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ABSTRACT: We examine the temperature dependence of the interfacial molecular structure at 

the water-air interface by combining experimental and simulated sum-frequency generation 

(SFG) spectroscopy. The experimental SFG spectra of the OH-stretching mode show decrease in 

the amplitude at ~3300 cm-1 with increasing temperature, while the 3700 cm-1 ‘free OH’ SFG 

feature is insensitive to temperature changes. The simulated spectra are in excellent agreement 

with experiment. A comparison between interfacial SFG spectra and bulk infrared/Raman 

spectra reveal that the variation of the SFG signal due to the temperature change is not caused by 

a temperature-dependent OH bond orientation of the interfacial water molecules, but can be fully 

accounted for by the temperature dependence of the optical response of water. These results 

indicate that while the thickness of the interfacial region varies with temperature, the molecular 

organization of interfacial water at the water-air interface is surprisingly insensitive to 

temperature changes. 
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 3

MAIN TEXT: 

Temperature is a critical parameter of water which controls a variety of its macroscopic 

properties not only in the bulk but also at interfaces. The nature of interfacial water and its 

temperature dependence have been debated.1 It is well known, as first postulated by Faraday, that  

liquid water exists on the ice surface below the bulk freezing point.2,3 Furthermore, the surface 

tension of water is affected by temperature and decreases from 76 mN/m at 0 °C to 68 mN/m at 

50 °C.4 Although these observations must be related to the hydrogen bond (HB) network at the 

water interface, questions remain regarding the temperature dependence of the interfacial 

molecular arrangement of water. 

HB interactions in bulk water have been probed using various vibrational spectroscopic 

techniques such as infrared (IR) and Raman spectroscopy.5 Interfacial water molecules can be 

probed selectively with sum-frequency generation (SFG) spectroscopy. In this technique IR and 

visible laser pulses are combined at the interface and the sum-frequency is detected. Since this is 

a second order response, contributions from centrosymmetric media like bulk water are 

eliminated. With this technique, the interfacial water structure at the water-air interface has been 

studied and the presence of the dangling, free OH groups has been evidenced, arising from the 

interruption of the H-bonded network at the interface.6,7  

Although this technique is very suitable to study the variations of the interfacial water structures 

with temperature change, only a limited number of studies have addressed these at the water-

air6,8–10 and ice-air11–13 interfaces. At the D2O-air interface, the OD stretch SFG features in the H-

bonded region (~2300-2500 cm-1) are reduced as well as blue-shifted with increasing 

temperature, while the peak intensities at the free OD stretch frequency (~2730 cm-1) are 
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 4

insensitive to the temperature. From the enhancement of the H-bonded OD stretch SFG feature at 

the water-air interface as well as the water-hydrophobic material interfaces at lower 

temperatures, it was concluded that the ordering of the interfacial water structure is enhanced at 

reduced temperatures.9 It is, however, not a priori evident that the surface would become 

increasingly ordered at lower temperatures. Moreover, the optical response of water is known to 

vary with temperature;14 this effect has not been considered.  

Notably, the second-harmonic generation (SHG) intensity from the water-air interface15–

17 has been reported to be rather insensitive to the temperature (at most by 10% over a 70K 

temperature range),16 which seems at odds with the 40% variation in the hydrogen-bonded OH 

stretch signal in the SFG spectra over a 40K temperature range.9 However, since the SHG 

intensity arises from the electronic transition dipole moment of the interfacial water molecules, 

while the SFG signals arise from the vibrational transition dipole moment, the SHG intensity 

cannot probe the free OH and hydrogen-bonded OH groups separately. It is thus challenging to 

make a direct connection between OH bond orientation and temperature-dependent SHG results, 

whereas SFG, with its molecular specificity, in principle provides such information. 

In addition to fundamental interest in the temperature dependence of the interfacial water 

structure, understanding the temperature dependent SFG spectra is essential to interpret the 

pump/probe or two-dimensional SFG data.18–24 In these time-resolved techniques, a specific 

vibrational mode is excited and the fate of the excitation, e.g. depolarization, spectral diffusion, 

and vibrational relaxation, is followed in time through transient changes in the SFG spectra. In 

the course of time – typically a few picoseconds – the excess vibrational energy is transferred to 

heat. The time-dependent increase in the surface temperature thus also gives rise to non-zero 

differential SFG spectra. Hence, knowledge on the variation of the SFG spectra with temperature 
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 5

is needed to disentangle the contribution of the interfacial water dynamics to the transient spectra 

from the appearance of heat.25 

In order to explore the effect of temperature on the microscopic structure of the 

interfacial water and the SFG spectra, we measure the heterodyne-detected SFG (HD-SFG) 

signals at the water-air interface at ssp polarization and compute the corresponding spectra by 

using MD simulation with different temperatures. Here, ssp polarization denotes s-polarized 

SFG, s-polarized visible, and p-polarized IR beams, respectively. Both simulated and 

experimentally measured OH stretch SFG spectra show a dramatic reduction of the 3250-3350 

cm-1 OH stretch band and unchanged amplitude of the free OH (~3700 cm-1) stretch peak with 

increasing temperature. We subsequently compare the variation of the interfacial SFG signals 

with that of the bulk IR/Raman spectra in the simulation, revealing that the temperature 

dependence of the SFG spectra arises primarily from the variation in the optical response rather 

than from changes in the interfacial structure. We find that the OH group orientation of the 

interfacial water molecules is remarkably insensitive to the temperature. 

Experimentally, HD-SFG spectra of the H2O-air interface were measured in a 

temperature controlled metal trough at 283±1 and 303±1 K. Part of a Ti:Sapphire based 

regenerative amplifier (Spitfire Ace, Spectra-Physics) was used to pump a TOPAS (Light 

Conversion) generating broadband IR pulses centered at ~3300 cm-1 with a full width at half 

maximum (FWHM) of 400 cm-1. Another part of the laser output was sent through an etalon to 

obtain narrowband visible pulses around 801 nm with a FWHM of ~25 cm-1. The IR and visible 

beams were first overlapped on the surface of a gold mirror to generate the first SFG signal 

under almost grazing incidence angle (IR and visible incident angle: ~85 and 75°, respectively). 

Subsequently the IR, visible pulses and SFG signal were reflected on a concave mirror with a 
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 6

focal length of 50 mm to the sample, with an angle of incidence of ~45 and 35° for the IR and 

visible beams, respectively. After collimation the two SFG signals are sent to the detector where 

they interfere. The spectra were normalized to the SFG signal from z-cut quartz. The depicted 

spectra were averaged for two 5 minutes exposures and the height was corrected in between 

using a height sensor with a resolution of 200 nm (Keyence, LK-G85). The phase changes due to 

evaporation were less than 10 and 30° at 283 and 303 K, respectively. Following Ref. 26 the data 

were rephased using the SFG data of the D2O-air interface measured at both temperatures and 

thus undergoing the same phase drift due to evaporation as the H2O measurements. Therefore, 

we estimate that the phase uncertainty in the final spectra is less than 10° for both temperatures. 

Spectra for additional temperatures can be found in the Supporting Information. 

MD simulations with the ab initio based force field model (melting temperature of 265 – 

270 K, see Supporting Information) at the water-air interface were performed at temperatures of 

282, 293, 305, 318, and 331 K. The dipole moment and polarizability can be readily computed 

with this force field model,27,28 and the SFG signals were calculated from the simulated dipole 

moment and polarizability within the truncating response function formalism.28,29 Note that these 

ab initio based force field models have been actively developed by several groups.30–33 In this 

formalism, the relevant time correlation function is calculated in a manner that allows for 

delocalization of the vibrational amplitude over several chromophores. The spatial extent over 

which vibrational delocalization is allowed in the calculations is given by the cutoff radius rt. 

The Fourier transform of the time correlation function into the frequency domain provides access 

to the SFG response. The MD simulation protocols, the SFG signal calculation, and the 

dependence of the SFG spectra on the value of rt are provided in the Supporting Information. 
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 7

Furthermore, the temperature dependences of the self-diffusion constant in the bulk and surface 

tension at the water-air interface are given in the Supporting Information. 

The SFG response of the OH stretch mode was fully converged with rt = 6 Å (including 

cross-correlation within the 6 Å cutoff sphere, see the Supporting Information). The comparison 

of the simulated and measured SFG spectra is presented in Fig. 1, which reveals good agreement 

between simulation and experiment: the amplitude at ~3700 cm-1 is rather insensitive to the 

temperature, while the amplitude at ~3300 cm-1 decreases significantly with increasing 

temperature. We focus here on the 3150 to 3750 cm-1 frequency range as the assignment of the 

bands in the spectrum is unambiguous in this range.7, 26 In addition, the MD simulation indicates 

that the positive shoulder at ~3600 cm-1 becomes more prominent with decreasing temperature. 

This positive shoulder, also apparent in the experiment, has been assigned to the anti-symmetric 

stretch mode of the interfacial water molecules donating two HBs.34 The enhanced amplitude for 

this anti-symmetric mode indicates that the frequencies of the two OH stretch modes in each 

water molecule overlap more strongly with decreasing temperature, giving rise to larger 

vibrational energy splitting. The thermal variation of the ~3600 cm-1 feature is not so prominent 

in the experimental HD-SFG spectra due to limited signal-to-noise above 3600 cm-1. In any case, 

our MD simulations capture the temperature dependence of the SFG spectra very well. 

To investigate the temperature dependence of the vibrational delocalization for χ(2) 

spectra, we also calculated the variation of Im[χ(2)] with rt = 0 Å (without cross-correlation), 

which is also plotted in Fig. 1. Clearly, cross-correlation terms enhance the negative ~3300 cm-1 

feature dramatically. Since the cross-correlation terms allow intermolecular coupling to 

contribute to the spectra, this peak enhancement arises from the H2O-H2O vibrational coupling. 
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 8

The observation of the enhanced amplitude at the red side in the presence of intermolecular 

coupling is in good agreement with the SFG measurement using the neat H2O and isotopically 

diluted H2O (See Fig. 2 of Ref. 26). Surprisingly, also without the intermolecular coupling (rt = 0 

Å), we can see a clear reduction of the SFG response at ~3300 cm-1 with increasing temperature. 

This indicates that the intermolecular coupling does not play an essential role in the variation of 

the SFG amplitude with temperatures. Here, it should be noted that although the intermolecular 

couplings of the OH stretch chromophores can be controlled with the truncation of the response 

function, intermolecular coupling effects are inevitably included through the induced molecular 

dipole moment and polarizability.  

 

 

Figure 1. Simulated SFG spectra of the OH stretching frequency with different truncating 

distances rt = 0 and 6 Å and experimental ssp SFG spectra. The SFG signals were normalized at 

the free OH stretch peak of the SFG spectra with rt = 0 Å at 305 K for the simulation and at 303 

K for the experiment.  
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 9

We now explore the mechanism of the ~3300 cm-1 SFG amplitude variation due to the 

temperature change. The SFG amplitude is determined by (1) the optical properties such as the 

transition dipole moment, the transition polarizability, and the decay of the dipole and 

polarizability time correlation functions and (2) the number of the ordered water molecules and 

the degree of order.35,36 To conclude that the reduction of the SFG signal arises from the less 

ordered structure of interfacial water (2), it is required that the temperature dependence of the 

optical properties (1) is negligible. To examine the temperature dependence of the optical 

responses by excluding the effects of the ordered water structure, we estimated the variation of 

the optical responses of the transition dipole moment and polarizability from the IR and Raman 

responses. Note that the IR and Raman responses arise from the time-correlation functions of 

transition dipole moment and polarizability, respectively.37 Similar analyses have been made in 

Refs. 38 and 39. We simulated the IR (IIR) and VV Raman signals (IRaman) for bulk water with 

different temperatures and constructed the ���������� spectra. Note that since Im[�		

(�)

] is 

compared with the ���������� spectra, we adopted the VV Raman spectra rather than VH 

Raman spectra.40 The simulated spectra are shown in Fig. 2. The temperature dependence of the 

IR and Raman spectra for the OH stretching mode are consistent with experimental data from 

literatures;41,42 the IR intensity decreases in the frequency range of 3100 cm-1 < ω < 3550 cm-1 

with increasing temperature, while the VV Raman spectra shows a dramatic change in a 

narrower frequency region (3100 cm-1 < ω  < 3350 cm-1).  

Subsequently, we compared the temperature variation of the ���������� amplitude with 

those of the simulated Im[χ(2)] amplitude. The left panel of Fig. 3 displays the correlation map of 

their spectral areas integrated in the region of 3250 cm-1 < ω < 3350 cm-1, i.e. the region of the 
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 10

largest change. This figure shows a very clear correlation between the changes in the SFG 

response and changes in the ���������� spectra, implying that the large reduction of the SFG 

amplitudes with increasing temperature does not arise from the less ordered OH bonds but can be 

fully accounted for by taking into consideration the temperature dependence of the optical 

properties of water. The origin of the decrease in the temperature-dependent optical response 

with increasing temperature, is mainly due to a speed-up of the dephasing of the molecular 

vibrations, and due to weakening of the H-bonded network. 

 

 

Figure 2. Simulated IR, VV Raman, and ���������� spectra in the OH stretching frequency 

range. 

 

To independently confirm that the variation of the SFG spectra with temperature is not 

caused by changes in the ordering of the OH groups, we compared the integrated Im[χ(2)] 

amplitude with the simulated total orientations of the H-bonded OH groups per unit area 

〈∑ cos�〉, where θ is the angle formed by the surface normal and the H-bonded OH group. The 

calculation details are given in the Supporting Information. The lack of correlation between the 
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 11

temperature dependence of Im[χ(2)] and average orientation is evident from the left panel of Fig. 

3, clearly illustrating that the variation of the H-bonded OH stretch feature in the Im[χ(2)] spectra 

is little, if at all, affected by changes in the structure. Indeed, the orientation of the interfacial OH 

groups with the HB donor is almost unchanged over the temperature range of 280-330 K.  

 

 

Figure 3. (Left) Correlation map of the spectral area Im[χ(2)] integrated for 3250 cm-1 < ω < 

3350 cm-1 vs. the integrated ���������� spectra in the same frequency range and the average 

orientation of the H-bonded OH groups 〈∑ cos�〉. (Right) Temperature dependences of 〈∑ cos�〉 

and thickness parameter δ. All the data were normalized to the value of the data at 305 K. 

 

While the average H-bonded OH bond orientation of the interfacial water molecules is 

insensitive to the temperature, the thermal excitation of capillary waves should affect the 

interface. To quantify this, we calculated the thickness parameter δ by fitting the function  
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to the density profile ρ(z) along the surface normal, where zG is the position of the Gibbs dividing 

surface and a is the half of the bulk density. The details can be found in the Supporting 

Information. The thickness δ, along with the orientational average, vs. temperature is plotted in 

the right panel of Fig. 3. This clearly shows that, unlike the OH bond orientation, the surface 

roughness varies substantially with temperature. Here, we would like to note that the interfacial 

region with the thickness of δ is not the same as the SFG active region. An SFG signal originates 

from the interfacial region where the net dipole moment along the surface normal does not 

vanish.  

 In this paper, we investigated the molecular organization of the interfacial water 

molecules at the water-air interface and found that the orientation of the water molecules 

(〈∑ cos�〉) does not change with temperature, whereas the surface roughness (δ) varies. 

Furthermore, we also reproduced the temperature dependence of the surface tension (see 

Supporting Information). It would be important to note that the interfacial region which has the 

net orientation and less density than the bulk is not the same as the region which affects the 

surface tension; the surface tension has been determined by the interfacial water organization on 

larger length scale than the region which the SFG probes. There is thus no inconsistency between 

no temperature dependence of 〈∑ cos�〉	 and the temperature-dependent surface tension. 

 In conclusion, we investigated the temperature dependence of the SFG spectrum at the 

water-air interface using a combined experimental and simulated SFG approach. For the OH 

stretch mode, the SFG amplitude at ~3700 cm-1 is insensitive to the temperature, while the 
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 13

amplitude at ~3300 cm-1 decreases with increasing temperature. By comparing the ~3300 cm-1 

peak enhancement in Im[χ(2)] with the ���������� spectra and the average orientations, we 

conclude that the variation of the SFG amplitude at ~3300 cm-1 due to the temperature change is 

the result of the temperature dependence of the optical response. Surprisingly, the OH bond 

orientation of the interfacial water molecules is largely insensitive to the temperature, despite the 

substantial change of the SFG response with temperature. Our study illustrates that care must be 

taken when interpreting temperature-dependent SFG signals in terms of temperature-dependent 

interfacial structure. This understanding is particularly relevant to the study of temperature-

dependent ordered water structures at for example hydrophobic or biological interfaces such as 

anti-freezing protein-water interface.9, 43 Conclusions based on temperature dependent SFG 

spectra drawn previously might have to be reconsidered. 

 

Supporting Information. MD simulation protocols, calculation of the SFG, IR, and Raman 

spectra, simulation results, and another experimental data are given.  
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