This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Mechanisms and Dynamics of Protonation and Lithiation of Ferrocene

Nishant Sharma, Jayanth K. Ajay,‡ Krishnan Venkatasubbaiah and Upakarasamy Lourderaj∗

Elucidating the mechanism of the simplest electrophilic substitution reaction of ferrocene, the protonation reaction has been a difficulty. In the work reported here, ab initio chemical dynamics simulations were performed at B3LYP/DZVP level of theory to understand the atomic level mechanisms of protonation and lithiation of ferrocene. Protonation of ferrocene resulted in the agostic and metal-protonated forms. Trajectory calculations revealed that protonation of ferrocene occurs by exo and endo mechanisms, with exo being the major path. H+ was found to be mobile and hopped from the Cp ring to the metal center and vice-versa after the initial attack on ferrocene, with the metal-complex having a shorter lifetime. These results remove the ambiguity surrounding the mechanism, as proposed in earlier experimental and computational studies. Lithiation of ferrocene resulted in the formation of cation-π and metal-lithiated complexes. Similar to protonation, trajectory results revealed that both exo and endo paths were followed, with exo path being the major. In addition, lithiated-ferrocene exhibited planetary motion. The major path (exo) followed in the protonation and lithiation of ferrocene is consistent with the observations in earlier experimental studies for other hard electrophiles.

1 Introduction

Ferrocene undergoes reactions characteristic of aromatic compounds by which plenty of its derivatives, which have potential applications in various fields, have been synthesized1–5. Some of the most interesting reactions of ferrocene are the electrophilic substitution reactions as seen in Friedel-Crafts reaction6–8 and mercuration9. The mechanism of electrophilic substitution of ferrocene was investigated by a series of studies by Cunningham using mass-spectrometry and isotopic substitution7–9, and two possible mechanisms were proposed (Fig. 1). It was found that hard electrophiles such as CH3CO+ followed an exo mechanism where the electrophiles are expected to attack ferrocene on the exo face of the cyclopentadienyl (Cp) ring (Exo attack), while soft electrophiles such as Hg2+ first complexed with the metal atom and then attacked the Cp ring on its endo face (Endo attack).

However, if the electrophile is a proton (H+), the intermediates formed after exo and endo attacks are indistinguishable, and an experimental verification of the mechanism becomes a difficulty. Several experimental10–15 and theoretical16–19 studies were performed to understand the mechanism of protonation of ferrocene. The protonation of ferrocene can result in a metal-protonated form (MP), where H+ is attached to the Fe atom, or a ring protonated complex called “agostic form” (AG), where an H atom forms a three-centered bond.

NMR studies10,11 showed that only metal-protonated form is present in solution. Deuteration experiments in the gas-phase suggested that the incoming H+/D+ attaches to Fe or Cp ring and does not exchange with the Cp hydrogens12. In contrast, experiments in deuterated acidic media indicated an exo attack.
and a possibility of rapid equilibrium between ring and metal-protonated forms of ferrocene. Infrared spectroscopic studies on protonated ferrocene revealed the presence of Fe–H stretching and Cp–Fe–H deformation motions. In another gas-phase study, H atom switching from one Cp ring to another and scrambling of H atoms in Cp rings were suggested.

Although there have been several theoretical studies in understanding the mechanism of protonation of ferrocene, most of the studies involved mapping the stationary points on the potential energy surface (PES) of protonated ferrocene and are summarized in Fig. S1. It was found that the nature of the PES was sensitive to the level of theory. At the HF level with effective core potential (ECP) for iron and 6-31G* for other atoms, MP was lower in energy than AG by 58 kcal/mol, whereas MP2 showed that AG was more stable than MP by 35 kcal/mol. Density functional theoretical (DFT) study using BPW91 and triple-ζ STO basis set indicated a shallow PES with MP more stable than AG only by 0.3 kcal/mol. CCSD(T)/pVDZ calculations revealed that AG was more stable than MP by 2.1 kcal/mol. Recently, a detailed study of the structure and dynamics of protonated ferrocene was performed using BP86, BPW91, BLYP, and B3LYP functionals and various basis sets. It was found that B3LYP predicted AG to be more stable than MP by 2-4 kcal/mol for different basis sets, comparable to CCSD(T)/pVDZ values. The ab initio (B3LYP) molecular dynamics study of protonated ferrocene revealed that AG was more preferred, while the computed 57Fe and 1H NMR chemical shifts were closer to the experimental chemical shifts of MP and AG respectively. The various experimental and theoretical studies revealed the importance of agostic structure in the protonation of ferrocene; however, the preference for exo or endo attack could not be clearly established. Interestingly, the next higher analogous hard electrophile Li+ can be expected to follow an exo mechanism. Although there are no experimental studies reported on the mechanism of lithiation of ferrocene, DFT studies have shown that Li+ binds strongly to the top of the Cp ring than to the metal and that the metal-lithiated complex can exhibit a “planetary motion”.

Here, a detailed ab initio chemical dynamics simulation study was undertaken to understand the atomic level mechanism and dynamics of protonation and lithiation of ferrocene. To this end, the PESs for protonation and lithiation of ferrocene were mapped using B3LYP/DZVP level of theory. To understand the dynamics, ab initio classical trajectories were integrated “on-the-fly” at the B3LYP/DZVP level of theory.

2 Computational Methods

The potential energy profiles for protonated and lithiated ferrocene were mapped using B3LYP and BPW91 functional and DZVP basis set. The stationary point structures were characterized by computing harmonic vibrational frequencies. GAUSSIAN 09 and NWChem software were used to carry out these calculations. All the energies reported here are without zero-point-energy correction.

Ab initio classical trajectories were performed to understand the unimolecular as well as the bimolecular dynamics of protonation and lithiation of ferrocene using VENUS/NWChem, where the ab initio forces were computed at B3LYP/DZVP level of theory. Since B3LYP/DZVP results were closer to CCSD(T)/pVDZ, the trajectories were calculated using this level of theory. The initial coordinates and momenta were selected using quasi-classical sampling procedure. The trajectories were integrated numerically for 0.5-1 ps using velocity-Verlet algorithm. The typical CPU time for ~1 ps integration of a trajectory on a 8 core Intel Xeon (3.0 GHz) processor is ~6 days. Detailed computational procedure is given in ESI.

3 Results and Discussion

3.1 Protonation of Ferrocene

The molecular electrostatic potential (MEP) map for the value of -0.013 a.u is shown in Fig. 2a. The presence of negative potential above and below the Cp rings and around the Fe atom indicates the possible protonation and lithiation sites of ferrocene. As discussed above, protonation of ferrocene can result in MP AG. The isoenergic rotamers formed by Cp ring rotation are connected by a transition state (TSA), 2.63 kcal/mol above AG. In AG, the Cp rings are eclipsed and H+ forms a three-centered bond with Fe and one of the C atoms of Cp ring. The Fe-H distance is 1.70 Å and angle subtended by the center of mass of the Cp ring (X₁), Fe, and H (∠X₁-Fe-H) is 74°. In addition, AG can exist in isoenergetic conformers (rotamers) formed by rotation of Cp rings connected to each other by a transition state (TSD), with a barrier of 0.31 kcal/mol. In MP, H is attached to the metal ring. The Fe-H distance is 1.49 Å and ∠X₁-Fe-H is 97°. The isoenergetic rotamers formed by Cp ring rotation are connected by a transition state (TSC), 2.58 kcal/mol above MP. The Fe-H distance is shorter in MP (1.49 Å) than in AG (1.70 Å) at the
B3LYP/DZVP level of theory. However, endo C-H distance is short in AG as compared to MP. In addition, the exo H atom in AG can hop from one C atom to another via TSD that is 20.29 kcal/mol above AG (Fig. S2a). The MEP map (Fig. S2b) shows that the positive charge is more on both the exo and endo H atoms in AG and on the H atom attached to Fe in MP.

The dynamics of protonation of ferrocene was investigated by performing classical trajectory simulations at the B3LYP/DZVP level of theory. As a first step, the dynamics of protonated ferrocene was studied by following the trajectories initiated at AG and MP minima with Boltzmann distribution of vibrational and rotational energies at 300 K. 50 trajectories were initiated from AG, and 45 trajectories were initiated from MP and integrated for 1.5-2 ps.

3.1.1 Dynamics of Protonated Ferrocene

Once ferrocene is protonated on one of the Cp rings (Cp1), H⁺ can hop to the Fe atom and back to the starting Cp ring (Cp1) or to the other Cp ring (Cp2). 41 of 50 trajectories initiated from agostic minimum showed H⁺ hopping between the Cp rings and Fe atom. The remaining 9 trajectories were trapped in AG for 1.5 ps. 39 of 45 trajectories initiated from metal-protonated minimum showed isomerization between AG and MP, and the remaining 7 trajectories were trapped in AG. Interestingly, none of the trajectories were trapped in MP. Most trajectories showed H⁺ hopping between the Cp rings, suggesting the existence of rapid isomerization between the two forms. In 3 trajectories initiated at AG and 11 trajectories initiated at MP, hopping of H⁺ on different carbon atoms of the same Cp ring was seen. The hopping of H⁺ between the C atoms of the ring happens via MP. In addition, most of the trajectories exhibited rotation of Cp rings relative to each other during the course of the trajectory.

The lifetimes of AG and MP were calculated by following X₁-Fe-H angle as a function of time. The lifetime distributions (Figs. 4 and S3) have a nearly exponentially decaying behavior. The population of AGs with large lifetime of 1.5 ps corresponds to trapped trajectories. However, they are expected to isomerize to MP if integrated for longer times. For trajectories initiated at AG, the computed average lifetimes for AG and MP were found to be 186 fs and 16 fs respectively, and for trajectories initiated at MP, the computed average lifetimes for AG and MP were found to be 167 fs and 17 fs respectively. This suggests that H⁺ spends most of the time attached to one of the C atoms of the Cp ring rather than Fe atom.

3.1.2 Dynamics of Protonation of Ferrocene

To understand the mechanism of protonation of ferrocene, it is important to know the initial attack of H⁺ on ferrocene (i.e., Exo or Endo attack). The reaction mechanism was investigated by following bimolecular collision trajectories. However, trajectories initiated with ferrocene and H⁺ separated by 8 Å apart, failed due to the instability of the density. Hence, to mimic the bimolecular collisions, trajectories were initiated using three partially optimized structures (Fig. S4) obtained by fixing (i) the endo C-H distance at 5 Å in AG, (ii) H⁺ on top of the Cp ring with ∠X₁-Fe-H = 4.6° and Fe-H at 6.5 Å (iii) ∠X₁-Fe-H at 41.8° and Fe-H at 7.48 Å. A total of 182 trajectories were initiated with different orientations of H⁺ about ferrocene with Boltzmann distribution of energies at 300 K and integrated typically for 0.5-1 ps. 80 of those trajectories resulted in protonation of ferrocene, and their initial orientations with respect to ferrocene are plotted in Fig. 5a.

Details of the atomistic mechanisms can be obtained following the motion of the attacking H⁺ in the trajectories. It was found that in 58 of 80 trajectories, the initial attack of H⁺ was on top of the Cp ring (Exo path), and 22 trajectories followed Endo path. Three representative trajectories showing different attacks are shown in Fig. 5b. The protonation reaction showed interesting dynamical features. 35 of the 58 trajectories that followed exo path showed hopping of H⁺ on the C atoms of the protonated Cp ring, after the initial attack of H⁺ on one of the C atoms of the ring. A representative trajectory is shown in Fig. 6a. In 23 of these 32 trajectories, after hopping, the protonated C atom transferred the endo H⁺ to the other Cp ring via MP. In the remaining 9 trajectories, H⁺ hopped between the C atoms of the Cp ring; however, the protonated ferrocene stayed in AG. Another 19 of
58 trajectories following exo path transferred the endo H\(^+\) of the protonated C atom to the other ring soon after the attack. 4 of the 58 exo-path trajectories stayed in AG for the complete integration time without hopping on the C atoms of the Cp ring. Interestingly, all the 22 trajectories that followed endo path showed similar behavior. In all the trajectories, hopping of H\(^+\) from one Cp ring to the other through MP was seen. A representative trajectory is shown in Fig. 6b.

It is interesting to investigate if the initial orientation of H\(^+\) with respect to ferrocene has any effect on the exo and endo mechanisms seen. A plot of \(\angle X_1-\text{Fe-H}\) (Fig. 5a) for the 80 trajectories shows that the initial orientation covers the full range of angles between 0° and 105°. It can be seen that the trajectories that follow exo path do not show any preference with respect to initial orientation. However, the trajectories following endo path are those that were initiated with \(\angle X-\text{Fe-H}\) between 45° and 105°, indicating a possible orientational preference for endo mechanism.

3.2 Lithiation of Ferrocene

It is of fundamental interest to understand the nature of the mechanism for the next higher electrophile, Li\(^+\). Since Li\(^+\) is a hard electrophile, it is expected that lithiation would follow the exo path. The top of the Cp ring of ferrocene has a more negative MEP value (Fig. S5) than the radial region, showing that the probability of Li\(^+\) binding in the top region is more than that in the radial region. Fig. 7 shows the PES with relative energies for lithiated ferrocene obtained at B3LYP/DZVP level of theory. Lithiation of ferrocene results in two isomers: an on-top cation-\(\pi\) complex (CP) and a metal-lithiated complex (ML) that is 7.05 kcal/mol higher in energy than CP. The geometrical parameters and relative energies of the stationary points on the PES of lithiated ferrocene are reported in Table S3.

In CP, Li atom is at the center of the Cp ring and hence equidistant (2.32 Å) from the five C atoms of the Cp ring. In ML, the Fe-Li distance is 2.46 Å, and Li atom is staggered with respect to the closest Cp ring C atoms (\(\angle \text{Li-Fe-X}_1-\text{C} = 44°\)). The MEP map (Fig. S6) shows that the positive charge is more around the Li atom. CP and ML are connected by a transition state TSe that is 23.62 kcal/mol above CP. In TSe, the Li atom lies in the plane of the Cp ring and is located perpendicular to the center of the nearest C-C bonds. Interestingly, the ML isomer can isomerize to five isoenergic symmetrical forms with Li\(^+\) atom moving about the Fe atom. Two neighboring isoenergic forms along the intrinsic reaction coordinate (IRC) are connected by a transition state (TSf) with a barrier height of 1.47 kcal/mol. The motion along the IRC connecting the isoenergetic minima (with no rotation of Cp rings relative to each other) represents a “planetary” system with Li\(^+\) atom revolving around the Fe atom. It is to be noted that each ML along the IRC can exist in five more isoenergetic isomers formed by rotation of Cp rings relative to each other and...
connected by TS\text{g} (Fig. S7) with a barrier of 1.03 kcal/mol.

3.2.1 Dynamics of Lithiated Ferrocene

Similar to protonation of ferrocene, ab initio classical trajectory simulations were performed to understand the dynamics and mechanism of lithiation of ferrocene. 25 trajectories were initiated from the transition state TS\text{f} along the IRC for planetary motion with a Boltzmann distribution of vibrational and rotational energies at 300 K and integrated typically for 1–1.5 ps. Some trajectories exhibited a complete planetary motion of Li+ around Fe atom and did not show ring rotation. In others, the planetary motion was incomplete, and they exhibited relative Cp ring rotations. During the planetary motion, Fe–Li distance oscillates about the equilibrium distance of 2.45 Å, indicating that Li+ is bound to Fe atom during the motion (Fig. S8). A set of 5 trajectories was also initiated at transition state TS\text{e} and integrated for 1.5 ps. In these trajectories, the Li+ either migrated to Fe atom and then followed a planetary motion via TS\text{f} or formed CP and stayed in the minimum until the integration time of 1.5 ps.

3.2.2 Dynamics of Lithiation of Ferrocene

To understand the atomic-level mechanism of lithiation of ferrocene and the preferred initial binding site of Li+ cation in ferrocene, bimolecular collisions between ferrocene and Li+ were followed. 80 trajectories were initiated at a relative distance of 8 Å with a Boltzmann distribution of vibrational and rotational energies of ferrocene at 300 K with initial $\angle X_1$-Fe-Li in the range [0°,90°] (Fig. 8a). The trajectories were integrated typically for 0.5–1.5 ps, and an impact parameter (b) of zero was used for effective collisions. The trajectories indicated that Li+ was quite mobile similar to H+ in protonation. Of the 80 trajectories, 67 trajectories showed an exo attack of Li+ forming CP, and the remaining 13 trajectories showed Li+ atom exhibiting endo attack forming ML. Three representative trajectories showing different attacks are shown in Fig. 8b. In 56 of those trajectories that followed exo path, the system remained in CP minimum for the integration time, and in the remaining 11 trajectories the system isomerized to ML from CP. 2 of these 11 trajectories exhibited planetary motion after ML formation. A representative trajectory is shown in Fig. 9a. The 13 trajectories that followed endo mechanism formed ML and exhibited interesting dynamics. 3 of these trajectories stayed in ML minimum for the integration time. 1 trajectory exhibited planetary motion after forming ML. In 5 of the trajectories, the system isomerized from ML to CP and remained in the CP minimum. In 2 other trajectories, the system isomerized from ML to CP and back to ML and then exhibited planetary motion. A representative trajectory is shown in Fig. 9b. A few trajectories calculated with $b = 2$ and $b = 5$ (8 each) also showed similar dynamical features and followed exo path.

The plot of the initial Li+ orientation with respect to ferrocene ($\angle X_1$-Fe-Li, Fig. 8a) shows that for those trajectories that followed exo path, $\angle X_1$-Fe-Li is distributed over the full range of $0°$–$90°$. However, the trajectories following endo path have $\angle X_1$-Fe-Li between $65°$–$90°$. Clearly, an orientational preference ($\angle X_1$-Fe-Li $>$ 65°) is seen for the endo path.

4 Conclusions

Ab initio chemical dynamics simulations were performed at B3LYP/DZVP level of theory to understand the atomic level mechanisms of protonation and lithiation of ferrocene. The results indicate that in both protonation and lithiation, the major path followed is the exo path. It was found that the exo path did not depend on initial orientation of the approaching electrophile, however, in the endo path, an orientational preference of the approaching electrophile was seen. The electrophile was found to be very mobile and hopped from the Cp ring to the metal center and vice-versa after the initial attack on ferrocene, with the metal-complex having a very short lifetime. This explains the experimental observations10,11,15 in the study of protonation of ferrocene, suggesting the coexistence of metal-protonated and agostic forms and H atom switching from one ring to another includ-
ing scrambling of H atoms in Cp rings and the difficulty in understanding the mechanism unequivocally. The major path (exo) followed in the protonation and lithiation of ferrocene, as seen in the simulations, is consistent with the observations of Cunningham for other hard electrophiles. In addition, during lithiation a planetary motion of Li atom around Fe atom was also observed.

Acknowledgements

The authors thank NISER, Bhubaneswar for computational facility. This work was partially supported by Department of Science and Technology (SR/S1/PC/0060/2010, SR/S2/RJN-49/2011 and SR/S1/IC-58/2012), India.

References