employed and onlooker bees, the nectar sources of low quality
will be discarded and the scout bees search for the new ones. Af-
ter several cycles, a “best” nectar source is finally selected.

The ABC algorithm models the above-mentioned behavior of
bee colonies. Extensive descriptions of the ABC algorithm can be
found in some reviews56–58. In the context of the global opti-
mization of a cluster, a trial solution X is the nectar source and
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the potential energy U (X) is its quality (a lower numeric value
indicates a higher quality). The parameters needed for a global
optimization with the ABC algorithm are the following: the size
of the population of trial solutions SN, the scout limit glimit and
the maximum cycle number gmax. The cluster is characterized
by its size N, the estimated maximum coordinate value L, and
of course the potential parameters. Now, the global optimization
(foraging) can be performed (see Figure 2 for a flowchart):

1. Initialize the population: X1
1, · · · , X1

SN . One can use random
initial guesses: each component of X1

i is randomly taken
from the range [0,L]. For difficult cases a seeded guess is
used, which is usually the GM of the cluster of size N−1 plus
one atom randomly positioned. Then all the structures are
locally optimized by the limited-memory-Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS) algorithm59.

2. Modelling employed bees: in cycle g, for each Xg
i (i =

1, · · · ,SN), a new trial solution Vi according to other Xg
j ’s

( j = 1, · · · ,SN, j 6= i) (information sharing) is generated (em-
ployed bee search). Here we use the trigonometric mutation
operator60:

Vi =
1
3

(
Xg

k1
+Xg

k2
+Xg

k3

)
+(p2− p1)

(
Xg

k1
−Xg

k2

)
+(p3− p2)

(
Xg

k2
−Xg

k3

)
+(p1− p3)

(
Xg

k3
−Xg

k1

) (10)

where k1, k2 and k3 are random integers in {1, · · · ,SN} and
k1 6= k2 6= k3 6= i, and

pkm =

∣∣Ũ (Xkm

)∣∣∣∣Ũ (Xk1

)∣∣+ ∣∣Ũ (Xk2

)∣∣+ ∣∣Ũ (Xk3

)∣∣ (m = 1,2,3) (11)

Ũ is the transformed potential energy function (9), where
the local optimization “min” is realized by the L-BFGS algo-
rithm59 mentioned above. The operator (10) can exchange
the information within the population very efficiently, e.g. in
the DE algorithm60,61. Then this solution is updated with a
greedy selection scheme (12):

Xg+1
i =

{
Vi if Ũ (Vi)< Ũ

(
Xg

i
)

Xg
i otherwise

(12)

3. Modelling onlooker bees: after the employed bee search,
each onlooker bee will select a “good” solution Xg

k , and a
new trial solution Vk is generated again according to other
Xg

j ’s ( j = 1, · · · ,SN, j 6= k). There are two ways of selecting
the “good” ones, the roulette wheel and tournament selec-
tion25. In the former way one solution is selected with a
probability proportional to its quality, however this strategy
has a large bias on the best solution Xg

best (the one with low-
est energy in the population), which reduces the efficiency
of the algorithm. Thus the tournament selection strategy is
used. In this way, Nplayers (in this work, Nplayers = 5) individ-
uals are randomly selected from the population and the best
one (with lowest energy) is chosen. To use the information
that Xg

k being “good”, we generate Vk based on Xg
k , i.e. (13)

instead of (10):

Vk =

 Xg
k +F

(
Xg

k1
+Xg

k2
−Xg

k3
−Xg

k4

)
if η < 0.5

Xg
best +F

(
Xg

k1
+Xg

k2
−Xg

k3
−Xg

k4

)
otherwise

(13)
where k1, k2, k3 and k4 are random integers in {1, · · · ,SN}
and k1 6= k2 6= k3 6= k4 6= k. F and η are random num-
bers in [0,1). The two expressions in (13) are denoted
by “ABC/current/2” and “ABC/best/2”, respectively. They
mean that the trial solution is generated by improving the
current/best solution with 2 differences of vectors. Similar
expressions have appeared in the DE algorithm literature62

and they are able to improve the performance of the ABC
algorithm63. Then, Xg

k is also updated with the greedy se-
lection scheme (12).

4. Modelling scout bees: after the onlooker bee search, each Xg
i

(i = 1, · · · ,SN) is examined. If Xg
i does not change in the last

glimit cycles, it will be replaced by a random trial solution
Xg+1

i (scout bee search) no matter whether it is better than
Xg

i or not. Without scout bees the algorithm may converge
to a LM too fast and then be trapped in, like a PSO algo-
rithm. In fact, scout bee search is very important for keeping
the diversity of the solution population and jumping out the
funnel around a LM.

5. If g ≥ gmax, the algorithm is accomplished, otherwise go to
step 2.

One can realize: the random assignment of some solutions in-
troduces fluctuations into the system; the employed and onlooker
bee searches introduce multiple interactions; the onlooker and
scout bee searches introduce positive and negative feedback, re-
spectively. These four characteristics are fundamental for a dy-
namical system being self-organizing64. This makes it a very at-
tractive algorithm compared with other ones. This is due to the
fact that, rather than assigning a crossover or mutation rate man-
ually like in the DE61 or PSO29 algorithms, the self-organization
can automatically provide the mechanism to keep the diversity of
the solutions as well as guarantee the population evolving posi-
tively in an efficient way. For example, in a study56 of the global
optimization of 23 benchmark functions, it was found that ABC
performs better than or at least similar to the GA, DE or PSO
algorithms. Thus, the ABC algorithm has gained extensive appli-
cations in many problems58. In chemistry, it has been used in
the optimization of force field parameters65, the prediction of the
protein secondary structure66, etc.

Before we discuss the performance of ABCluster for the global
optimization of clusters, we note that some previous work has
also tried the ABC algorithm for this purpose67,68. However,
those studies only tested medium-sized systems (N ≤ 50) and a
few potentials. They used simple move operators rather than the
more sophisticated operators (10) and (13). We will show that
our implementation can be effective for larger clusters and a wide
variety of potentials.
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Fig. 2 The ABC algorithm for searching the GM of clusters used in
ABCluster. EM: employed bees; OL: onlooker bees; SC: scout bees.

3 Performance Test
We applied the ABC algorithm to search the GMs of clusters with
the potentials shown in Table 1. All the tests were accomplished
by the programm ABCluster, which is developed by the authors.
The GMs were rendered by CYLview69. Here we point out that ac-
cording to our exploration, the performance of the ABC algorithm
is very stable. Unless using a tuned initial guess, the optimization
starting with a random initial guess requires a number of steps
of the same order of magnitude to find the GM in different runs.
Thus only one representative instance of optimization for each
case is given in the following.

3.1 The Coulomb–Born–Mayer Potential
The CBM potential (3) involves the long-ranged Coulomb interac-
tion and thus it is the easiest case for the GM search. We chose the
ionic cluster (MgO)N for benchmarking. In a work by Roberts and
Johnston73 their GMs have been searched by the GA algorithm.
It was observed that as the formal charge Q on the ions increases
the GM changes from cuboidal to cage structures. Here we set Q
as 1, 1.5 and 2 on the ions, corresponding to UCBMQ1, UCBMQ1.5

Fig. 3 The distance-dependence of the two-body potentials examined
in this work.

Table 1 The parameters of the potentials examined in this work a

Potentials Parameters
Common 70 B(Mg−O) = 821.6; B(Mg−Mg) = 0; B(O−O) = 22764

ρ(Mg−O) = 0.3242; ρ(Mg−Mg) = 0; ρ(O−O) = 0.1490
UCBMQ1 qMg =+1.0; qO =−1.0
UCBMQ1.5 qMg =+1.5; qO =−1.5
UCBMQ2 qMg =+2.0; qO =−2.0
ULJ ε = 1.0; σ = 1.4
UML2 ε = 1.0; n = 2; r0 = 1.4; β = 2.14285714
UMS2 ε = 1.0; n = 2; r0 = 1.4; β = 10.0
UZ1

44 a = 1.58, α =−0.22, kF = 4.120, b = 4.2×10+8

σ = 0.331, n = 18.0, V0 = 0.04682632, rc = 2.64909
Gupta
UPt

71 A = 0.2975, ξ = 2.695, d = 2.7747, p = 10.612, q = 4.004
UZn

72 A = 0.1477, ξ = 0.8900, d = 2.50, p = 9.689, q = 4.602
a units of the parameters are given below. The CBM potential: B (eV), ρ

(Å), q (arbitary). The LJ potential: ε (eV), σ (Å). The Morse potential: ε

(eV), n (arbitary), r0 (Å), β (Å−1). The Z potential: all units are arbitary,
thus for convenience we assign its energy as eV. The Gupta potential: A

and ξ (eV), d (Å), p and q (arbitary).

and UCBMQ2, respectively, in Table 1 (see also Figure 3A). The re-
sults are given in Table 2 and Figure 4. It is found that N = 25
is a difficult case, since it required much more steps to locate the
GM’s than N = 22 did. In fact, it is also a difficult case for the
GA73. The reason is that there exists a LM (Energy: −193.8975
eV) which is energetically very close to the GM. Nevertheless, for
UCBMQ1 and UCBMQ2 our GMs completely agree with Roberts and
Johnston’s results73. Moreover, we found that for small clusters
(N ≤ 20) the GMs with Q = 1.5 are tube structures, being different
from those with Q = 1. Thus, for ionic clusters with components
carefully tuned, one may get many fascinating structures. Since
the ABC algorithm is very efficient for locating GMs of ionic clus-
ters, it has great potential in aiding the design of nanocrystals, as
long as the potential energy function is accurate.

3.2 The Lennard-Jones, Morse and Z Potential
These potentials are all short-ranged. The former two are uni-
modal while the last one is multimodal. The potential parameters
are given in Table 1, and the results are shown in Table 3, Table 4
and Table 5. Some GMs are shown in Figure 5.
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Table 2 Benchmark for the CBM potential

ABC algorithm parameters: SN = 100, glimit = 5, gmax = 600
Initial guess: random
Potential (MgO)N Steps Energy (eV) Reference 73 (eV)a

UCBMQ1 16 1 −123.1609 −123.1643
20 2 −154.6450 −154.6494
22 2 −170.1957 −170.2005
25 327 −194.1070 −194.1125

UCBMQ1.5 16 1 −314.6231 N/A
20 10 −394.7516 N/A
22 1 −434.6638 N/A
25 49 −495.0921 N/A

UCBMQ2 16 1 −624.8734 −624.8921
20 5 −783.3009 −783.3243
22 22 −861.6615 −861.7859
25 521 −980.5489 −980.5783

a The reference energies are calculate by “Eb×Nions” from Table 2 of Ref.
73. The small difference between the energy and the reference is due to

the different precision of “ e2

4πε0
” in (3).

From Table 3, the difficulty in locating the GM of LJN increases
with the size N. The ABC algorithm finds the true GM in gmax

steps for all cases except for LJ75. This is a very difficult case17

since its PES has two funnels: a broad and deep one correspond-
ing to an icosahedral LM (with energy −396.2822 as we found),
and a very narrow one leading to the Marks decahedral GM50.
Thus the ABC algorithm is easily trapped in the icosahedral fun-
nel. This is of course a drawback of the algorithm, but it also
suggests that the trapped region is of high entropy. Thus, at finite
temperature the LM in this region may dominate. In Figure 5, the
GM of LJ80 is given as an example.

Table 3 Benchmark for the LJ potential. The difficult cases are marked
with a “*”

ABC algorithm parameters: SN = 100, glimit = 5, gmax = 1000
Initial guess: random
Potential LJN Steps Energy (eV) Reference 17 (eV)
ULJ 13 1 −44.3268 −44.3268

38 20 −173.9284 −173.9284
40 2 −185.2498 −185.2498
69 61 −359.8826 −359.8826
74 19 −390.9085 −390.9085
75(*) 86 −396.2822 −397.4923
80 53 −428.0836 −428.0836
100 43 −557.0398 −557.0398
115 619 −655.7563 −655.7563
150 224 −893.3103 −893.3103

The results for the Morse potential are also interesting. From
Figure 3B we know that UML2 is longer-ranged than UMS2, which
implies that the global optimization is easier for the former one.
Table 4 reveals that it is in fact much easier: even for the largest
cluster M80 with UML2, the GM is located at the first step! For MN

with UMS2 it may need several thousand steps, and for M55 and
M80 the ABC algorithm can only locate a LM which is very close
to the GM in energy in 15000 steps, suggesting that the LM is in
a deep and broad funnel. Thus the impact of the force range on
the search of the GM is emphasized here again. The GMs for the
potentials of different force range can be quite different. Figure 5
suggests that the GM of M40 with UML2 is icosahedral based while
that with UMS2 is a fcc structure.

Fig. 4 The GMs found by the ABC algorithm for the potentials UCBMQ1,
UCBMQ1.5 and UCBMQ2.

The finite force range and multimodality of the Z potential (see
Figure 3C) leads to a multi-funnel and very rugged topography
of its PES, and the GMs tend to be of quite unexpected shape.
Indeed, Table 5 reveals that it is the most difficult case for GM
search. Taking Z50 in Figure 5 as an example, the algorithm is
easily trapped into a (relatively) compact LM funnel, while the
GM is hollow!

3.3 The Gupta Potential
The Gupta potential is of many-body type and has been widely
applied in the study of metals and alloys. Here we chose the
Gupta potentials for platinum and zinc as testing cases. The rea-
son for choosing Pt and Zn is that they tend to form regular and
disordered GMs, respectively, representing two different kinds of
potentials. Moreover, due to their functional forms, the PES could
be very flat, leading to slow convergence. Thus, we used a small
glimit to accelerate the search. Also, for these potentials, espe-
cially for zinc whose GMs are disordered, the ABC algorithm may
require quite a lot of steps to locate the GM starting from a ran-
dom guess. Therefore for large clusters we use a seeded initial
guess. For example, for Pt40, we use an initial guess obtained by
adding 2 atoms to the GM of Pt38. The results are given in Table
6.

For platinum clusters, all the searches succeeded as long as
good initial guesses were provided. For zinc clusters, however, it
becomes more difficult. Even using a seeded guess cannot avoid
the failures (not shown). Figure 3D reveals that the Gupta poten-
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Fig. 5 Some GMs obtained by the ABC algorithm. The true GM of Z50
is obtained from Ref. 44.

tial for zinc is much shorter-ranged than that for platinum, which
leads to a rugged PES and a disordered GM. This explains why the
ABC algorithm has a poor performance for zinc clusters. In Fig-
ure 5, we can see that Pt38 has a fcc structure, but Zn38 is rather
disordered.

3.4 Selection of the Algorithm Parameters
We show the minimal energy evolution during the optimization
for some cases in Figure 6. We can see that for two-body poten-
tials the optimization shows several plateaus. A plateau indicates
that the optimization stagnates, being trapped in a LM funnel.
For instance, the largest plateau of M60 with UMS2 (see Figure
6B) implies that this is a very broad and deep funnel.

For many-body potentials, the optimization exhibits strong os-
cillations. This is because the PES is so flat that the energies of
the population are very close, thus even the “best” solutions are
often updated by the scout bees. Nevertheless, the optimization
shows an overall downhill movement, although it can be very
slow. For Pt38 in Figure 6C, the optimization found a LM with
energy −199.9001 at the 2042th step, however it took more than
20000 steps to locate the GM with energy −199.9418!

This gives us some guidance on how to set the three algorithm
parameters SN, glimit and gmax in practice. According to our tests,
a SN between 50 to 100 is sufficient. The glimit can be set as
5 for two-body potentials, and 2 for many-body potentials. The
gmax should be big for short-ranged potentials or large clusters to
enable the algorithm to escape from LM funnels. In practice, it

Table 4 Benchmark for the Morse potential. The difficult cases are
marked with a “*”

ABC algorithm parameters: SN = 100, glimit = 5, gmax = 1000
Initial guess: random
Potential MN Steps Energy (eV) Reference 74 (eV)
UML2 13 1 −51.7370 −51.7370

20 1 −97.4174 −97.4174
30 1 −177.5786 −177.5786
35 1 −221.7715 −221.7715
40 1 −268.3948 −268.3948
45 1 −318.6607 −318.6607
50 1 −366.6356 −366.6356
55 1 −417.9186 −417.9186
60 1 −470.4485 −470.4485
80 1 −690.5779 −690.5779

ABC algorithm parameters: SN = 100, glimit = 5, gmax = 15000
Initial guess: random
UMS2 13 1 −37.2589 −37.2589

20 24 −64.7919 −64.7919
30 3209 −106.8358 −106.8358
35 1207 −129.7374 −129.7374
40 707 −152.3337 −152.3337
45 9436 −174.5116 −174.5116
50 13324 −198.4556 −198.4556
55 (*) 961 −219.6755 −220.6462
60 4681 −244.5791 −244.5791
80 (*) 4303 −340.8026 −340.8114

Table 5 Benchmark for the Z potential. The difficult cases are marked
with a “*”

ABC algorithm parameters: SN = 100, glimit = 5, gmax = 20000
Initial guess: random
Potential ZN Steps Energy (eV) Reference 44 (eV)
UZ1 13 27 −30.5188 −30.5188

20 38 −50.0067 −50.0067
24 919 −60.9371 −60.9371
30 641 −77.6403 −77.6403
40 (*) 4502 −104.7577 −105.5638
50 (*) 18156 −131.1707 −134.4295

is better to run a global optimization several times starting from
different initial guesses, increasing the probability of locating the
true GM.

4 Conclusion
In this work, we have successfully introduced a new unbiased,
swarm intelligence based algorithm, i.e. the artificial bee colony
(ABC) algorithm, to the field of global minimum search of clus-
ters. Compared with other algorithms, it requires only three pa-
rameters: SN, glimit and gmax, which are very easy to tune in prac-
tice. From the benchmarks, we see that the ABC algorithm ex-
hibits excellent performance for long-ranged potentials. This makes
it useful in searching the stable structures for ionic or disper-
sion bound clusters. For glassy and metallic clusters described
by short-ranged or many-body potentials, the performance is not
so encouraging since the algorithm is often trapped into some LM
funnels. Of course, in principle if we set a very large gmax, we can
always find the true GM for those difficult cases. Since the ABC
algorithm is relatively new, it still has potential to be improved,
e.g. combined with the basin-sampling strategy to overcome the
difficulty of trapping in a LM funnel75. Our laboratory is currently
exploring this possibility.

The algorithm is very promising in quickly providing initial ge-

Journal Name, [year], [vol.], 1–9 | 7

Page 7 of 9 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



Fig. 6 The the minimal energy evolution during the optimization for some cases. On the Y axis is the difference between the minimal energy at that
step and then energy of GM (i.e. E(Step)−EGM).

Table 6 Benchmark for the Gupta potential. The difficult cases are
marked with a “*”

ABC algorithm parameters: SN = 50, glimit = 2, gmax = 30000
Initial guess: random
Potential GN Steps Energy (eV) Reference 53,61 (eV)
UPt 13 348 −64.9163 −64.9163

20 23567 −101.9734 −101.9734
30 24081 −156.2636 −156.2636
38 22947 −199.9418 −199.9418
40 (*) 23153 −210.5891 −210.6938
50 (*) 29985 −265.1495 −265.5774

Initial guess: seeded
UPt 40 8978 −210.6938 −210.6938

50 14829 −265.5773 −265.5774
ABC algorithm parameters: SN = 50, glimit = 2, gmax = 30000
Initial guess: random
UZn 13 4567 −17.0321 −17.0321

20 (*) 251 −26.3868 −26.3954
30 9847 −39.7682 −39.7682
38 19304 −50.4929 −50.4999
40 (*) 28378 −53.1587 −53.1821
50 (*) 25441 −66.5748 −66.6019

ometries of small and medium-sized clusters for chemists’ fur-
ther exploration. However, one should also realize that the phe-
nomenological potentials (3)–(7) are often obtained by fitting
bulk properties and thus may be inaccurate for clusters of small
size. For instance, one can obtain GMs of quite different shape
for lead clusters when different potentials are used76. Thus, in
a study the potential function must be carefully constructed and
the obtained GMs should be interpreted with caution.

The ABC algorithm described in this work has been integrated
into the program ABCluster, enabling both non-experts and ex-
perts to apply this algorithm readily. More potentials, or gener-
ally any “objective functions” can be integrated into the program,
not limited to the ones discussed in this paper. Therefore our pro-
gram is a useful tool in studying various kinds of clusters for re-
searchers from chemistry and perhaps other fields. It is efficient,
user-friendly, and free. The program ABCluster will be available
on our group site.
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