PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

Physical Chemistry Chemical Physics Accepted Manuscript

Anisotropic thermoelectric properties of layered compounds in SnX_2 (X = S, Se): A promising thermoelectric

Bao-Zhen Sun,^{ab} Zuju Ma,^a Chao He^a and Kechen Wu^{*a}

Thermoelectrics interconvert heat to electricity and are of great interest in waste heat recovery, solid-state cooling and so on. Here we assessed the potential of SnS_2 and $SnSe_2$ as a thermoelectric material at the temperature gradient from 300 to 800 K. Reflecting the crystal structure, the transport coefficients are highly anisotropic between a and c directions, in particular for the electrical conductivity. The preferred direction for both materials is *a* direction in TE application. Most strikingly, when 800 K is reached, SnS₂ can show a peak power factor (*PF*) of 15.50 μ W·cm⁻¹·K⁻² along the *a* direction, while a relatively lower value (11.72 μ W·cm⁻¹·K⁻²) is obtained in the same direction of $SnSe_2$. These values are comparable to those observed in thermoelectrics such as SnSe and SnS. At 300 K, the minimum lattice thermal conductivity (κ_{\min}) along the *a* direction is estimated to be about 0.67 and 0.55 $W \cdot m^{-1} \cdot K^{-1}$ for SnS₂ and SnSe₂, respectively, even lower than the measured lattice thermal conductivity of Bi₂Te₃ (1.28 W·m⁻¹·K⁻¹ at 300 K). The reasonable *PF* and κ_{min} suggest that both SnS₂ and SnSe₂ are potential thermoelectric materials. Indeed, the estimated peak ZT can approach 0.88 for SnSe₂ and a higher value of 0.96 for SnS₂ along the *a* direction at a carrier concentration of 1.94×10^{19} (SnSe₂) vs. 2.87×10^{19} cm⁻³ (SnS₂). The best ZT values in SnX₂ (X = S, Se) are comparable to that in Bi₂Te₃ (0.8), a typical thermoelectric material. We hope this theoretical investigation will

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, China. E-mail: wkc@fjirsm.ac.cn

^b School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China

provide useful information for further experimental and theoretical studies on optimizing the thermoelectric properties of SnX_2 materials.

Introduction

1

2

3

The use of thermoelectric (TE) materials to harvest electricity from waste heat via the Seebeck effect has become increasingly important, because of the global need for

energy production and conservation.¹⁻³ The TE efficiency of a material used in TE 4 devices is determined by the dimensionless figure of merit, $ZT = S^2 \sigma T / \kappa$, where S is 5 the Seebeck coefficient or thermopower, σ the electrical conductivity, T the absolute 6 temperature, and κ the thermal conductivity ($\kappa = \kappa_L + \kappa_E$, where κ_L and κ_E are the 7 lattice and electronic contributions, respectively). By definition, we see that a large 8 Seebeck coefficient, a high electrical conductivity, and a low thermal conductivity are 9 needed to achieve a high ZT. In the past few years, pursuing high ZT has been the 10 11 focus of TE studies. However, for practical applications, efficiency is not the only concern, and toxicity, price and density of the material are issues that must also be 12 taken into account. Thus, one of the current main interests is to develop new, 13 14 non-toxic and cheap thermoelectric materials.

Because of their anisotropic character, layered compounds appear to be attractive targets in the quest for TE materials. Indeed, some of them (for example $A_2^V B_3^{VI}$,⁴⁻⁶ $A^{IV}B^{VI,7-10}$ and layered Co oxides¹¹⁻¹³) display interesting thermoelectric properties. This holds especially true for SnSe which exhibits an outstanding *ZT* value of ~2.6 at 923 K.⁷ This is also well evidenced in the layered Bi₂Te₃-based materials which are the best TE materials around room temperature.¹⁴ In layered structure, an interesting feature is that the layer and the interlayer spacing can often be modified independently, 1 and hence leading to the possibility of tuning the electronic and thermal transport 2 properties adequately. This is an advantageous situation for thermoelectrics. What's more, the bonds between the layers are extremely weak (due to weak van der Waal's 3 forces). It is beneficial to the low thermal conductivity. For instance, this has been 4 proven in the layered compounds such as (Na, Ca)Co₂O₄,¹⁵ AgCrSe₂,¹⁶ and SnSe.^{7,17} 5 For these reasons, the TE potential of layered metal dichalcogenides MX₂ (M is a 6 7 metal atom like Sn, Ti, Zr, or Hf and X is a chalcogen like S, Se, or Te) has 8 increasingly attracted attention.

The family of MX₂ have been investigated for a long period and are known to 9 exhibit several interesting physical properties as well as find innovative practical 10 applications, such as solid lubricant, photovoltaics, electrochemical fuel cells, etc.¹⁸⁻²⁰ 11 MX₂ compounds typically grow in layered crystals similar to graphite and the 12 interaction between the layers is weak van der Waals type and, therefore, they can be 13 easily intercalated by various guest species. This will greatly affect their structural and 14 15 electronic properties, which in turn means that the TE properties of these materials can be optimized by controlling the type and the concentration of the dopants.²¹ 16 Recently, several studies have demonstrated the great TE potential of MX_2 17 compounds.^{16, 22-24} Typical examples include the dichalcogenides MX_2 (M = Mo, W, 18 Ti; X = S, Se, Te), which are good candidates for thermoelectric applications because 19 of their high Seebeck coefficients and low thermal conductivity.^{23, 25, 26} For example, 20 Guilmeau E. et al.²⁴ reported that TiS₂ exhibits high power factor value of 1.7 21 mW·m⁻¹·K⁻² at 325 K. Most recently, Nunna R. et al.²⁷ further proposed that the ZT 22

Physical Chemistry Chemical Physics

value increases with temperature and reaches a maximum value of 0.54 at 700 K for Cu_{0.05}TiS_{1.5}Se_{0.5}, the highest value so far observed in layered titanium chalcogenides. Naidu A. *et al.*²⁸ also interestingly found that WS₂ is an excellent high-temperature thermoelectric material. The maximal *ZT* values of 0.90 and 0.77 for *n*-type and *p*-type WS₂, respectively, are obtained at 1500 K and are comparable to the best thermoelectric materials currently used in devices.²⁹ Further enhancement to *ZT* is anticipated for these materials in future research.

SnS₂ and SnSe₂ are another interesting MX₂ compounds, and both crystallize in 8 hexagonal close-packed CdI₂-type layered structure, hence, it may be of interest to 9 study the TE properties of SnS₂ and SnSe₂. In addition, SnS₂ and SnSe₂ offer several 10 advantages for practical applications, such as non-toxicity, low cost. However, only 11 12 limited information is now available concerning the TE properties of SnS₂ and SnSe₂.^{30, 31} The optimal temperature and doping concentration have not been 13 determined experimentally and theoretically. In either case, thermal conductivity data 14 15 are lacking because of difficulties in the handling the lattice thermal conductivity. To access the potential of SnS_2 and SnS_2 as a thermoelectric material, in this work, we 16 theoretically examine the doping and temperature dependence of TE properties of 17 18 SnX_2 (X=S, Se) by using first-principles band structure calculations and Boltzmann transport theory.³² In particular, the anisotropy of transport coefficients is discussed 19 and the lattice thermal conductivity is evaluated using the approach developed by 20 Cahill.³³ Our results may serve as a guide on how to optimize the thermoelectric 21 properties of these compounds. 22

Physical Chemistry Chemical Physics Accepted Manuscript

1 Computational detail

Density functional theory (DFT) based on the Vienna ab-initio Simulation Package 2 (VASP)³⁴ is used with plane wave energy up to 400 eV in the expansion of the 3 electronic wave function. For the structure optimization and the electronic structure 4 calculations we employ the Heyd-Scuseria-Ernzerhof (HSE03) hybrid functional.³⁵ 5 6 This methodology has been shown to provide good band structure predictions. The valence electron configurations considered in this calculation are $Sn(4d^{10}5s^25p^2)$, 7 $S(3s^23p^4)$, and $Se(4s^24p^4)$, respectively. The lattice vectors and atomic positions are 8 fully relaxed by minimizing the quantum mechanical stresses and forces. The 9 convergence for energy is chosen as 10^{-6} eV between two steps. The structural 10 optimization is obtained until the Hellman-Feynman forces acting on each atom are 11 less than 0.01 eV/Å. A Monkhorst-Pack k-point mesh of $6 \times 6 \times 4$ are used to sample the 12 Brillouin zones in the structural optimization and self-consistent calculation. 13

14 Transport calculations are performed through solving the Boltzmann Transport Equations within the rigid band and constant relaxation-time (τ) approximations as 15 implemented in BOLTZTRAP program.³² Rigid band approximation (RBA) is the 16 assumption that the band structure of the host is unchanged by doping, only the 17 chemical potential changes with doping concentration and of course temperature. 18 RBA usually overestimates the Seebeck coefficient and the power factor.³⁶ The 19 20 constant relaxation-time approximation assumes τ as energy-independent. The 21 advantage of using this approximation is that the Seebeck coefficient can be calculated without adjustable parameters. τ has a complex T dependence depending 22

1 on the scattering mechanism. Sources of scattering in semiconductors are ionized impurities, neutral impurities, and electron-phonon interaction (acoustic phonon 2 scattering, optical phonon scattering, and piezoelectric scattering), etc. τ is directly 3 proportional to the temperature in ionized impurity scattering whereas independent of 4 the temperature in neutral impurity scattering. τ will decrease with temperature if the 5 6 scattering is dominated by an electron-phonon interaction (the primary scattering mechanism in heavily doped semiconductors). In Boltzmann method, all kinds of 7 8 scattering processes can be simply introduced by relaxation time approximation. Its 9 prime advantage is that detailed assumptions about the nature of the scattering are not necessary. The calculation of τ is a very difficult task. Typically, τ is treated as a 10 constant for simplicity and convenience.³⁷⁻³⁹ Choosing a constant for τ is an 11 approximation for the real scattering mechanism. This approximation might result in 12 13 the overestimations in the electrical conductivity and therefore in ZT predictions. It is difficult to reliably predict the temperature dependence of transport coefficients under 14 15 this assumption. However to obtain the electrical conductivity and ZT the constant relaxation-time approximation is more feasible. Nevertheless, this *ab initio* approach 16 has been successfully used in rationalizing and predicting the optimal doping level of 17 known compounds and recently has been used to screen potential candidates for TE 18 materials. 19

A more dense *k*-point grid of $12 \times 12 \times 8$ is used for transport calculations to guarantee convergence and to obtain accurate carrier group velocities, which are essential for determining the transport properties. *ZT* can be evaluated by

$$ZT = \frac{S^2 \sigma T}{\kappa_{\rm E} + \kappa_{\rm L}} = \frac{S^2}{L_0 + \frac{\kappa_{\rm L}}{\sigma T}}$$
(1)

where $L_0 = 2.45 \times 10^{-8} \text{ W} \cdot \Omega \cdot \text{K}^{-2}$ is the Lorentz number. Here, κ_L adopted the value of the minimum lattice thermal conductivity, which can be calculated by Cahill's model³³:

$$\kappa_{\min} = \left(\frac{\pi}{6}\right)^{1/3} \kappa_{\rm B} n^{2/3} \sum_{i} v_i \left(\frac{T}{\Theta_i}\right)^2 \int_0^{\Theta_i/T} \frac{x^3 e^x}{(e^x - 1)^2} \mathrm{d}x \tag{2}$$

6 where ν , Θ and *n* are the phonon velocity, Debye temperature and the number density 7 of atoms, respectively. The values of ν and Θ are calculated from the phonon 8 dispersion. This approach has been successfully applied to estimate the κ_{min} of several 9 materials, such as SnSe⁷, SrTiO₃⁴⁰, In₂O₃-based compounds⁴¹.

Phonon dispersion is calculated using the supercell (192 atoms in the SnS_2 supercell and 240 atoms in the $SnSe_2$ supercell) force constant method. The harmonic second order interatomic force constants (IFCs) were obtained within the linear response framework by employing the density functional perturbation theory (DFPT)⁴² as implemented in the VASP code. Then we could get the phonon dispersion of SnS_2 and $SnSe_2$ using the PHONOPY package⁴³ based on the harmonic second order IFCs.

Results and discussion

18 **3.1 Geometrical structure**

19 SnS_2 and $SnSe_2$ often crystallize in different polytypes. The usual and stable polytype

Physical Chemistry Chemical Physics Accepted Manuscript

Physical Chemistry Chemical Physics

1	is 2H, <i>i.e.</i> a hexagonal unit cell consisting of two layers. ⁴⁴ Therefore, type 2H was
2	chosen to model the SnX_2 (X =S, Se) crystals in our calculations. It has an anisotropic
3	structure with a trigonal space group, $P\overline{3}m1$. Within one layer, a plane of Sn atoms is
4	sandwiched between two S/Se planes with strong covalent metal-anion bonds in the
5	a- b plane. The formed S(Se)-Sn-S(Se) layers are stacked by weak van der Waals
6	interactions along the c axis. Fig. 1 shows the optimized SnX ₂ structures. In the
7	crystal structure of SnX_2 , Sn atoms occupy the 1a (0 0 0) site, S atoms at 2d (0.333
8	0.667 0.224) site, and Se atoms at the 2d (0.333 0.667 0.234) site. The bond length of
9	Sn-S vs. Sn-Se is calculated to be 2.58 vs. 2.73 Å, which matches the corresponding
10	experimental value $(2.57 \text{ vs. } 2.69 \text{ Å})^{45}$. Clearly, the Sn-S bond length is smaller than
11	that of Sn-Se, as S has a smaller atomic radius. It brings about the corresponding
12	weaker intra-layer bonding for SnSe2. As is known, weaker bonding leads to lower
13	thermal conductivity. ⁴⁶ Thus, lower thermal conductivity along the a axis could be
14	anticipated for $SnSe_2$. In addition, the optimized interlayer separations for SnS_2 and
15	SnSe ₂ are approximately identical and significantly exceeds 3 Å, suggestive of weak
16	bonding and hence soft phonons, favorable for TE performance.

Fig. 1 Crystal structures of SnX_2 (space group P-3m1) (a) SnS_2 ; (b) $SnSe_2$ The unit of 2 interatomic distance is in Å. Here, grey, yellow and green colors represent Sn, S and 3 4 Se atoms, respectively. 5

3.2 Electronic structure 6

7 To study the TE properties, an accurate electronic structure is required. We calculated the band gap of SnS₂ and SnSe₂ with PBE, HSE03, and HSE06 functionals, listed in 8 Table 1. From the PBE calculations, $SnS_2(SnSe_2)$ is found to have an indirect band 9 gap of 1.55 (0.71) eV. However, the band gap calculated through the HSE03 10 functional is found to be 2.04 (1.09) eV, which is closer to the experimental value⁴⁷ 11 compared with the corresponding gap from HSE06 functional (2.53 and 1.48 eV, 12 respectively). Hence, here onward we will discuss only the HSE03 results. The band 13 dispersion plots of SnS₂ and SnSe₂ calculated through the HSE03 method are shown 14 in Fig. S1. The band gap for SnSe₂ is smaller than that for SnS₂, which is consistent 15 with our common expectation that the selenides have smaller band gaps than the 16

1 corresponding sulfides.

2

- **Table 1** Calculated band gap results of SnX_2 (X = S, Se) systems using PBE, HSE03,
- 4 and HSE06 methods

		band g	ap (eV)	
System	PBE	HSE03	HSE06	Expt.
SnS ₂	1.55	2.04	2.53	2.07 (ref. 47)
SnSe ₂	0.71	1.09	1.48	0.97 (ref. 47)

5

In addition, we also calculated the electron effective masses (m^*) for SnS₂ and SnSe₂ 6 in two different directions of the reciprocal space by fitting the band structure around 7 the CBM using the equation $m^* = \hbar^2 / (d^2 E/dk^2)$. In the $G \to A$ direction (c axis), 8 9 the calculated effective masses are 0.43 m_0 (m_0 is the electron mass) for SnS₂ and 0.28 m_0 for SnSe₂, while in the $G \rightarrow K$ direction (a axis), values of 0.61 m_0 and 0.52 m_0 10 were found for SnS_2 and $SnSe_2$, respectively. The electron effective mass of $SnSe_2$ 11 along the *a* axis is estimated as 0.4±0.2 m_0 by Lee *et al.*,⁴⁸ in agreement with our 12 predicted value for SnSe₂ in the *a* direction. A high effective mass translates to larger 13 Seebeck coefficient. For both materials, the higher value for m^* in the $G \to K$ 14 direction compared to that in the $G \rightarrow A$ direction indicates improved Seebeck 15 coefficient from c to a direction. Likewise, in both directions, the Seebeck coefficient 16 can be increased by replacing Se by S. 17

Since the electron states around the Fermi level have an important effect on the TE transport properties of SnS_2 and $SnSe_2$, we calculated their total and partial density of states (TDOS and PDOS) and draw them in Fig. 2. Due to the similar crystalline structure and bonding nature, the total DOS of SnS_2 and $SnSe_2$ has similar shape.

1	From Fig. 2(a1) and (b1), we can see that the conduction band (CB) is much
2	delocalized than the valence band (VB) near the Fermi level, which is indicative of a
3	higher electrical conductivity for n -type doping. Moreover, experimental studies ⁴⁷⁻⁵⁰
4	revealed that both SnS_2 and $SnSe_2$ usually exhibit <i>n</i> -type conduction and so only
5	<i>n</i> -type doping was considered in the following TE properties. From the partial DOS, it
6	is found that for both compounds the VB from -5 eV to Fermi level is composed of p
7	orbital of the chalcogen (S or Se), while the CB near the Fermi level is mainly
8	dominated by Sn 5s state and chalcogen p states. This means the electrical
9	conductivity and Seebeck coefficient for <i>n</i> -type are primarily determined by Sn 5s and
10	chalcogen p electrons. Generally, large Seebeck coefficients are usually associated
11	with a large DOS peak. As seen in Fig. 2, moving from SnS_2 to $SnSe_2$, the peaks
12	becomes lower in the CB near Fermi level, which will make the Seebeck coefficient
13	decrease from SnS_2 to $SnSe_2$ for <i>n</i> -type doping. In the CB of both materials, we also
14	note the increase of the chalcogen p-orbital contribution from p_z to $p_x,$ which is
15	probably related to the increase in the Seebeck coefficient from p_z to p_x . In other
16	words, a direction has a higher Seebeck coefficient than c direction for n -type doping
17	of both materials. These observations support the above results obtained by analyzing
18	electron effective mass. We will observe these points in the following section.

Physical Chemistry Chemical Physics Accepted Manuscri

2

1

Fig. 2 Calculated total DOS and partial DOS for (a) SnS₂ and (b) SnSe₂ within the
energy range -8 to 8 eV. Top of the valence band is set to zero.

1 3.3 Thermoelectric properties

Since, as mentioned previously, the anisotropy and anharmonicity is a significant 2 3 issue for layered materials. The anisotropic transport properties of SnS₂ and SnSe₂ are calculated based on the calculated electronic structure using the Boltzmann theory. 4 The carrier concentration greatly affects S and σ , so we simulated doping using the 5 rigid band approximation. The Seebeck coefficients along the a and c directions are 6 7 shown in Fig. 3. Fig. 3(a) and (c) shows the anisotropy of S of SnS_2 at different carrier concentrations and at different temperatures. Clearly, the S shows a near linear 8 9 decrease with increasing carrier concentration but exhibits an increasing trend with temperature. Also, the values of S are very different along the a and c directions. The 10 values along the a direction are larger than those along the c direction, which 11 12 confirms the conclusion obtained from DOS and effective mass analysis. Such anisotropy is affected by temperature and carrier concentration in different ways (see 13 Fig. 3(c)). At high carrier concentration, for example, the anisotropy at $n = 10^{20}$ cm⁻³ 14 nearly keeps unchanged with temperature. While at mid-and-low carrier 15 concentrations, the anisotropy becomes larger and larger with rising temperature. 16

Fig. 3 Seebeck coefficients of SnS_2 and $SnSe_2$ along the *a* (S_a) and *c* (S_c) directions as a function of carrier concentration and temperature ranging from 300 K to 800 K.

6 For SnSe₂ (see Fig. 3(b)), due to smaller band gap, the bipolar conduction starts to play a role below $\sim 2 \times 10^{17}$ cm⁻³ for 800 K and above $\sim 4 \times 10^{19}$ cm⁻³ for 300 K and 400 7 K. However, they do not enter into the regime of probable optimal doping. Optimal 8 doping ranges are given as $8.61 \times 10^{18} - 2.03 \times 10^{19}$ cm⁻³ for *a* direction while 9 1.71×10^{19} -2.47×10¹⁹ cm⁻³ for c direction (see Fig. 7(b)). Therefore, the ZT values for 10 SnSe₂ will not be affected by the bipolar effect in the optimal doping range. The big 11 12 difference between $SnSe_2$ and SnS_2 is that $SnSe_2$ shows a smaller anisotropy in the Seebeck coefficient. As seen in Fig. 3(d), at mid-and-low carrier concentration, the 13 anisotropy almost disappears below 500 K and becomes larger above 500 K. Specially, 14 the S at $n = 10^{17}$ cm⁻³ increases with temperature below 700 K and suddenly turns to 15

1	decrease at 800 K due to the bipolar effect. At high doping levels, the anisotropy of S
2	shows an overall increase with increasing temperature up to 800 K.

3	The calculated result σ/τ includes the scattering rate τ^{-1} . To obtain the particular value
4	of σ , we used the experimental data in ref. 47 to derive the value of τ . Comparing the
5	calculated electrical conductivities (per relaxation time) at room temperature with the
6	reported experimental conductivities of SnS_2 and $SnSe_2$ samples (2.38×10 ⁻³ and 100
7	$\Omega^{-1} \cdot m^{-1}$, ⁵¹ respectively) yields relaxation times of about 1.37 and 1.28 fs, respectively,
8	which agree with the typical relaxation time values for semiconductors. We then
9	calculated σ by $\sigma / \tau \times \tau$. For SnS ₂ , the calculated σ is 15.33 $\Omega^{-1} \cdot m^{-1}$ at 300 K and at a
10	carrier concentration of 3.2×10^{16} cm ⁻³ . Agreement between calculated value and
11	experiment $(16.56 \ \Omega^{-1} \cdot m^{-1})^{52}$ is quite good. The resulting electrical conductivities
12	along the <i>a</i> and <i>c</i> directions are shown in Fig. 4. For both materials, the value of σ is
13	little affected by temperature in both directions. For example, for SnS_2 at $n = 10^{19}$
14	cm ⁻³ , the σ along the <i>c</i> direction reduces slightly from 493.65 to 305.30 Ω^{-1} ·m ⁻¹ for
15	the temperature from 300 K up to 800 K. However, the doping dependence of σ is
16	more pronounced. The values of σ in both directions increase greatly with the
17	increase in carrier concentration. Taking SnS_2 as an example, as the carrier
18	concentration increases from 10^{17} to 10^{20} cm ⁻³ , the σ at 800 K varies rapidly from
19	68.38 to $66.20 \times 10^3 \Omega^{-1} \cdot \text{m}^{-1}$ for <i>a</i> direction while from 2.97 to $2.10 \times 10^3 \Omega^{-1} \cdot \text{m}^{-1}$ for
20	c direction. For SnS_2 , Madelung ⁵³ and Julier ⁵¹ also reported that the electrical
21	conductivities at 300 K increase from 2.38×10^{-3} to 90 $\Omega^{-1} \cdot m^{-1}$ with carrier
22	concentrations from 10^{13} to 2×10^{17} cm ⁻³ .

Physical Chemistry Chemical Physics Accepted Manuscri

1

3

2

Fig. 4 Electrical conductivities of SnS_2 and $SnSe_2$ along the *a* (σ_a) and *c* (σ_c) directions as a function of carrier concentration in the temperature range of 300-800 K.

1	Compared to the anisotropy of Seebeck coefficient, the electrical conductivity
2	anisotropy tends to be larger. At a given temperature and carrier concentration, the
3	value of σ along the <i>a</i> direction is much greater than that along the <i>c</i> direction due to
4	the weaker interactions between layers in the c direction. For example, for SnS_2 at $T =$
5	300 K and $n = 10^{19}$ cm ⁻³ , the σ along the <i>a</i> and <i>c</i> directions is 7.62×10^3 and 4.94×10^3
6	$10^2 \ \Omega^{-1} \cdot m^{-1}$, respectively. Experimental measurements ⁵⁴⁻⁵⁶ also showed <i>a</i> axis is more
7	conducting than <i>c</i> axis. The anisotropy ratio σ_a/σ_c is found to be greater for SnS ₂ than
8	that for SnSe ₂ , which agrees with our results. In our case, it is found that the
9	anisotropy ratio σ_a/σ_c is 12.80 for SnS ₂ and 6.92 for SnSe ₂ when the carrier
10	concentration is 10^{17} cm ⁻³ and the temperature is 300 K. This means SnS ₂ has larger
11	electrical conductivity anisotropy than SnSe ₂ . However, the temperature has little
12	effect on the electrical conductivity anisotropy (see Fig. S2). For SnS ₂ , compared with
13	SnSe ₂ , it has lower values of σ but higher Seebeck coefficients in both directions at a
14	given temperature and carrier concentration. The trend can be explained by the fact
15	that SnS ₂ has larger electron effective masses than SnSe ₂ in both directions.

16 Under a given temperature difference, the ability of a material to produce useful 17 electrical power is quantified by its power factor (*PF*): $PF = S^2 \sigma$. We have calculated 18 this parameter as a function of the carrier concentration and temperature and plotted 19 the results in Fig. 5. As shown in Fig. 5, for both materials, the *PF* along the *a* 20 direction is much greater than that along the *c* direction. This behavior agrees 21 reasonably well with the magnitude of *S* and σ in *a* and *c* directions. As a 22 consequence, the TE properties of SnX₂ are dominated by the *PF* along the *a*

1	direction. In both directions, there is an optimal carrier concentration to yield the peak
2	PF, which grows with rising temperature mainly because of larger Seebeck
3	coefficient at higher temperature. At 800 K, this parameter along the a axis reaches
4	the values 15.50×10^{-4} and 11.72×10^{-4} W·m ⁻¹ ·k ⁻² at the carrier concentrations of 8.59
5	\times 10 ¹⁹ and 7.21 \times 10 ¹⁹ cm ⁻³ for SnS ₂ and SnSe ₂ , respectively. Compared to typical TE
6	material Bi ₂ Te ₃ (40 × 10 ⁻⁴ W·m ⁻¹ ·k ⁻² in the <i>ab</i> plane) ¹² , the power factors obtained in
7	SnS_2 and $SnSe_2$ crystals are lower, but are comparable to those found in other
8	thermoelectrics with layered structure (for example, $SnSe^7$ and $SnS^{8, 46}$). On the other
9	hand, Fig. 5 shows that as the temperature increases, the difference of peak PF values
10	between the two directions grows.

Fig. 5 Power factors (S²σ) of SnS₂ and SnSe₂ along the *a* (*PF*_a) and *c* (*PF*_c) directions
as a function of carrier concentration in the temperature range of 300-800 K.

5 The minimum lattice thermal conductivities can be evaluated using the approach developed by Cahill, as illustrated by Eqs. (2). This model assumes that the 6 conductivity limited phonon-phonon scattering 7 is not by but by а temperature-independent structural scattering mechanism. In this treatment, the 8 9 predicted thermal conductivity shows a weak temperature-dependence. Because the 10 structures of SnS₂ and SnSe₂ are similar to WSe₂, it might be more appropriate to 11 calculate the thermal conductivity by the methods used in WSe₂-type systems. At present, molecular dynamics (MD) simulation and ShengBTE methods are applied to 12 calculate the thermal conductivities of WSe2-type systems.^{28, 57, 58} However, the 13 approach of MD simulation suffers from problems of low accuracy and lack of 14

Physical Chemistry Chemical Physics Accepted Manuscript

1 transferability, since an appropriate potential for each compound must be developed. 2 ShengBTE can be applied to pursue the accurate prediction of the lattice thermal conductivity without any assumption about phonon lifetimes, including the 3 dependence on the phonon mean free path. The more accurate prediction for thermal 4 conductivity is favorite. In our next work, we will apply the available computational 5 6 code for the prediction of the lattice thermal conductivity. Nevertheless, the minimum 7 lattice thermal conductivity is an important and useful referenced parameter for 8 experiments even it might be not able to be fully obtained by the experiments.

9 The temperature-dependent of theoretically predicted minimal lattice thermal conductivity (κ_{min}) of SnS₂ and SnSe₂ is depicted in Fig. 6. For both materials, the 10 lattice thermal conductivity is obviously anisotropic that the trend of κ_{\min} in the two 11 directions is always in the order: $\kappa_{\min}^{\ a} > \kappa_{\min}^{\ c}$. Such anisotropy could be attributed to 12 13 the anisotropic structures of the two materials. The acoustic modes along the $G \rightarrow A$ Brillouin zone direction (c axis) are significantly softer (with lower Debye 14 15 temperatures and smaller phonon velocities; see Fig. S3 and Table S1) than those along $G \rightarrow K$ Brillouin zone direction (a axis). These softer modes along the c axis 16 17 lead to smaller lattice thermal conductivity in this direction. For both directions, $SnSe_2$ has lower values of κ_{min} than SnS_2 , also determined by softer acoustic modes in 18 19 SnSe₂ than in SnS₂. Similar trend is also found in a comparison between SnSe and SnS. At 300 K, for SnS₂, the values of κ_{\min} are (in W·m⁻¹·K⁻¹) ~0.67 and ~0.47 along 20 21 the a and c axis directions, respectively; for $SnSe_2$, the values decrease separately to 0.55 and 0.42 W·m⁻¹·K⁻¹. Unfortunately, we cannot find the corresponding 22

Physical Chemistry Chemical Physics

experimental data for a comparison. However, these values are comparable to the measured κ_L in SnSe (about 0.7 W·m⁻¹·K⁻¹ at 300 K)⁷ and even lower than that in Bi₂Te₃ (about 1.28 W·m⁻¹·K⁻¹ at 300 K)⁵⁹. For both SnS₂ and SnSe₂, the κ_{min} increases slowly with increasing temperature along the *a* direction whereas almost hold the same values along the *c* directions. Considering SnX₂ possesses large power factor and low thermal conductivity, SnX₂ may serve as a new potential candidate for TE applications.

8

9

Fig. 6 Calculated minimum lattice thermal conductivities for *a* and *c* directions in SnX_2 (X = S, Se) as a function of temperature ranging from 300 K to 800 K.

12

Using the above calculated minimum lattice thermal conductivity of SnX_2 , we were able to make an estimate of *ZT* (see Fig. 7). Fig. 7(a) and (b) shows the

1	dependence of ZT on the carrier concentration for SnS_2 and $SnSe_2$. The anisotropy of
2	S, σ , $\kappa_{\rm E}$ and $\kappa_{\rm L}$ in SnX ₂ crystals inevitably results in the anisotropy of ZT. Indeed, ZT
3	exhibits a strong anisotropy for both materials. As mentioned above, the electronic
4	conductivity along the a axis can be substantially greater than that along the c axis.
5	This is enough to compensate for a lattice thermal conductivity along the c axis that is
6	about 0.2 W·m ⁻¹ ·K ⁻¹ lower than that along the <i>a</i> axis. It induces remarkably higher <i>ZT</i>
7	values in the a direction. In Fig. 7(a) and (b) it is easily found that the ZT value can be
8	highly influenced by carrier concentration. The ZT value first increases with the
9	carrier concentration, reaches an optimal value, and then decreases. For SnS_2 , the
10	peak ZT value increases from 0.19 to 0.96 along the a axis while rises from 0.02 to
11	0.05 along the c axis for temperature from 300 K up to 800 K. For SnSe ₂ , compared
12	with SnS_2 , the optimal ZT value is slightly lower in the <i>a</i> direction whereas slightly
13	higher in the c direction, which ranges from 0.15 to 0.88 for the former and varies
14	from 0.04 to 0.17 for the latter in the 300-800 K temperature range. The ZT values
15	along the c axis are much lower than those along the a axis, in particularly for SnS_2 .
16	Therefore, a direction of both materials is a preferred direction for TE application. In
17	the preferred direction, the highest peak ZT value is predicted to be 0.96 for SnS_2 and
18	0.88 for SnSe ₂ when $n = 2.87 \times 10^{19}$ cm ⁻³ and $n = 1.94 \times 10^{19}$ cm ⁻³ , respectively. Such
19	doping concentration is probably experimentally controllable.

 (ZT_a) and $c (ZT_c)$ directions in SnX₂ as a function of temperature ranging from 300 to

800 K, (c) is for SnS₂ and (d) for SnSe₂.

1 The temperature dependence of ZT for SnS_2 and $SnSe_2$ at four different carrier concentrations i.e. 10^{17} , 10^{18} , 10^{19} and 10^{20} cm⁻³, respectively, is plotted in Fig. 7(c) 2 and (d). As shown in Fig. 7(c) and (d), at the same carrier concentration, the ZT values 3 for both materials in both directions exhibit a linear climb as temperature increases in 4 the 300-800 K temperature range. For example, the ZT value of SnS_2 at $n = 10^{19}$ cm⁻³ 5 increases from 0.18 for 300 K to 0.79 for 800 K. Also, its anisotropy becomes 6 7 stronger and stronger with temperature. Most interestingly, as temperature increases, the ZT and its anisotropy increases at a faster rate at mid carrier concentration and a 8 slower rate at high carrier concentration. For instance, the ZT value at $n = 10^{19}$ cm⁻³ 9 increases faster with temperature than that at $n = 10^{20}$ cm⁻³. All above-mentioned 10 results undoubtedly reveal that the ZT value for SnX_2 compound can be improved by 11 12 tuning temperature and carrier concentration.

The predicted *ZT* values in SnX_2 are comparable to that of the commercial TE material Bi₂Te₃ (about 0.8). Compared with reported MX₂ compounds, the *ZT* value in SnX₂ is remarkably lower than those found in *n*-type 1TL-MoS₂ and 2TL-WSe₂ (about 1.6 and 2.1, respectively⁶⁰) but higher than other MX₂ compounds such as TiS₂, TiSe₂, and ZrSe₂. For example, The *ZT* reaches a maximum value of 0.54 at 700 K for Cu_{0.05}TiS_{1.5}Se_{0.5}, the highest value so far observed in layered titanium chalcogenides.²⁷ However, the best *ZT* value is only 0.25 for Li-intercalated ZrSe₂.⁶¹

20 **Conclusions**

In conclusion, we have systematically investigated the crystal structure, electronic structure and anisotropic thermoelectric properties of SnX_2 (X = S or Se) via

1	first-principles method. The results reveal that the anisotropic structure of layered
2	SnX ₂ compound brings about the anisotropy of transport coefficients, which behaves
3	in different ways. For SnS ₂ , the anisotropy of Seebeck coefficient is little affected by
4	temperature at high carrier concentration whereas becomes larger and larger at
5	mid-and-low carrier concentrations. For SnSe ₂ , differently, at high doping levels, the
6	Seebeck coefficient anisotropy shows an overall increase with increasing temperature
7	up to 800 K. At mid-and-low carrier concentration, it almost disappears below 500 K
8	and tends to be higher above 500 K. Our calculations also suggest the temperature has
9	little effect on the electrical conductivity and hence its anisotropy. The remarkably
10	greater electrical conductivity in the a direction along with the corresponding higher
11	Seebeck coefficient induces larger power factor in this direction. In the a direction,
12	the peak <i>PF</i> can reach 15.50×10^{-4} and 11.72×10^{-4} W·m ⁻¹ ·k ⁻² for SnS ₂ and SnSe ₂ ,
13	respectively. The values are almost equal to those found in SnSe and SnS. At 300 K,
14	the predicted minimum lattice thermal conductivities along the a axis are (in
15	$W \cdot m^{-1} \cdot K^{-1}$) about 0.67 and 0.55 for SnS ₂ and SnSe ₂ , respectively. Moreover, for both
16	materials, the parameter only increases slowly with temperature. The large peak PF
17	and low lattice thermal conductivity are favorable for producing good thermoelectric
18	performance along the <i>a</i> direction. In this direction, $SnSe_2$ can show a peak <i>ZT</i> value
19	of 0.88 at 800 K when the carrier concentration reaches 1.94×10^{19} cm ⁻³ . For SnS ₂ , an
20	even higher ZT value of 0.96 can be obtained at the same temperature when the carrier
21	concentration approaches 2.87×10^{19} cm ⁻³ . The values of this parameter in SnX ₂ (X =
22	S, Se) are comparable to the typical ZT values 0.8 of Bi_2Te_3 . Therefore, these layered

Physical Chemistry Chemical Physics Accepted Manuscript

metal dichalcogenides would have promising prospects for thermoelectric
applications. Further deeper theoretical and experimental studies are required to
explore this class of materials.

4

5 Acknowledgments

This work was supported by the China Postdoctoral Science Foundation 6 7 (2014M551848), NSFC project (No: 21303025 and 91122015). B.-Z. Sun thanks the Science Foundation 8 support from the Natural of Guangxi province (2014GXNSFBA118029), and the Scientific Research Foundation of Guangxi 9 University (XBZ120059). 10

11

12 Notes and references

- 13 1. F. J. DiSalvo, *Science*, 1999, **285**, 703-706.
- 14 2. L. E. Bell, *Science*, 2008, **321**, 1457-1461.
- 15 3. M. W. Gaultois, T. D. Sparks, C. K. H. Borg, R. Seshadri, W. D. Bonificio and D. R.
- 16 Clarke, *Chem Mater*, 2013, **25**, 2911-2920.
- 17 4. D. Parker and D. J. Singh, *Phys Rev X*, 2011, 1.
- 18 5. X. Yan, B. Poudel, Y. Ma, W. S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen and Z.
- 19 F. Ren, *Nano Lett*, 2010, **10**, 3373-3378.
- 20 6. X. Tang, W. Xie, H. Li, W. Zhao, Q. Zhang and M. Niino, Appl Phys Lett, 2007, 90,
- **21** 012102.
- 22 7. L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid and
- 23 M. G. Kanatzidis, *Nature*, 2014, **508**, 373-377.

- 1 8. Q. Tan, L. D. Zhao, J. F. Li, C. F. Wu, T. R. Wei, Z. B. Xing and M. G. Kanatzidis, J
- 2 *Mater Chem A*, 2014, **2**, 17302-17306.
- 3 9. J. M. Skelton, S. C. Parker, A. Togo, I. Tanaka and A. Walsh, *Phys Rev B*, 2014, 89.
- 4 10. H. Wang, Y. Pei, A. D. LaLonde and G. J. Snyder, *Adv Mater*, 2011, 23, 1366-1370.
- 5 11. M. Lee, L. Viciu, L. Li, Y. Wang, M. L. Foo, S. Watauchi, R. A. Pascal Jr, R. J. Cava and
- 6 N. P. Ong, *Nat Mater*, 2006, **5**, 537-540.
- 7 12. I. Terasaki, Y. Sasago and K. Uchinokura, *Phys Rev B*, 1997, **56**, R12685-R12687.
- 8 13. F. Ryoji, M. Ichiro, I. Hiroshi, T. Tsunehiro, M. Uichiro and S. Satoshi, Jpn J Appl Phys,
- 9 2000, **39**, L1127.
- 10 14. W. Xie, J. He, H. J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J. R. D. Copley, C. M.
- 11 Brown, Q. Zhang and T. M. Tritt, *Nano Lett*, 2010, **10**, 3283-3289.
- 12 15. K. Takahata, Y. Iguchi, D. Tanaka, T. Itoh and I. Terasaki, *Phys Rev B*, 2000, **61**, 12551.
- 13 16. M. Antoine, G. Emmanuel, G. Franck, B. Yohann and H. Vincent, Sci Technol Adv Mater,
- **14** 2012, **13**, 053003.
- 15 17. J. Carrete, N. Mingo and S. Curtarolo, *Appl Phys Lett*, 2014, **105**, 101907.
- 16 18. J. Wilson and A. Yoffe, *Adv Phys*, 1969, **18**, 193-335.
- 17 19. K. Rossnagel, J Phys: Condens Matter, 2011, 23, 213001.
- 18 20. L. Rapoport, N. Fleischer and R. Tenne, *J Mater Chem*, 2005, **15**, 1782-1788.
- 19 21. A. V. Kuranov, V. G. Pleshchev, A. N. Titov, N. V. Baranov and L. S. Krasavin, Phys
- 20 *Solid State*, 2000, **42**, 2089-2092.
- 21 22. F. Gascoin, N. Raghavendra, E. Guilmeau and Y. Bréard, J Alloy Compd, 2012, 521,
- 22 121-125.

- 1 23. S. Hébert, W. Kobayashi, H. Muguerra, Y. Bréard, N. Raghavendra, F. Gascoin, E.
- 2 Guilmeau and A. Maignan, *Phys Status Solidi A*, 2013, **210**, 69-81.
- 3 24. E. Guilmeau, Y. Bréard and A. Maignan, *Appl Phys Lett*, 2011, **99**, 052107.
- 4 25. X. Huang, Z. Zeng and H. Zhang, Chem Soc Rev, 2013, 42, 1934-1946.
- 5 26. C. Lee, J. Hong, M.-H. Whangbo and J. H. Shim, *Chem Mater*, 2013, 25, 3745-3752.
- 6 27. R. Nunna, F. Gascoin and E. Guilmeau, *J Alloy Compd*, 2015, **634**, 32-36.
- 7 28. A. N. Gandi and U. Schwingenschlögl, *Chem Mater*, 2014, 26, 6628-6637.
- 8 29. T. M. Tritt and M. A. Subramanian, *Mrs Bull*, 2006, **31**, 188-198.
- 9 30. A. A. Kozma, M. Y. Sabov, E. Y. Peresh, I. E. Barchiy and V. V. Tsygyka, Inorg Mater,
- 10 2015, **51**, 93-97.
- 11 31. I. O. Nasibov, T. I. Sultanov, P. G. Rustamov and M. A. Alidzhanov, Izv. Akad. Nauk
- 12 SSSR, Neorg. Mater., 1977, **13**, 982-985.
- 13 32. G. K. H. Madsen and D. J. Singh, Comput Phys Commun, 2006, 175, 67-71.
- 14 33. D. Cahill, S. Watson and R. Pohl, *Phys Rev B*, 1992, 46, 6131-6140.
- 15 34. G. Kresse and J. Furthmüller, *Phys Rev B*, 1996, **54**, 11169-11186.
- 16 35. J. Heyd, G. E. Scuseria and M. Ernzerhof, *J Chem Phys*, 2003, **118**, 8207-8215.
- 17 36. M.-S. Lee and S. D. Mahanti, *Phys Rev B*, 2012, **85**, 165149.
- 18 37. Y. Wang, X. Chen, T. Cui, Y. Niu, Y. Wang, M. Wang, Y. Ma and G. Zou, Phys Rev B,
- **19** 2007, **76**, 155127.
- 20 38. V. K. Gudelli, V. Kanchana, S. Appalakondaiah, G. Vaitheeswaran and M. C. Valsakumar,
- 21 *J Phys Chem C*, 2013, **117**, 21120-21131.
- 22 39. C. Wang, Y. Wang, G. Zhang and C. Peng, *J Phys Chem C*, 2013, **117**, 21037-21042.

- 1 40. G. Ren, J. Lan, C. Zeng, Y. Liu, B. Zhan, S. Butt, Y.-H. Lin and C.-W. Nan, JOM, 2015,
- **67**, 211-221.
- 3 41. J. Lan, Y.-H. Lin, Y. Liu, S. Xu and C.-W. Nan, J Am Ceram Soc, 2012, 95, 2465-2469.
- 4 42. S. Baroni, S. de Gironcoli, A. Dal Corso and P. Giannozzi, Rev Mod Phys, 2001, 73,
- 5 515~562.
- 6 43. A. Togo, F. Oba and I. Tanaka, *Phys Rev B*, 2008, **78**, 134106.
- 7 44. R. S. Mitchell, Y. Fujiki and Y. Ishizawa, *Nature*, 1974, 247, 537-538.
- 8 45. J. Robertson, J Phys C: Solid State Phys, 1979, 12, 4753.
- 9 46. Q. Tan and J. F. Li, *J Electron Mater*, 2014, **43**, 2435-2439.
- 10 47. G. Domingo, R. S. Itoga and C. R. Kannewurf, *Phys Rev*, 1966, **143**, 536-541.
- 11 48. P. Lee and G. Said, *J Phys D: Appl Phys*, 1968, 1, 837.
- 12 49. C. Xia, Y. Peng, H. Zhang, T. Wang, S. Wei and Y. Jia, *Phys Chem Chem Phys*, 2014, 16,
- **13 19674-19680**.
- 14 50. B. L. Evans and R. A. Hazelwood, *J Phys D: Appl Phys*, 1969, **2**, 1507.
- 15 51. C. Julien, M. Eddrief, I. Samaras and M. Balkanski, *Mater Sci Eng B*, 1992, 15, 70-72.
- 16 52. L. Sharp, D. Soltz and B. A. Parkinson, *Cryst Growth Des*, 2006, **6**, 1523-1527.
- 17 53. O. Madelung, Semiconductors: Data Handbook, Springer, New York, 2004.
- 18 54. S. G. Patil and R. H. Tredgold, *J Phys D: Appl Phys*, 1971, 4, 718-722.
- 19 55. M. K. Agarwal, P. D. Patel and S. S. Patel, *J Cryst Growth*, 1991, **110**, 553-558.
- 20 56. L. A. Burton, D. Colombara, R. D. Abellon, F. C. Grozema, L. M. Peter, T. J. Savenije, G.
- 21 Dennler and A. Walsh, *Chem Mater*, 2013, **25**, 4908-4916.
- 22 57. C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski and P.

- 1 Zschack, *Science*, 2007, **315**, 351-353.
- 2 58. S. Kumar and U. Schwingenschlögl, Chem Mater, 2015, 27, 1278-1284.
- 3 59. H. Goldsmid, *Proc Phys Soc B*, 1956, **69**, 203.
- 4 60. W. Huang, X. Luo, C. K. Gan, S. Y. Quek and G. Liang, Phys Chem Chem Phys, 2014,
- 5 **16**, 10866-10874.
- 6 61. T. Holgate, Y. Liu, D. Hitchcock, T. Tritt and J. He, J Electron Mater, 2013, 42,

^{7 1751-1755.}