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Abstract 6 

Potential applications of ILs require the knowledge of physicochemical properties of ionic 7 

liquid (IL) mixtures. In this work, a series of semi-empirical models were developed to predict 8 

density, surface tension, heat capacity and thermal conductivity of IL mixtures. Each 9 

semi-empirical model only contains one new characteristic parameter, which can be determined 10 

using one experimental data. Besides, as another effective tool, artificial neural network (ANN) 11 

models were also established. The two kinds of models were verified by a total of 2304 12 

experimental data points of binary mixtures of ILs and molecular compounds. The overall 13 

average absolute deviations (AARDs) of both the semi-empirical and ANN models are less 14 

than 2%. Compared to the previous reported models, these new semi-empirical models require 15 

less adjustable parameters and can be applied in wider application range.   16 
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1. Introduction 1 

Ionic liquids (ILs) have been increasingly studied both in academy and industry
1, 2

 because 2 

of their unique properties, such as wide electrochemical window, extremely low vapor pressure, 3 

high solvating capacity and thermal stability. Potential applications of ILs require the 4 

knowledge of physicochemical properties not only for pure ILs, but also for their mixtures with 5 

different solvents. Because there are uncountable combinations of cations, anions and 6 

molecular solvents, it is costly and time-consuming to measure all the properties. Therefore, it 7 

is necessary to develop available models to predict the properties of IL mixtures
3-5

. The typical 8 

predictive equations and correlations for IL mixtures were summarized in Table 1. 9 

Table 1. Summary of the current literature about thermophysical prediction of IL mixtures 10 

Specific model Property T (K) 
Number of 

IL mixtures 

Predictive 

deviations 

Number of 

parameters  

COSMO–SAC model combined with 

mixing rules and PR EOS
6
 

Density 288-323 3 Deviations<3% >6 

Redlich–Kister polynomial equation
7
 

( )k

ij i j k i j

k

x x A x x  
 

Surface 

tension 

283-313 6 Standard 

deviations
 
<0.1 

4 

Extended Spencer and Danner equation
8
 

2/7(1 )

. .
mixci

mix RAmix

i i ci

P
Z

Rx T

   
  
 


 

Density 278-358 14 AARD 

=0.50% 

4 

Perturbed hard-sphere EOS
9
 

2 3

3

1
( )

(1 )

m m

i j ij

i j

P
x x a T

kT kT

   

 

  
 




 

Density 278-353 14 AARD 

=0.38% 

>7 

Extended Tao and Mason EOS
10

 

 2

1

1 ( )

( )

i j ij ij

ij

i j ij ij i j ij

ij ij

P
x x B

kT

x x G x x I

 


  

  

 



 
 

Density 198-343 13 AARD 

=1.69% 

4 

Redlich–Kister equation
11

 

1 1 1

1 2 1 2

1

/ ( ) ( )
n

E i

p i

i

C J mol K x x B x x  



     

Heat  

capacity 

283.15–343.15 2 AARD 

=0.1% 

6 

Density of IL mixtures is a fundamental property, and the related predictive models have 11 

been reported more frequently
12, 13

. The reported models can be mainly summarized as two 12 
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categories: 1) empirical correlations such as Redlich–Kister polynomial equation
14-20

 and 1 

Lorentz–Lorenz equation
21, 22

. These models relied on lots of experimental density data for 2 

fitting parameters. 2) equation of state (EOS)-based models, such as Perturbed hard-sphere 3 

EOS
8
 and SAFT + Cubic EOS

23
, which required more sophisticated thermodynamic 4 

calculations.  5 

Among the many unique properties, the surface tension plays a special role in process design 6 

via affecting the mass and heat transfer at the interface
24, 25

. Many articles have reported the 7 

predictive models of surface tension of pure ILs
26-28

. However, the surface tension prediction of 8 

IL mixtures was less explored and understood
25

. The current models are all developed on the 9 

basis of mixtures of molecular compounds, which can also be divided into two categories: 1) 10 

correlations and empirical relations, which are easy to be used but limited to a few compounds. 11 

Gardas et al.
29

 used a parachor estimation method and a solubility model to correlate the 12 

surface tensions of mixtures of imidazolium-based ILs with water or n-alkanes. The parameters 13 

in their models were obtained by fitting the experimental interfacial tension data or solubility 14 

data. Fu et al.
30

 recently correlated the surface tensions of two ternary systems containing ILs 15 

using an empirical correlation with 9 adjustable parameters. Although the above empirical 16 

models could accurately correlate surface tension, their predictive performance are unknown. 2) 17 

Models derived from thermodynamics, which require more experimental data and sophisticated 18 

calculations. Xu et al.
31

 developed a modified Hildebrand−Scott equation based on UNIFAC 19 

model, and the surface tension at 298.15 K was required for the regression of energy 20 

parameters. Rilo et al.
32

 developed a theoretical equation based on the Bahe–Varela 21 

pseudo-lattice model. Recently, Ghasemian Lemraski et al.
33

 predicted the surface tensions of 22 

IL mixtures based on the CSGC model (corresponding-states group-contribution method), 23 

HSEG model (extended Guggenheim’s ideal solution model) and parachor model, and the 24 

AARD were all higher than 5%. 25 
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Heat capacity and thermal conductivity are necessary in process design, especially in the 1 

calculation of heat duty of equipment. However, the prediction of heat capacity and thermal 2 

conductivity of IL mixtures are rarely reported. Most studies focused on correlating the excess 3 

molar heat capacity by a Redlich–Kister equation
11, 34, 35

 with six adjustable parameters, which 4 

required sophisticated fitting procedures for each mixture. Therefore, it is imperative to develop 5 

effective models for predicting the thermophysical properties of IL mixtures and avoid difficult 6 

calculations to satisfy the demands of engineering. 7 

The other widely accepted prediction method is artificial neural network (ANN), which can 8 

be used for different class of materials
36

,. ANN represents a complex configuration, including 9 

input, hidden, and output layers with many neurons
37, 38

, which can transform the data through 10 

suitable activation functions thus model the nonlinear behavior of properties. In recent years, 11 

the predictive ability of ANN has been tested and applied by several researchers for modeling 12 

various properties of pure ILs, such as melting points
39

, density
40

, viscosity 
41, 42

, heat capacity 13 

43
, thermal conductivity

44
 and electric conductivity

43
. Thus it is essential to use the ANN 14 

technique to predict the properties of IL mixtures.  15 

We have successfully predicted the thermophysical properties of pure ILs based on 16 

corresponding states correlations
3
, thus it is convenient and meaningful to develop general 17 

models for predicting thermophysical properties of IL mixtures. This work focuses on 18 

predicting the density, surface tension, heat capacity and thermal conductivity of IL mixtures 19 

using new semi-empirical models and ANN method. Some key characteristic parameters were 20 

defined to represent the excess magnitudes of properties. The molecular components of the 21 

studied IL mixtures included common solvents: water, alcohols, alkanes, ketones, esters, acid, 22 

dimethyl sulfoxide, acetonitrile, and tetrahydrofuran.  23 

2. Methodology 24 

2.1 Database 25 
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In this study, comprehensive property of binary mixtures of IL and molecular solvent at 1 

different temperatures and compositions were collected from lots of literature, including 2 

experimental data of densities of 25 binary mixtures, surface tensions of 28 binary mixtures, 3 

heat capacities of 9 binary mixtures and thermal conductivities of 3 binary mixtures, as shown 4 

in Tables 1-8. The ILs contain the cations of imidazolium [Im], pyridinium [Py], ammonium [N] 5 

and phosphonium [P] and the anions of tetrafluoroborate [BF4], hexafluorophosphate [PF6], 6 

bis(trifluoromethylsulfonyl)imide [BTI], bromide [Br], alkyl sulfate [RSO4], dimethyl 7 

phosphate [DMP], trifluoromethylsulfonate [TfO], nitrate [NO3] and dicyanamide [Dca]. The 8 

molecular components intended to cover common solvents such as water, alcohols, dimethyl 9 

sulfoxide, acetonitrile, and tetrahydrofuran. 10 

2.2 Semi-empirical models 11 

  According to the effect of addition of ILs on the densities of molecular compounds, the 12 

following semi-empirical relationship was proposed: 13 

1 1 2 2m x x     

 
(1) 

1/2

1 2 1 1( )ax x T   

 
(2) 

where ρm is the density of the mixture, x1 and x2 are the molar fraction of molecular compounds 14 

and ILs, respectively. ρ1 and ρ2 are the density of pure molecular compounds and ILs, 15 

respectively.  denotes the excess magnitudes of density of IL mixtures. a represents the 16 

characteristic parameter of density of each IL mixture, which can be determined by only one 17 

experimental density data point of the specific IL mixture .  18 

The surface tensions of IL mixtures were calculated by Eq. 3, which was similar to Eq.1. It is 19 

obvious that the surface tension behavior of alcohol-based and water-based IL mixtures 20 

exhibits opposite trends
25

. Therefore, different models for water-based mixtures and 21 

organic-based mixtures were employed, as expressed by Eq.4 and Eq.5, respectively. 22 
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1 1 2 2m x x     

 
(3) 

1/2

1 1 2( )bx T   

 
(4) 

1/2

1 2 1 2' ( )b x x T   

 
(5) 

where σm is the surface tension of the mixture, x1 and x2 are the molar fraction of molecular 1 

compounds and ILs, respectively. σ1 and σ2 are the surface tension of pure molecular 2 

compounds and ILs, respectively. The surface tension of pure ILs were taken from literature or 3 

estimated by the Brock-Bird equation
45

.   denotes the excess magnitudes of surface tension 4 

of IL mixtures. b and b’ denote the characteristic parameter of surface tension of water-based 5 

and organic-based IL mixture, respectively, which can be determined on the basis of only one 6 

surface tension data of the specific IL mixture.  7 

The heat capacities of IL mixtures were calculated by the following models, which were 8 

similar to Eq.1 and Eq.2. 9 

1 1 2 2pm p p pC x C x C C  

 
(6) 

1/2

1 2 1 2( )p p pC cx x C C T  

 
(7) 

where Cpm is the heat capacity of the mixture, x1 and x2 are the molar fraction of molecular 10 

compounds and ILs, respectively. Cp1 and Cp2 are the heat capacity of pure molecular 11 

compounds and ILs, respectively. pC  denotes the excess magnitudes of heat capacity of IL 12 

mixtures. c represents the characteristic parameter of heat capacity of each IL mixture, which 13 

can be determined by only one heat capacity data point of the specific IL mixture. 14 

The thermal conductivity of IL mixtures were calculated by Eq.8 and Eq.9. 15 

1 1 2 2m w w     

 
(8) 

1/2

1 2 1 2( )dw w T   

 
(9) 

where λm is the thermal conductivity of the mixture, w1 and w2 are the mass fraction of 16 
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molecular compounds and ILs, respectively. λ1 and λ2 are the thermal conductivity of pure 1 

molecular compounds and ILs, respectively.   denotes the excess magnitudes of thermal 2 

conductivity of IL mixture. d represents the characteristic parameter of thermal conductivity of 3 

each IL mixture, which can be calculated on the basis of only one thermal conductivity data of 4 

the specific IL mixture.  5 

2.3 Artificial neural network models 6 

The structure of ANN models was illustrated in Figure 1, which is a kind of the most 7 

common used multilayer perceptron (MLP). The input layer comprised of five variables: 8 

temperature, mole fraction of molecular compounds and ILs, thermophysical properties 9 

(surface tension, heat capacity and thermal conductivity) of pure molecular compounds and ILs. 10 

And the ANN models require no fitted parameters. The number of hidden layers was 11 

considered as one, which was able to correlate any type of nonlinear relation
46

. The 12 

experimental data of thermophysical properties of IL mixtures were the target of the output 13 

layer. 14 

The ANN was trained with Levenberg–Marquardt learning algorithm
47, 48

 with high-speed 15 

training capabilities. The whole set of available data were randomly divided into three groups 16 

for training (70%), validation (15%) and testing (15%) the model. 17 

 18 

Figure 1. Used MLP structure of ANN 19 

2.4 Statistical assessments  20 

To evaluate the efficiency and accuracy of the proposed semi-empirical models and ANN 21 

models, some statistical parameters were utilized, namely, minimum relative deviation 22 

Page 7 of 27 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



8 
 

(RDmin), maximum relative deviation (RDmax), average absolute relative deviation (AARD), 1 

and coefficient of determination (R
2
). The mathematical definitions of the parameters were 2 

given as below: 3 

exp(%) 100 ( / 1.0)cal

im imRD Q Q  

 

(10) 

exp

1

(%) 100 / 1.0 /
PN

cal

im im P

i

AARD Q Q N


    (11) 

   

 

2 2
exp exp

2 1 1

2
exp

1

P P

P

N N
cal

im m im im

i i

N

im m

i

Q Q Q Q

R

Q Q

 



  





 

  

(12) 

where Q denotes the studied thermophysical properties, i.e. ρ, σ, Cp and λ. Np represents the 4 

total number of data points of each property, the superscripts ‘exp’ and ‘cal’ denote the 5 

experimental value from literature and calculated value, respectively. mQ  is the average 6 

value of the experimental property of mixtures. 7 

3. Results and discussion  8 

1104 density data points of 33 binary mixtures, 573 surface tension data points of 28 binary 9 

mixtures, 603 heat capacity data points of 9 binary mixtures and 24 thermal conductivity data 10 

points of 3 binary mixtures over wide range of temperature and mole fraction were collected to 11 

correlate model parameters and verify the semi-empirical models (see Eqs.1-9). Moreover, as 12 

another useful technique of property prediction, the ANN models were designed to estimate the 13 

above thermophysical properties of IL mixtures. The correlated and predicted results of each 14 

data point of all the thermophysical properties are given in the Supplementary materials that 15 

form part of this paper. 16 

3.1 Prediction results of Density  17 

Semi-empirical model  The 1104 density data points of 33 binary systems were divided 18 

into two sets. One was correlation dataset for the determination of the parameter a, and the 19 
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other was validation dataset, which was applied to test the predictive performance of the 1 

semi-empirical model for density. As described above, the determination of parameter a 2 

only required one experimental data point of each system. Thus 33 data points of 33 binary 3 

systems were selected as correlation dataset, which was listed in Table 1. The selection 4 

principle was that mole fraction of each component was near 0.5 and the temperature was 5 

near 298.15K. It can be seen from Table 2 that all the relative deviation of each mixture are 6 

less than ±0.1%, which indicates the semi-empirical model for density can achieve highly 7 

accurate correlation results.  8 

With the semi-empirical model for density (Eqs.1-2) and correlated parameters (see Table 9 

2), further prediction can be performed. As shown in Figure 2, the predicted results by the 10 

semi-empirical model display good agreement with experimental density. Furthermore, the 11 

histogram of the relative prediction deviations was given in Figure 3. It can be seen that 12 

81% of the deviations were within ±2%, and only 4.3% were larger than ±5%. Detailed 13 

prediction deviations of each binary system were summarized in Table 3, and the overall 14 

prediction AARD was only 1.1%. It is obvious that [C6MIm][Cl] +[C6MIm][PF6] has the 15 

highest prediction accuracy, and the alcohol-based IL mixtures give relatively lower 16 

prediction accuracy. This is mainly resulted from the higher discrepancy between ILs and 17 

alcohol. The highest deviation was observed in 2-Propanol (1) + [MOA][BTI] (2) at x1=0.9. 18 

This above results implied that the semi-empirical model had relatively poor prediction 19 

performance at high concentration of lighter molecular solvents. In general, the 20 

semi-empirical model is accurate not only for density correlation of IL mixtures, but also for 21 

prediction. Comparing to the published models, the current model can be accurately used 22 

for wider range of IL mixtures and diminish the number of adjustable parameter to 1, which 23 

is much easier to be obtained. 24 

Table 2. Correlated results of density of 25 IL mixtures using the semi-empirical model (Eqs.1-2) 25 
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Parameter a  Binary system x1 T/ K 
ρm

exp 

/(g·cm
-3

) 

ρm
cal 

/(g·cm
-3

) 
RD / % 

0.0087 Water (1)+[C4(3-m)Py][BF4] (2)
49

 0.5965  318.15 1.1437 1.1441  0.04  

0.0151 Water (1)+ [C2MIm][BTI] (2)
50

 0.3025 298.19 1.5013 1.5002  -0.07  

0.0102 Water (1)+ [empy][EtSO4] (2)
51

 0.4972 298.15 1.20839 1.2081  -0.03  

0.0028 Water (1)+ [C6MIm][Cl] (2)
52

 0.5125 298.15 1.0422 1.0429  0.06  

0.0062 Water (1)+ [C6MIm][BF4] (2)
53

 0.4861  298.15 1.13058 1.1312  0.05  

0.0111 Water (1)+ [C4MPyr][BTI] (2)
50

 0.2228 298.21 1.3871 1.3860  -0.08  

0.0011 Water (1)+ [C8MIm][Cl] (2)
52

 0.5334  298.15 1.0127 1.0120  -0.07  

0.0093 Water (1)+ [pDMIM][BF4] (2)
54

 0.4987 298.15 1.1998 1.2006  0.06  

0.01 Water (1)+ [N1114][BTI] (2) 
50

 0.14 298.15 1.3895 1.3890  -0.04  

0.0122 Methanol (1)+ [C4MIm][SCN] (2)
55

 0.4917 298.15 1.0281 1.0283  0.02  

0.0149 Ethanol (1)+ [Mmim][MeSO4] (2)
56

 0.5000  298.15 1.1928 1.1933  0.04  

0.0134 Ethanol (1)+ [C4MIm][BF4] (2)
57

 0.4976 298.15 1.1086 1.1092  0.06  

0.0158 2-Propanol (1) + [MOA][BTI] (2)
58

  0.5176 298.15 1.0676 1.0669  -0.06 

0.0134 2-Butanol (1) + [MOA][BTI] (2)
58

  0.4955 298.15 1.0667 1.0667 0.00 

0.0167 Acetone (1)+ [C4MIm][PF6] (2)
50

 0.4993 298.15 1.2311 1.2320  0.07  

0.0085 2-butanone (1)+ [Mmim][MeSO4] (2)
59

 0.9994 298.15 0.8007 0.8002  -0.06  

0.0137 2-butanone (1)+ [C4MIm][PF6] (2)
59

 0.5074 293.15 1.2116 1.2121  0.04 

0.011 n-hexane (1)+ [C8MIm][PF6] (2)
60

 0.1268 298.15 1.2015 1.2018  0.03  

0.0078 Methyl formate (1)+ [C4MIm][BF4] (2)
61

 0.5003 298.15 1.16043 1.1611  0.06  

0.008 Methyl acetate (1)+ [C4MIm][BF4] (2)
61

 0.5007 298.15 1.13601 1.1368  0.07  

0.0104 Ethyl acetate (1)+ [C4MIm][PF6] (2)
59

 0.5117 298.15 1.2266 1.2268  0.02  

0.0058 Ethyl acetate (1)+ [Mmim][MeSO4] (2)
59

 0.0928 298.15 1.3047 1.3058  0.08  

0.0064 Dimethyl carbonate (1) +[C6MIm][PF6] (2)
62

 0.4957 298.15 1.2442 1.2446  0.03  

-0.001 [C6MIm][BF4] (1)+[C2MIm][BF4] (2)
63

 0.5062 298.15 1.2006 1.2009  0.02  

0.001 [C4MIm][PF6] (1) +[C4MIm][BF4] (2)
63

 0.4999 303.15 1.2846 1.2841  -0.04  

0.001 [C8MIm][Cl] (1)+[C8MIm][BF4] (2)
64

 0.6 313.15 1.0407 1.0410  0.02  

0.0013 [C6MIm][Cl] (1)+[C6MIm][PF6] (2)
64

 0.4 303.15 1.2005 1.2009  0.03  

0.0058 Acetic acid (1) + [EMIM][EtSO4] (2) 
65

 0.4737 298.15 1.20174 1.2025  0.07  

0.007 Propionic acid (1) + [EMIM][EtSO4] (2) 
65

 0.5516 298.15 1.16511 1.1661  0.08  

0.0017 Acetic acid (1) + [BMIM][SCN] (2)
66

 0.5497 298.15 1.07098 1.0713  0.03  

0.0032 Propionic acid (1) + [BMIM][SCN] (2) 
66

 0.4978 298.15 1.05709 1.0578  0.06  

0.0164 Acetonitrile (1) + [EMIM][EtSO4] (2)
67

 0.4967 298.15 1.15023 1.1508  0.05  

0.0115 Acetonitrile (1) + [BMIM][SCN] (2) 
67

 0.4899 298.15 1.01748 1.0181  0.06  
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 1 

 2 

Figure 2. Experimental density of IL mixtures versus predicted value by the semi-empirical model (Eqs.1-2)  3 

 4 

Figure 3. Histogram of relative deviations of predicted density by the semi-empirical model (Eqs.1-2) 5 

6 
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Table 3. Predictive results of the semi-empirical model (Eqs.1-2) for density of IL mixtures  1 

Binary system x1 T/ K Np 
Predicted deviations 

AARD/ % RDmax / % 

Water (1)+[C4(3-m)Py][BF4] (2)
49

 0-1 293.15-318.15 65 1.76  -4.61 

Water (1)+ [C2MIm][BTI] (2)
50

 0-0.2032 298.19 7 0.55  0.89  

Water (1)+ [empy][EtSO4] (2)
51

 0-1 298.15-328.15 38 2.26  -6.62  

Water (1)+ [C6MIm][Cl] (2)
52

 0-1 298.15 10 0.55 -1.40  

Water (1)+ [C6MIm][BF4] (2)
53

 0-1 298.15 17 0.76  -2.52  

Water (1)+ [C4MPyr][BTI] (2)
50

 0-0.9993  298.21-323.21 14 0.97  2.10  

Water (1)+ [C8MIm][Cl] (2)
52

 0-1 298.15-343.15 43 0.23  0.47  

Water (1)+ [pDMIM][BF4] (2)
54

 0-1 298.15-323.15 65 1.82  -5.43  

Water (1)+ [N1114][BTI] (2) 
50

 0-0.2322 293.15-343.15 87 0.20  -0.84  

Methanol (1)+ [C4MIm][SCN] (2)
55

 0-1 298.15-328.15 50 2.42  -5.78  

Ethanol (1)+ [Mmim][MeSO4] (2)
56

 0-1 298.15 12 1.54  -3.36  

Ethanol (1)+ [C4MIm][BF4] (2)
57

 0-1 298.15 13 1.73  -3.59  

2-Propanol (1) + [MOA]+[BTI] (2)
58

  0.104-0.947 298.15-313.15 29 3.92 -7.85 

2-Butanol (1) + [MOA]+[BTI] (2)
58

  0.0933-0.9306 298.15-313.15 29 2.8 -6.12 

Acetone (1)+ [C4MIm][PF6] (2)
50

 0-1 298.15 14 1.94  -4.68  

2-butanone (1)+ [Mmim][MeSO4] (2)
59

 0-1 293.15-303.15 26 0.12  0.26  

2-butanone (1)+ [C4MIm][PF6] (2)
59

 0-1 293.15-303.15 38 1.23  -2.81  

n-hexane (1)+ [C8MIm][PF6] (2)
60

 0-1 293.15-303.15 17 0.05  0.09  

Methyl formate (1)+ [C4MIm][BF4] (2)
61

 0-1 298.15 14 1.22  -2.80  

Methyl acetate (1)+ [C4MIm][BF4] (2)
61

 0-1 298.15 14 1.09  -2.40  

Ethyl acetate (1)+ [C4MIm][PF6] (2)
59

 0-1 293.15-303.15 38 0.85  -1.88  

Ethyl acetate (1)+ [Mmim][MeSO4] (2)
59

 0-1 293.15-303.15 20 0.06  0.15  

Dimethyl carbonate (1) +[C6MIm][PF6] (2)
62

 0-1 298.15 12 0.84  -1.94  

[C6MIm][BF4] (1)+[C2MIm][BF4] (2)
63

 0.0978-0.9455 298.15 12 0.03  0.06  

[C4MIm][PF6] (1) +[C4MIm][BF4] (2)
63

 0.0568-0.945 303.15 11 0.46  -1.23  

[C8MIm][Cl] (1)+[C8MIm][BF4] (2)
64

 0.2-0.8 313.15 7 0.39  -0.63  

[C6MIm][Cl] (1)+[C6MIm][PF6] (2)
64

 0.2-0.8 303.15-333.15 15 0.04  0.08  

Acetic acid (1) + [EMIM][EtSO4] (2)
65

  0-1 298.15-313.15 59 0.94 -2.53 

Propionic acid (1) + [EMIM][EtSO4] (2) 
65

  0-1 298.15-313.15 59 0.81 -1.92 

Acetic acid (1) + [BMIM][SCN] (2)
66

 0-1 298.15-313.15 59 0.49 -1.44 

Propionic acid (1) + [BMIM][SCN] (2) 
66

 0-1 298.15-313.15 59 0.56 -1.56 

Acetonitrile (1) + [EMIM][EtSO4] (2)
67

 0-1 298.15-313.15 59 2.26 -5.59  

Acetonitrile (1) + [BMIM][SCN] (2) 
67

 0-1 298.15-313.15 59 1.63 -4.04  

Overall 0-1 293.15-343.15 1071 1.1 -7.85 

 2 
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ANN model  Figure 4 shows the comparison between the experimental density and 1 

predicted results by the ANN model. It can be seen that ANN also gave highly accurate 2 

prediction results with overall AARD of 0.42%. The relative deviations distribution was 3 

described in Figure 4. The ANN model provided more accurate predictive results with all 4 

the deviations less than ±3%. 5 

 6 

Figure 4. Experimental density of IL mixtures versus predicted value by the ANN model 7 

 8 

Figure 5. Histogram of relative deviations of predicted density by the ANN model 9 

3.2 Prediction results of surface tension 10 

Semi-empirical model  Similar to the selection of dataset for density prediction, the 573 11 

Page 13 of 27 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



14 
 

surface tension data points of 28 binary mixtures were also divided into correlation dataset 1 

(28 data points) and validation dataset (545 data points). Table 4 provides the correlation 2 

results with all the relative deviations less than ±0.1%, which indicates highly accurate 3 

correlation results by the semi-empirical model for surface tension.  4 

Table 4. Correlated results of the semi-empirical model for surface tension of IL mixtures (Eqs.3-5) 5 

Parameter 

b or b’ 
Binary system x1 T/ K 

σ m
exp 

/(mN·m
-1

) 

σ m
cal 

/(mN·m
-1

) 

RD 

/ % 

-0.0080  Water (1)+ [C2MIm][BF4] (2)
57

 0.4926  298.15 53.88  53.88  0.00  

-0.0124  Water (1)+ [C4MIm][BF4] (2)
57

 0.4696  298.15 46.02  45.95  0.06  

-0.0180  Water (1)+ [C6MIm][BF4] (2)
57

 0.4942  298.15 37.65  37.65  0.00  

-0.0013  Water (1)+ [C1MIm][MeSO4] (2)
68

 0.7080  298.1 64.70  64.70  0.00  

-0.0023  Water (1)+ [C2MIm][MeSO3] (2)
68

 0.5150  301.7 58.10  58.14  0.07  

-0.0096  Water (1)+ [C2MIm][EtSO4] (2)
69

 0.5161  298.15 48.97  49.01  0.08  

-0.0164  Water (1)+ [C2MIm][C4SO4] (2)
32

 0.5008  298.15 40.01  40.05  0.09  

-0.0055  Water (1)+ [C4MIm][Gly] (2)
70

 0.1358  298.15 45.90  45.88  0.05  

-0.0148  Water (1)+ [C4Py][NO3] (2)
71

 0.6753  298.15 44.00  44.03  0.07  

-0.0114  Water (1)+ [N311(hoe)][Br] (2)
72

 0.9953  298.15 48.30  48.27  0.06  

-0.0031  Water (1)+ [N112(hoe)][Br] (2)
72

 0.9953  298.15 65.23  65.22  0.01  

-0.0213  Water (1)+ [P666(14)][Dca] (2)
73

 0.4932  328 30.50  30.52  0.06  

-0.0295  Water (1)+ [P666(14)][BTI] (2)
73

 0.0891  318 28.60  28.61  0.03  

-0.0102  Methanol (1)+ [C1MIm][MeSO4] (2)
72

 0.5214  298.15 36.75  36.75  0.00  

0.0153  Methanol (1)+ [C2MIm][MeSO4] (2)
74

 0.5988  298.15 37.21  37.22  0.03  

-0.0164  Ethanol (1)+ [C4MIm][BF4] (2)
57

 0.4976  298.15 28.87  28.88  0.04  

-0.0034  Ethanol (1)+ [C6MIm][BF4] (2)
57

 0.4921  298.15 28.82  28.83  0.03  

0.0020  Ethanol (1)+ [C8MIm][BF4] (2)
57

 0.4875  298.15 27.90  27.92  0.08  

0.0066  Ethanol (1)+ [C2MIm][C6SO4] (2)
32

 0.5309  298.15 29.48  29.49  0.05  

0.0120  Ethanol (1)+ [C2MIm][C8SO4] (2)
32

 0.4941  298.15 29.14  29.15  0.03  

0.0015  1-propanol (1)+ [C4MIm][BTI] (2)
75

 0.4830  298.15 28.60  28.59  0.03  

-0.0064  1-butanol (1)+ [C4MIm][BTI] (2)
75

 0.4998  298.15 26.79  26.81  0.07  

0.0034  Tetrahydrofuran (1)+ [C2MIm][BTI] (2)
76

 0.4531  298.15 32.63  32.64  0.03  

0.0048  Tetrahydrofuran (1)+ [C4MIm][BTI] (2)
77

 0.5103  298.15 30.75  30.75  0.01  

0.0091  Acetonitrile (1)+ [C2MIm][BTI] (2)
76

 0.5276  298.15 34.42  34.44  0.07  

0.0071  Acetonitrile (1)+ [C4MIm][BTI] (2)
77

 0.5290  298.15 32.15  32.16  0.05  

-0.0083  Dimethyl sulfoxide (1)+ [C2MIm][BTI] (2)
77

 0.4914  298.15 36.49  36.46  0.07  

-0.0121  Dimethyl sulfoxide (1)+ [C4MIm][BTI] (2)
77

 0.5215  298.15 33.96  33.94  0.05  

 6 
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Figure 6 shows the further prediction results using the semi-empirical model (Eqs.3-5) and 1 

correlated parameters (see Table 4). It can be seen that data points distributed closely along the 2 

solid line of σ
cal
=σ

exp
, which indicates the good predictIve performance of the surface tension 3 

model. Furthermore, the relative deviations against the mole fraction of water and organics 4 

were described in Figure 7. It can be seen that 74.5% of the deviations were within ±2%, and 5 

only 4.6% were higher than ±4%. Detailed prediction deviations of each binary system were 6 

summarized in Table 5, and the overall AARD was 1.55%. After comparing different kinds of 7 

binary systems, it can be concluded that the water + [CnMIm][BF4] and tetrahydrofuran + 8 

[C2MIm][BTI] system present relatively higher prediction accuracy. However, water-based IL 9 

mixtures produce lower prediction accuracy. This may be caused by the low prediction 10 

performance of the semi-empirical model at high content of water. Compared to the previous 11 

reviewed models, the current semi-empirical model for surface tension presents higher 12 

prediction accuracy and requires less adjustable parameter.  13 

 14 

Figure 6. Experimental surface tension of IL mixtures versus predicted value by the semi-empirical model 15 

(Eqs.3-5)  16 

 17 
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Table 5. Predictive results of the semi-empirical model (Eqs.3-5)for surface tension of IL mixtures 1 

Binary system x1 T/ K Np 
Predicted deviations 

AARD/ % RDmax/ % 

Water (1)+ [C2MIm][BF4] (2)
57

 0-0.8582  298.15 8 0.21  1.08  

Water (1)+ [C4MIm][BF4] (2)
57

 0-0.8987  298.15 14 0.58  1.96  

Water (1)+ [C6MIm][BF4] (2)
57

 0-0.6968  298.15 7 0.22  -0.39  

Water (1)+ [C1MIm][MeSO4] (2)
68

 0.7390-1 296.8-298.1 9 1.06  -2.41  

Water (1)+ [C2MIm][MeSO3] (2)
68

 0.5260-1  300-303.3 26 4.04  -6.63  

Water (1)+ [C2MIm][EtSO4] (2)
69

 0.0062 -0.5791  298.15 11 1.73  -3.93  

Water (1)+ [C2MIm][C4SO4] (2)
32

 0-0.9611  298.15 26 2.11  -11.96  

Water (1)+ [C4MIm][Gly] (2)
70

 0-0.1358  283.15-328.15 59 0.36  -0.96  

Water (1)+ [C4Py][NO3] (2)
71

 0-0.9903  298.15 14 3.98  9.31  

Water (1)+ [N311(hoe)][Br] (2)
72

 0.9900-0.9979   298.15 2 4.16  -7.16  

Water (1)+ [N112(hoe)][Br] (2)
72

 0.9915-0.9981  298.15 2 2.21  -2.56 

Water (1)+ [P666(14)][Dca] (2)
73

 0.4932  298.2-342.8 5 1.49  2.36  

Water (1)+ [P666(14)][BTI] (2)
73

 0.0891  298.1-343.3 5 1.70  2.47  

Methanol (1)+ [C1MIm][MeSO4] (2)
72

 0-1 298.15 8 1.18  4.33  

Methanol (1)+ [C2MIm][MeSO4] (2)
74

 0.6976-1 298.15 6 0.71  2.48  

Ethanol (1)+ [C4MIm][BF4] (2)
57

 0-0.9014  298.15 11 0.76  -1.78  

Ethanol (1)+ [C6MIm][BF4] (2)
57

 0-0.9020  298.15 9 0.70  -1.50  

Ethanol (1)+ [C8MIm][BF4] (2)
57

 0-0.8988  298.15 9 0.91  -1.85  

Ethanol (1)+ [C2MIm][C6SO4] (2)
32

 0-0.9700  298.15 12 1.69  -3.41  

Ethanol (1)+ [C2MIm][C8SO4] (2)
32

 0-0.9601  298.15 17 1.95  -4.20  

1-propanol (1)+ [C4MIm][BTI] (2)
75

 0-1  298.15 10 1.48  3.05  

1-butanol (1)+ [C4MIm][BTI] (2)
75

 0-1 298.15 12 2.59  4.84  

Tetrahydrofuran (1)+ [C2MIm][BTI] (2)
76

 0-1 293.15-308.15 43 0.47  -1.47  

Tetrahydrofuran (1)+ [C4MIm][BTI] (2)
77

 0-1 293.15-308.15 39 0.60  2.60  

Acetonitrile (1)+ [C2MIm][BTI] (2)
76

 0-1 293.15-313.15 44 1.13  -3.32  

Acetonitrile (1)+ [C4MIm][BTI] (2)
77

 0-1 293.15-313.15 44 1.36  -4.16  

Dimethyl sulfoxide (1)+ [C2MIm][BTI] (2)
77

 0-1 293.15-313.15 44 1.63  4.41  

Dimethyl sulfoxide (1)+ [C4MIm][BTI] (2)
77

 0-1 293.15-313.15 49 2.34  7.87  

Overall 0-1 293.15-343.3 545 1.55 -11.96  
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 1 

Figure 7. Predicted relative deviations from the semi-empirical model (Eqs.3-5) against the mole 2 

fraction of molecular solvents in water-based and organic-based IL mixtures. 3 

 4 

ANN model  Figure 8 shows the predicted results from the two ANN models for surface 5 

tension of water-based and organic-based IL mixtures. Relative deviation of training, validation 6 

and test subsets were illustrated in Figure 9. There were 97% and 95% of the deviations within 7 

±2% for water-based and organic-based IL mixtures, respectively. The maximum deviation was 8 

found to be -11.6% of the mixture of water and [C4Py][NO3] at xwater=0.9903, which probably 9 

can be attributed to two factors, namely (1) the random error of trained ANN model at high 10 

water content, and (2) the inaccuracy of the experimental data, since there were many other 11 

deviations at high water content within ±2%. In general, the above results indicate that the 12 

ANN models can be successfully applied in predicting the surface tensions of IL mixtures.   13 
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 1 

 2 

Figure 8. Predicted results by ANN models versus experimental data of surface tensions of 3 

water-based IL mixtures (a) and organic-based IL mixtures (b). 4 
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 1 

 2 

Figure 9. Relative deviation of training, validation and test subsets against the mole fraction of molecular 3 

solvents in water-based IL mixtures (a) and organic-based IL mixtures (b). 4 

3.3 Prediction results of heat capacity 5 

Semi-empirical model  similar to the prediction of density and surface tension, 603 heat 6 

capacity data points of 9 binary mixtures were also divided into correlation dataset (9 data 7 

points) and validation dataset (594 data points). All the correlation deviation of each mixture 8 

were within ±0.1%, as shown in Table 6. Based on the correlated parameters, further 9 

prediction of heat capacity was performed. The comparison between the predicted and 10 

experimental data of heat capacity was shown in Figure 10 with the overall AARD of 0.93%. 11 
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It was observed that the semi-empirical model gave highly accurate prediction results. 1 

Furthermore, the histogram of the relative deviations was given in Figure 11. It can be seen 2 

that more than 75% of the relative deviations were within ±1%, and only 6% were in the 3 

range between ±3% and ±6%. Predictive AARD of each binary system was listed in Table 7. 4 

All the AARDs are less than 3% and the maximum relative deviation is -5.75%, which 5 

indicates the semi-empirical model also has high accuracy in predicting heat capacity of IL 6 

mixtures. 7 

Table 6. Correlated results of the semi-empirical model for heat capacity of IL mixtures (Eqs.6-7) 8 

Parameter 

c 
Binary system x1 T/ K 

Cpm
exp 

/ (J·mol
-1

·K
-1

) 

Cpm
cal 

/(J·mol
-1

·K
-1

) 

RD 

/ %  

0.00445 Water (1)+ [C4MIm][BF4] (2)
34

 0.4000  303.2 259.4 259.4  0.02  

-0.0026 Water (1)+ [C4MIm][PF6] (2)
34

 0.2000  303.2 342.2 342.0  -0.05  

-0.00005 Water (1)+ [C4MIm][TfO] (2)
35

 0.4000  303.2 295 295.2  0.05  

0.0019 Water (1)+ [C4MIm][MeSO4] (2)
35, 78

 0.4000  303.2 265 265.1  0.03  

-0.0007 Acetonitrile (1)+ [C6MIm][BF4] (2)
79

 0.4633  298.15 272.6 272.4  -0.07  

-0.0008 Acetonitrile (1)+ [C8MIm][BF4] (2)
79

 0.4563  298.15 310.5 310.4  -0.03  

0.00185 Methanol (1)+ [C6MIm][BF4] (2)
80

 0.6030  298.15 223.9 224.0  0.07  

0.0014 Methanol (1)+ [C8MIm][BF4] (2)
80

 0.5484  298.15 273.5 273.6  0.03  

0.00135 Ethanol (1)+ [bmpyr][BF4] (2)
49

 0.4969  298.15 254.2 254.3  0.03  

 9 

Figure 10. Experimental heat capacity of IL mixtures versus predicted value by the semi-empirical model 10 

(Eqs.6-7) 11 
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 1 

Figure 11. Histogram of relative deviations of predicted heat capacity by the semi-empirical model (Eqs.6-7) 2 

Table 7. Predicted results of the semi-empirical model for heat capacity of IL mixtures 3 

Binary system x1 T/ K Np 
Predicted deviations 

AARD/ % RDmax/ % 

Water (1)+ [C4MIm][BF4] (2)
34

 0.2-0.8 303.2-353.2 43 0.6  -1.64  

Water (1)+ [C4MIm][PF6] (2)
34

 0.05-0.2 308.2-353.2 43 0.2  0.61  

Water (1)+ [C4MIm][TfO] (2)
35

 0.2-0.8 303.2-353.2 43 2.2  -5.75  

Water (1)+ [C4MIm][MeSO4] (2)
35, 78

 0.2-0.8 303.2-353.2 42 2.5  -5.05  

Acetonitrile (1)+ [C6MIm][BF4] (2)
79

 0-1 283.15-323.15 89 0.3  0.98  

Acetonitrile (1)+ [C8MIm][BF4] (2)
79

 0-1 283.15-323.15 98 0.5  1.39  

Methanol (1)+ [C6MIm][BF4] (2)
80

 0-1 283.15-323.15 70 0.7 -2.26 

Methanol (1)+ [C8MIm][BF4] (2)
80

 0-1 283.15-323.15 71 0.6  -2.03  

Ethanol (1)+ [bmpyr][BF4] (2)
49

 0-1 293.15-318.15 95 0.8  -4.46  

Overall 0-1 283.15-353.2 594 0.93 -5.75  

 4 

ANN model  The comparison between the experimental heat capacity and calculated value 5 

by the ANN model was shown in Figure 12. The histogram of the relative deviations was given 6 

in Figure 13. It can be seen from the Figures that ANN model provided more accurate 7 

predictive results with all the absolute deviations less than 1.2%.  8 
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 1 

Figure 12. Experimental heat capacity of IL mixtures versus predicted value by the ANN model 2 

 3 

Figure 13. Histogram of relative deviations of predicted heat capacity by the ANN model 4 

3.4 Prediction results of thermal conductivity 5 

Experimental data of thermal conductivity were rarely found in literature, thus only 24 6 

data points of 3 binary mixtures were collected to verify the models. Correlation deviation 7 

of each mixture was within ±0.1%, as shown in Table 8. With the semi-empirical model 8 

(Eqs.8-9) and parameter d, thermal conductivity of the other 21 data points were predicted 9 

Page 22 of 27Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



23 
 

and depicted in Figure 14. Detailed results of each mixture were listed in Table 9. The 1 

overall AARD was 1.9%, which indicates the semi-empirical model for is useful in 2 

predicting thermal conductivity of IL mixtures. In addition, the ANN model gave higher 3 

accurate prediction results with overall AARD of 0.4%, as shown in Figure 15. 4 

Table 8. Correlated results of the semi-empirical model for thermal conductivity of IL mixtures (Eqs.8-9) 5 

Parameter 

d 
Binary system w1 T/ K 

λm
exp 

/ (W·m
-1

·K
-1

) 

λm
cal 

/(W·m
-1

·K
-1

) 

RD 

/ % 

-0.0301 Water (1)+ [C2mim][EtSO4] (2)
81

 0.20  293 0.232 0.2322  0.07  

-0.018 Water (1)+ [C4MIm][TfO] (2)
81

 0.20  293 0.221 0.2209  -0.06  

-0.003 Methanol (1)+ [Mmim][DMP] (2)
82

 0.2518 298.15 0.222 0.2219  -0.03  

 6 

 7 

Figure 14. Predicted results by the semi-empirical model (Eqs.8-9) versus experimental data of 8 

thermal conductivity. 9 

Table 9. Predicted results of the semi-empirical model for thermal conductivity of IL mixtures (Eqs.8-9) 10 

Binary system w 1 T/ K Np 
Predicted deviations 

AARD/ % RDmax/ % 

Water (1)+ [C2mim][EtSO4] (2)
81

 0-1 293 7 2.94  -7.57  

Water (1)+ [C4MIm][TfO] (2)
81

 0-1 293 7 2.77  6.43  

Methanol (1)+ [Mmim][DMP] (2)
82

 0-1 298.15 7 0.09  -0.20  

Overall  0-1 293-298.15 21 1.9 -7.57  
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 1 

Figure 15. Predicted results by ANN model versus experimental data of thermal conductivity. 2 

4 Conclusions 3 

This paper provides semi-empirical models and ANN models to predict thermophysical 4 

properties of IL mixtures involving molecular compounds. Each semi-empirical model only 5 

contain one characteristic parameter, which can be determined by one experimental data. These 6 

models and parameters were checked by 659 data points of density, 545 data points of surface 7 

tension, 594 data points of heat capacity and 21 data points of thermal conductivity. The 8 

proposed semi-empirical models present accurate predictive results with the overall AARDs less 9 

than 2%. Compared to the previous reported methods in Table 1, the semi-empirical models 10 

present equivalent accuracy and are verified by more kinds of IL mixtures. Besides, the 11 

semi-empirical models require only one parameter, which would be more convenient to use. 12 

The more accurate predicted results from the ANN models than the semi-empirical models 13 

have verified ANN as an effective tool in predicting thermophysical properties of IL mixtures. 14 

Even so, the semi-empirical models are better alternative because they provide specific 15 

thermophysical equations and can be used directly without any computer-aided program.  16 

 17 
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Supplementary Material  1 

The predicted results of density, surface tension, heat capacity and thermal conductivity 2 

were given here, including the constant a, b(b’), c and d values of each IL mixture, the full 3 

name and molar fraction of each component, experimental and calculated properties of all the 4 

mixtures by the semi-empirical models and ANN models. 5 
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