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We choose a two-site model for the cation since it mimics an IL

system better than a single-site cation model, and it simplifies

more than preexisting three-site and four-site coarse-grained

models.3,8,11 Less symmetric molecular structure of this model

not only prevents the crystallization that would occur more eas-

ily in a single-site model, but it also enables us to investigate

rotational dynamics, thus we can investigate translational and

rotational glassy dynamics with this model. Its simplicity rela-

tive to other coarse-grained models enables us to simulate for a

longer time.

In both models of ILs, the anion is represented by a single

spherical particle (A) of mass, m, 200 amu, and the cation by

two spherical particles (C1 and C2) connected through a rigid

bond, where the mass of each particle is set to be 100 amu so

that the total mass of cation is the same as that of anion. In

the symmetrically charged model (SCM) the two spheres have

the same charges (+0.5 e, where e is the elementary charge),

while in the asymmetric-charge model (ACM) one (C1) of the

two spherical particles has +1.0 e and the other (C2) zero.

The anion has −1.0 e for both models. The uncharged model

(UCM) has the same molecular structure as the IL models ex-

cept that all the components do not have charges, but we stick

to “cation” and “anion” for big and small species of UCM for the

sake of convenience. On top of the Coulomb interactions be-

tween charged particles, they also interact with Lennard-Jones

potential with each other in all models. We could find no crys-

tallization within the simulation times at each temperature, ex-

cept that ACM crystallizes at T = 1.73, right below the lowest

temperature studied for ACM.

We perform classical molecular dynamics (MD) simulation

using the above models. All the MD trajectories are obtained

from GROMACS 4.5 MD package program.64 The total poten-

tial energy is given by the sum of the pairwise interactions of

two different types: the repulsive Lennard-Jones (LJ) potential

and the Coulomb potential,

Utotal = ∑
<i, j>

{
ULJ(ri j)+UCoulomb(ri j)

}
, (1)

where < i, j > indicates that the sum is performed over the i-th

and j-th coarse-grained particles, and

ULJ(ri j) = 4εi j

[(
σi j

ri j

)12

−

(
σi j

ri j

)6

+
1

4

]
H(rcut − ri j) (2)

and

UCoulomb(ri j) =
1

4πε0

qiq je
2

ri j
. (3)

Here, H(rcut − ri j) is the Heaviside step function, where the

cutoff distance is set to be rcut = 21/6σi j in order to make

the Lennard-Jones potential purely repulsive by adopting the

Weeks-Chandler-Andersen (WCA) potential.65 In all the mod-

els εi j = ε = 2 kJ/mol and σi j = σ = 0.5 nm for all i, j-pairs, and

the bond between the two spheres is rigid with a bond distance

d = 0.8σ . qi is the partial charge of i species (Fig. 1). With

the unit length, energy, and mass, σ , ε, and m, respectively, the

(a) UCM (b) SCM (c) ACM

Fig. 2 Snapshots of UCM (a), SCM (b), and ACM (c) at the lowest

temperature of each model. Colored (green or cyan) and gray

particles respectively denote cations and anions. For ACM we

distinguish the uncharged (0 e) component from the charged (+1.0 e)

one with cyan and green. Compared to UCM, IL models show

alternating structure preventing the same species from being

positioned at the nearest neighbor.

other units are converted by the following relations: unit time,

t0 = (mσ2/ε)1/2 = 5 ps, unit temperature, T0 = ε/kB = 240.5 K,

unit charge, q0 = (4πε0σε)1/2 = 0.08484 e, and unit pressure,

P0 = 262.2 atm.

The model parameters used in this study are compara-

ble to ones from previous simulation studies on ILs, rang-

ing from 1-ethyl-3-methylimidazolium (EMIM) to 1-butyl-3-

methylimidazolium (BMIM) for the cation and BF4 or PF6 for

the anion.3,11,22,66 With those parameters SCM remains as liq-

uid state at room temperature. As the purpose of this study

is focused on finding out general trends in dynamic properties

of ILs with respect to the charge distribution on the molecules,

these models with plausible parameters are thought to be sim-

plest model systems to investigate glassy dynamics of ILs.

All simulations are performed at the fixed reduced density

ρ∗ = ρσ3 = 0.716, where ρ = (N+ +N−)/V is the total num-

ber density with N+ and N− being the number of cations and

anions, respectively. In our simulations we use a total of

4096 ions, i.e., 2048 pairs of IL molecules in our simulations,

Npair = N+ = N− = 2048 contained in the cubic simulation box

of a linear dimension of L = 17.88, and a periodic boundary

condition is applied. The box size is determined by equilibrat-

ing with NPT simulation at P = 10 and T = 1, for SCM, and

we fix all the simulation boxes of all models at all temperatures

with this value. Even if the systems are in high pressure con-

dition and have different pressures by fixing the volume with

the same value, the qualitative trends of dynamics should be

little affected.67 We also checked our results with different size

of systems such as Npair = 512, 1024, 2048, and 4096 to find no

significant finite size effect with Npair = 2048 on the structural

relaxation times. We employ the NV T ensemble combined with

the Nosé-Hoover thermostat in our simulations. The time step

is chosen as δ t = 0.0004, and the relaxation time constant for

the thermostat as 200δ t. Both the LJ potential and the Coulomb

potential are truncated at 5. For calculating long-range electro-

static interaction PME is used. The Verlet leapfrog algorithm

is employed to integrate the equations of motion. Each sys-

tem is first equilibrated from a higher temperature until the
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energy fluctuation is found to be stable for around its structural

relaxation time, τα , and then a production run is carried out

from this equilibrated configuration to obtain a sample trajec-

tory, whose total run time is about 40 times of the τα at each

temperature. At all temperatures studied in this work, 10 inde-

pendent trajectories are produced, and structural and dynamic

properties are averaged over those trajectories.

3 Results and Discussion

3.1 Liquid structure

The structure of the models is firstly investigated by calculating

the radial distribution functions (RDFs), g(r), for all the models,

where r is the distance between the centers of mass of the ions.

While we have calculated RDFs at all the temperatures studied

in this paper, those at the highest (T = 6 for both IL models,

and 1.14 for UCM) and the lowest (T = 1.04, 1.75, and 0.29 for

SCM, ACM, and UCM, respectively) temperatures are shown in

Fig. 3.

Firstly, we note that all the models exhibit typical structures

of amorphous liquid, and they do not show any sign of crys-

tallizations at all temperatures we have studied. The first peak

of RDF determines the closest length scale, which is 1 for all

the species in UCM, the same as the value of σ of our models.

In the ILs’ RDFs the first peaks between the equally charged

species (σ+ = 1.46 and σ− = 1.5 for SCM, and 1.54 and 1.32

for ACM) appear at a distance longer than σ due to the repul-

sive interactions while those between the oppositely charged

species (σ± = 0.92 and 0.94 for SCM and ACM, respectively) at

a distance shorter than σ due to attractive interactions. The

difference between σ± and σ+ or σ− is consistent to the alter-

nating structure of the IL models found in Fig. 2.

The shapes of the RDFs of both IL models are generally simi-

lar to each other. At the high temperature, T = 6, the structures

of RDF are very similar in both cases while the peak splits in

anion-anion RDF for ACM. There are notable differences, es-

pecially at a lower temperature. For example, in the case of

anion-anion RDF of ACM at T = 1.75, there is a distinct sec-

ond peak located at r ≈ 1.8 while it is weakened in SCM. Also,

the cation-cation RDF appears more broader in ACM than in

SCM. The fact that positive charges are distributed more asym-

metrically in ACM than in SCM makes it possible for cations

to have more local arrangements, which yields a broader first

peak in ACM. The environments where a particle is positioned

are different for both models. SCM provides less complex en-

vironment due to symmetry in the charge distribution of the

cation despite the geometrical asymmetry while for ACM an an-

ion forms a strong ion pair preferentially to one (C1) of the two

cationic components, which is a feasible motive inducing struc-

tural heterogeneity, and this may affect dynamic properties. We

will discuss this point later in this paper.

3.2 Dynamic properties

A two-point correlation function characterizing structural relax-

ation is the self-intermediate scattering function (ISF),

Fs(q, t) =

〈
1

N

N

∑
j=1

exp
[
−iq ·∆ r j(t0, t0 + t)

]
〉

=

〈
1

N

N

∑
j=1

cos
[

q ·∆ r j(t0, t0 + t)
]
〉
, (4)

where ∆ r j(t0, t0+ t) = r j(t0+ t)−r j(t0), r j(t
′) is the position vec-

tor of the center of mass of the j ion at time t ′, and 〈· · · 〉 denotes

average over the reference time t0. We take q = q∗ = |q∗| =

2π/σ±, where σ± is the distance at the first peak of the radial

distribution function, gCA(r), of the cation-anion pair, and it is

set to be the shortest length scale, the distance between the

cation and the anion, q∗ = 6.83, 6.68, and 6.28 for SCM, ACM,

and UCM, respectively. We compare the time scales of Fs(q
∗, t)

and Fs(q0, t), where the latter is more conventional.11,51 q0 for

the cation and the anion respectively are the maximum posi-

tions of the static structure factors, SCC(q) and SAA(q), calcu-

lated by Fourier transform of gCC(r) and gAA(r), and the values

are q0 = 4.83(4.83), 4.99(5.07), and 4.69(4.69) for cation(anion)

of SCM, ACM, and UCM, respectively. We will compare the re-

sults with two more different q values: π and q0/2. For the

wave vector, q, being isotropic, we calculate Fs(q, t) in terms of

cosine as in Eq. (4) instead of exponential for dynamic filtering

discussed later in Section 3.3. The α-relaxation time, τα (q), is

defined such that Fs(q, t = τα ) = 1/e.

The rotational dynamics is also taken into account in order to

find its relation to the translational dynamics. The correlation

function characterizing rotational dynamics is defined as

Cl(t) =

〈
1

N

N

∑
j=1

Pl(û j(t) · û j(0))

〉
, (5)

where Pl is Legendre polynomial of order l, and û j(t
′) is the

orientation vector of the j-th cation at time t ′. The rotational

relaxation time, τ
(l)
R , is defined such that Cl(t = τ

(l)
R ) = 1/e, and

we take l = 2 for its experimental significance.26,59

Comparing the length scales, q0 and q∗, we find that with

q∗ the Fs(q, t) and C2(t) of the cation show the more similar

decays, and the two time scales are comparable and coupled:

τ
(2)
R ∝ τα (q

∗), shown in Fig. 6(a). Fs(q
∗, t) and C2(t) at the

selected temperatures for the cation (full line) and the anion

(dashed line) are shown in Fig. 4. Both correlation functions

at high temperatures show single decay while at low tempera-

tures the process splits into two steps and the long time decay is

nonexponential, and this nonexponentiality becomes greater as

temperature decreases. According to experimental40,41,55 and

simulation studies53,54 on glass forming liquids, this nonexpo-

nential decay of translational dynamics is attributed to hetero-

geneous dynamics.

τα of ACM increases more steeply than for SCM as temper-

ature decreases (Fig. 6(b)). All the models show Arrhenius
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Fig. 3 Center of mass radial distribution functions, RDFs, at the highest temperatures (top) and the lowest temperatures (bottom) of SCM, ACM,

and UCM, respectively. gCC, gAA, and gCA are the RDFs of cation-cation, anion-anion, and cation-anion pairs, respectively. Both IL models have

similar liquid structures at high temperature (left and center of top panels). Unlike UCM IL models show alternating structure: the first peak of gCA

appears closer than those of gCC and gAA. (See Fig. 2)

behavior at high temperature, and they start to show super-

Arrhenius behavior at T <2.5, 3.6, and 0.6 for SCM, ACM, and

UCM, respectively, τ ∝ exp [A/T ν ], where ν > 1, thus fragile.

Two major fitting laws of the super-Arrhenius behavior of frag-

ile liquids are Vogel-Fulcher-Tamman (VFT) and parabolic68,69

forms, which have different origin of fragility: whether there

is finite temperature glass transition (the former) or there is

no such transition (the latter). Both are fitted well (Fig. 6(c)),

however, in the temperature range of our simulations. Since

ACM is easy to crystallize below the lowest temperature in this

work, the range is quite narrow. SCM and UCM are not thought

to be in deeply supercooled regime that in this temperature

range we cannot discuss the validity of the two explanations.

From its appearance perspective ACM seems the most fragile.

Another way of obtaining the dynamical properties is

through the mean squared displacement (MSD) defined as

〈
∆ r2(t)

〉
=

〈
1

N

N

∑
j=1

|∆ r j(t0, t0 + t)|2

〉
, (6)

and the mean squared angular displacement (MSAD)a as

〈
∆φ2(t)

〉
=

〈
1

N

N

∑
j=1

|∆φ j(t0, t0 + t)|2

〉
, (7)

where

∆φ j(t
′, t ′′) =

∫ t ′′

t ′
dtω j(t), (8)

and ω j(t) is the angular velocity of the j-th cation at time

t.50–52,61 The translational diffusion constant is obtained from

the Einstein relation,70 D = limt→∞

〈
∆ r2(t)

〉
/6t, and we fit

the MSDs at the long time regime, i.e., the time scale at

which
〈
∆ r2(t)

〉
∝ t. The rotational diffusion constant, DR =

limt→∞

〈
∆φ2(t)

〉
/4t, is obtained from the MSADs. The MSDs

for the cation and the anion and the MSADs for the cation are

calculated for several temperatures ranging from T = 1.04 to 6

for SCM, T = 1.75 to 6 for ACM, and T = 0.29 to 1.56 for UCM as

presented in Fig. 5. At low temperature the time scales for all

the systems can be separated into three distinct time regimes:

the ballistic regime at short time (
〈
∆ r2(t)

〉
∝ t2), the diffusive

regime at long time (∝ t), and the subdiffusive regime at in-

termediate time (∝ tα ,0 < α < 1). All the models show sub-

a Detailed method of MSAD calculation and dependence of the time interval on it

is described in ESI.
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Fig. 4 Intermediate scattering function at the selected temperatures for the cation (full line) and the anion (dashed line) at the length scale,

q = q∗ = 2π/σ±, where σ± is the peak position of gCA (Fig. 3), and the values are 0.92, 0.94, and 1, respectively in SCM (left) ACM (center), and

UCM (right). Comparing the length scales with q = q0 and q∗, we find that at this length scale the Fs(q
∗, t) (top) and C2(t) (bottom) show the most

similar decays and the two time scales, τα (q
∗) and τ

(2)
R , of the cation are comparable. The ISF at the high temperature shows single decay while

at low temperatures the process at long time decays nonexponential, and this nonexponentiality becomes greater as temperature decreases.

diffusive dynamics at the intermediate time scale at low tem-

perature, and this time regime becomes longer as temperature

decreases. The rotational diffusion, however, is quite differ-

ent from the translational one in that the subdiffusive regime

is much shorter for the former at low temperature. The time

scales represented by ISFs are comparable to those by MSDs

(Fig. 5), in that the process at the short time decay falls into

the ballistic regime, the long relaxation time corresponds to the

diffusive regime, and the plateau at the intermediate time scale

is attributed to the subdiffusive motion.

This subdiffusive behavior is one of distinct properties of

glass formers, and has been perceived as being ascribed to a

multiple step process. When a particle is trapped in a cage by

other particles, it takes time to escape, which causes the sub-

diffusive dynamics.16,17,19,22 According to simulation studies

on IL systems,17,18,53 the dynamics becomes heterogeneous at

the time scale a particle is about to escape the cage. From this

context one may expect that the rotational motion shows less

heterogeneous dynamics.

It is obvious that the Coulomb interaction makes the dynam-

ics slower comparing the ISFs and the MSDs knowing from the

temperature range of IL models and UCM. Comparing the trans-

lational motion of the two IL models, SCM is faster than that

in ACM at the same temperatures. Since the masses and the

molecular geometry of each species for both models are set

to be the same, the difference of the translational motion is

mainly due to the difference in the molecular charge distribu-

tion in a cation. It is notable that these models show more con-

sistent results than the one-site models,6 where the one with

the charge off-centered produces faster dynamics than the one

with the charge at the center, but in the experiment study the

dynamics of ILs having cations with charge delocalized, such as

BMIM and N-butyl-N-methylpyrrolidinium (P14), are greater

than those in systems with charge more off-centered, such as

N-hexyl-N,N,N-trimethylammonium (N6111).5

Comparing the structural relaxation time of each ion species,

the anion, having the smaller size than the cation, relaxes faster

than the latter at high temperature of all models (see Fig. 4).

With cooling down the anion relaxes more slowly than the

cation for IL models, and the relaxation of both species for UCM

collapses. The faster relaxation of the cation in ILs is consis-

tent to previous studies.11,13,20 Since the geometry and all the

other parameters are the same for all the models, this discrep-

ancy between the ion species of ILs is attributed to the charge

distribution.

On the other hand, the MSD in ACM shows quite a differ-

ent trend from the ISF. The diffusive motion of the anion is

faster than the cation, and the reverted trend at the subdiffu-

sive regime occurs only at low temperature. Since in typical ILs

the cation has greater D than the anion,4,11 the ACM is consid-

ered as an extreme case in charge distribution.

The Stokes-Einstein (SE) relation, D ∼ kBT/η , where η is

shear viscosity, is valid in wide range of liquids, but it breaks

down in glass forming liquids near glass transition tempera-

ture, and it has been adopted as an evidence showing glassy

dynamics. Two alternate relations have been adopted in studies

on the violation of the SE relation in order to reduce computa-

tion time requiring for calculating the shear viscosity. In one
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Fig. 5 Mean squared displacement of the constituents of SCM (left), ACM (center), and UCM (right), where the upper panels indicate

translational motion for the cation (full line) and the anion (dashed line), and the bottom panels indicate rotational motion. In each panel

temperature decreases from the upper to the lower graph. At low temperatures all the models show subdiffusive dynamics at the intermediate

time scale, and this time regime becomes longer as the temperature decreases. The rotational motion shows less subdiffusivity than the

translational motion at all models.

group of studies τ is used as the approximation for η , Dτ/T

thus becomes constant.52 In the others η is approximated to

be τ/T to make Dτ constant.11,29,30 Following the latter way,

we look for the breakdown of the SE and the Debye-Stokes-

Einstein (DSE) relations. When the dynamics of the system is

well described by mean-field behavior, Fs(q, t) = exp[−q2Dt] and

Cl(t) = exp[−l(l+1)DRt], thus q2Dτα = 1 and l(l+1)DRτ
(l)
R = 1.

Figs. 6(d)-(f) show the breakdown of the SE relation at low

temperature. Dynamic heterogeneity induced by the correlated

motion of mobile particles, or hierarchical nature of dynamics

can explain this breakdown.29,30 At T ≈ 2 for IL models and

T ≈ 0.6 for UCM, the diffusion constants, D and DR, and the

relaxation times, τα and τ
(2)
R , start decoupling with tempera-

ture decreasing. It is noticeable that the temperatures at which

the diffusion constant and the relaxation time start to decou-

ple fall into those where the subdiffusive regime starts to arise

apparently.

This weak violation of the SE relation gives them the scal-

ing exponent values between 0.75 and 0.9 at low temperature,

via D ∼ τ
−ζD
α , and the values of ζD are shown in Fig. 6. At

long length scale translational motion converges to the Fickian

diffusion, which has been considered as homogeneous dynam-

ics. The rotational diffusion, however, shows strong decoupling

between DR and τ
(2)
R . While τ

(2)
R shows similar trend with τα

(Figs. 4 and 6(a)), the rotational diffusion at low temperature

does not become as slow as the translational one (Fig. 5). This

trend has also been observed in other glassy systems made up

of anisotropic molecules.51,52 With this strong violation of the

DSE relation, one might interpret the rotational motion is more

dynamically heterogeneous than translational motion, but the

dynamic heterogeneity measured by the four-point correlation

function shows inconsistent evidence. We will discuss this in

the next section.

3.3 Dynamic heterogeneity

We first briefly introduce the formalism of four-point correla-

tion functions because dynamic heterogeneity has been widely

studied in this frame work.25,27,28,32,34–36,62 A four-point den-

sity correlation function detects the correlation between the dy-

namics at the different positions. Since the correlation func-

tion was originally coined for spin glass systems,25,71 in order

for it to be applicable in a continuous position space, corre-

lation between ρ(x0, t0) and ρ(x0, t0 + t) is coarse-grained with

ξ1: ρ(x0 +y, t0) and ρ(x0 +y, t0 + t) with ξ2,25,35 where ρ(x′, t ′)

is the microscopic density at position x′ and time t ′. Thus,

the four-point correlation function, G4(y, t;ξ1,ξ2), for the ex-

act form of which we refer to previous studies,25,27,28,34–36,62

correlates the dynamics of S0 and Sx delineated in Fig. 7 with

t1 − t0 = τ1 = t. The characteristic length scale of dynamic het-

erogeneity, ξdh, is obtained by varying y with the other param-

eters usually fixed at τ1 = τα , ξ1 = ξ2 = 2π/k.35 We postpone

discussion on the dynamic length scale until our next study and

focus on the time scale.72

The time scale of the four-point correlation function is ex-

tracted from the four-point dynamic susceptibility, χ4(k, t),

which is the dynamic correlation between two regions inte-
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Fig. 6 (a) τ
(2)
R is scaled by τα (q

∗) very well: τ
(2)
R ∝ τ1

α . The reorientational and the structural relaxation is very well coupled. (b) τα (q
∗) is plotted

versus 1/T. (+) and (-) respectively indicate the cation and the anion. The temperatures for UCM is indicated at the top scale. At low temperature,

T< 2.5, 3.6, and 0.6 for SCM, ACM, and UCM, respectively, all the models show non-Arrhenius behavior of the α-relaxation time, τα (q
∗), of the

intermediate scattering functions. (c) At high temperature τα (q
∗) and T are fitted by the Arrhenius law, τα = τ∞ exp [T∞/T ], where T∞ = 6.1(6.7),

7.1(7.8), and 2.0(1.9) for cation(anion) of SCM, ACM, and UCM, respectively. ACM looks the most fragile. The arrows at the bottom indicate the

onset temperature, To, for the parabola fitting, lnτ ∼ 1/T 2 −1/T 2
o , and the arrows at the top indicate the singular point, T0, from the VFT fitting,

lnτ ∼ 1/(T −T0). (d)-(f) The scaling relation, D ∼ τ
−ζD
α , shows weak violation of the SE relation with the exponents, ζD between 0.75 and 0.9 at

low temperature and at the short length scale, q = q∗. As the length scale becomes longer the SE relation recovers. DR is much more decoupled

from τ
(2)
R than the breakdown of the translational SE relation. q values are noted in the figure, and for brevity only the shortest and the longest

length scales are indicated for the anion.

grated over all space of y. Its explicit form,

χ4(k, t) = N
{〈

F̂s(k, t0, t0 + t)2
〉
−
〈
F̂s(k, t0, t0 + t)

〉2
}
, (9)

depicts the dynamic fluctuation of the two-point correlator,

F̂s(k, t0, t0 + t). The characteristic time scale, t4, of dynamic het-

erogeneity in this frame work is defined as the time at which

the dynamic fluctuation is the maximum. It has been reported,

however, to be proportional and similar to the time scale, τα ,

of a two-point density correlation function, i.e., t4 ∝ τα ,27,28,72

and the models studied in this paper are no exceptions although

the results are not shown here.

On the other hand, a three-time correlation function (3TCF),

a four-point correlation function in time domain, defined anal-

ogously to the conventional four-point correlation function,

G4(y, t;ξ1,ξ2), yields a time scale distinct from t4. The dynam-

ical correlation between different time windows is expressed

as39,43–47,58

F̃4(τ1, tw,τ2;k1,k2) = 〈ρ̂(−k1, t0)ρ̂(k1, t1)ρ̂(−k2, t2)ρ̂(k2, t3)〉

−〈ρ̂(−k1, t0)ρ̂(k1, t1)〉〈ρ̂(−k2, t2)ρ̂(k2, t3)〉

=
〈
F̂s(k1, t0, t1)F̂s(k2, t2, t3)

〉

−
〈
F̂s(k1, t0, t1)

〉〈
F̂s(k2, t2, t3)

〉
, (10)

where the two-point correlator, F̂s(k, t ′, t ′′), correlates between

ρ̂(−k, t ′) and ρ̂(k, t ′′), and ρ̂(k, t) is the Fourier transform of

the microscopic density. By adopting F̂s(k, t ′, t ′′) = 1
N ∑ j cos[k ·

∆ r j(t
′, t ′′)] as in Eq. (4) and setting the two length scales, k1 and
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Fig. 8 τdh can be scaled by τα through the scaling relation τdh ∝ τ
ζdh
α , where all the systems (left: SCM, center:ACM, right: UCM) have similar

scaling exponent, ζdh ≈1.2. The solid line is a guide. For the anions, only the longest and the shortest length scale are plotted for brevity, but the

trend is the same as for the cations. (Insets) τ
(∆)
dh ∝ τdh at all systems with q = q∗ except at the lowest temperature of ACM showing a little

discrepancy. It is ascribed to the statistical error of τ
(∆)
dh since it needs longer trajectories to integrate (see Eq. (14)).

Consequently, the relation between τdh and τα , is obtained

in Fig. 8. From the results of D and the τα ACM shows slower

dynamics, leading us to expect that τdh of ACM will be greater

than that of SCM and UCM, thus greater dynamic heterogene-

ity. When the models are compared at the same temperatures,

it seems as if charge induced the dynamic heterogeneity and as

if asymmetry in charge distribution strengthened it.3 τdh, how-

ever, can be scaled by τα through the scaling relation τdh ∝ τ
ζdh
α ,

where ζdh ≈ 1.2 in all the systems: ACM at the shortest length

scale, q = q∗, may seem an exception with a bit greater value,

but it converges to ≈ 1.2 at longer length scales.

It is noteworthy that UCM is another kind of 50/50 binary

mixture glass-forming liquids, some of which have been widely

used as model systems29,38,39,47,73 to study glassy dynamics.

The most distinctive feature of UCM from the others is that the

cation is made up of two components. As other binary mix-

ture models UCM shows heterogeneous dynamics, and its het-

erogeneity does not change by assigning charges into its com-

ponent because the dynamics of both SCM and ACM are not

much different from that of the uncharged counterpart, UCM,

if the temperatures are rescaled (see Figs. 6(b)-(c)), and all

the models have the same exponent, ζdh. It was reported that

the time scales of dynamic heterogeneity have different scal-

ing behavior with respect to τα when the types of short-range

interaction differ.38 Since the short-range interaction and the

structure of the models in this paper are the same, we believe

that dynamic properties are not affected by the long range in-

teraction, but rather by the molecular structure, which are de-

termined by short range interaction. This result is consistent to

the previous study on a coarse-grained IL model, where it was

found that the work to individual ions is exerted primarily by

the short-ranged LJ force, and thus argued that the dynamics is

dominantly influenced by the LJ interaction.11

The time scale of dynamic heterogeneity of other glass form-

ing liquids are worth while to be compared. As atomistic

models, binary mixture systems show similar scaling behav-

ior. Among them Ref. [38], where the 3TCF similar to that

in this paper was employed, is generally in agreement with the

present study. It was manifested that the fragile liquids have

greater values of ζdh than the strong liquid, e.g. ζdh ≈ 1.9, 1.25,

and 1.5 for the fragile liquids: Wahnström,73 Kob-Andersen,74

and the soft sphere models,75 respectively, while a strong liquid

model76 mimicking SiO2 shows ζdh ≈ 0.9. Another study with

the soft sphere model found the exponent ≈ 1.08 using a 3TCF

with a correlator different from the one used in the present pa-

per.47 This power-law relation is a general phenomenon in all

the above models including the three models studied in this pa-

per. The scaling relation is also comparable to that of KCMs,

spin models for supercooled liquids. According to the study in

Ref. [46], for both strong and fragile models ζdh ≈ 1, where

they showed that a fragile system displays slightly more hetero-

geneous dynamics: 1.06 for the fragile liquid and 0.98 for the

Table 1 Comparison of the exponent, ζdh, values with other models

(τdh ∝ τ
ζdh
α )

Models IL/UCMb Wahnc KAc SSc SSd NTWc KCMe

ζdh 1.2 1.9 1.25 1.5 1.08 0.9 ≈ 1e

b IL models include SCM and ACM. All the models studied in this paper have the

same exponent.
c Ref. [ 38]. KA: Kob-Andersen 80/20 LJ binary mixture, Wahn: Wahnström 50/50

LJ binary mixture, SS: Soft sphere 50/50 soft core binary mixture, NTW: tetrahe-

dral network-forming 1:2 mixture
d Ref. [ 47]. SS: the same model as SS in Ref. [ 38] with τdh calculated from a

different correlator
e Ref. [ 46]. ζdh = 1.06 for the East model, a KCM for a fragile liquid, and 0.98 for

the FA model for a strong liquid.
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strong liquid, but the exponents do not show as much differ-

ence in fragility as in atomistic models. The exponent values

are summarized in Table 1.

Now, it seems appropriate to note an interesting finding that

the length scale of structural relaxation is reflected very little

by the dynamic heterogeneity, in contrast to the breakdown of

the SE relation (see Fig. 8 and Figs. 6(d)-(f)). As the length

scale increases, the ISFs become exponential and the diffusion

and the structural relaxation are coupled. From this perspective

it should follow the dynamics of Brownian motion at a long

length scale. Time scale of dynamic heterogeneity studied in

this paper, however, maintains the same exponent regardless of

the length scale. It persuades us to believe that the dynamics is

Fickian at the long length scale but still heterogeneous although

we did not capture a tangible evidence as in Ref. [60]. It is

obvious that τdh is a characteristic time scale of dynamic het-

erogeneity that is distinguished from the two-point time scales,

τα and τ
(2)
R .

Moreover, in the perspective of dynamic heterogeneity time

scale, it is also notable that translational and rotational mo-

tions are strongly coupled, both having the same exponent,

ζdh, despite the strong decoupling in diffusion between the two

motions (see Fig. 8 and Figs. 6(d)-(f)). For the discussion on

this we employ a previous study on supercooled model system

with dumbbell molecules,51 where the authors ascribed this in-

consistency to the inadequacy of the definition, Eq. (8). They

found that
〈
∆φ2(t)

〉
increases diffusively even when the orien-

tation of the molecule is actually trapped and doing librational

motion. This leads decoupling between DR and D with the for-

mer increasing further. It needs in-depth investigation to tell if

this interesting discrepancy comes from real physics or contri-

bution from the librational motion in rotational dynamics. Nev-

ertheless, we used this definition because there is no other way,

at the present, of calculating angular displacement unbound-

edly. If the librational motion were possible to be expressed in

a proper way, excluding the librational motion from stacking

fallaciously to increase MSAD continuously, the breakdown of

the DSE relation would not be that severe. f

4 Conclusions

We investigated how the charge distribution on ions and the

length scale of the structural relaxation effects the dynamic

properties and the dynamic heterogeneity of IL systems by

performing the molecular dynamics simulations on two sim-

ple models of ILs and their neutral counterpart: symmetric-

charge model (SCM), asymmetric-charge model (ACM), and

uncharged model (UCM). We found that all the models main-

tain amorphous liquid structures, and they show nonexponen-

tial relaxation and subdiffusive behavior at low temperatures.

Coulomb interaction lowers the temperature at which glassy

dynamics appears, and the asymmetry in charge distribution

f A brief speculation on this is included in the ESI, related to the dependence the

time interval on MSAD.

provokes the time scale of dynamics longer. SCM shows similar

dynamic properties of typical ILs in that the cation shows faster

process than the anion in both structural relaxation and diffu-

sion. Relations between τα and temperature show that all mod-

els behaves like fragile liquids. The SE relation breaks down at

short length scales, and it recovers as the length scale increases.

The rotational motion, however, shows strong decoupling be-

tween the diffusion and the relaxation time: strong breakdown

of the DSE relation.

We correlated a four-point correlation function to its two-

point correlation function by adopting the 3TCF, analogously

to the conventional four-point correlation function. The life-

time, τdh, of dynamic heterogeneity defined from the 3TCF,

scales very well with the time scale, τα , of the two-point cor-

relation function: τdh ∝ τ
ζdh
α with ζdh ≈ 1.2, which holds for

both the translational and the rotational correlation functions

with the same exponent. This power-law relation is a general

phenomenon in glass-forming liquids, similar to the relation be-

tween ξdh and τα , although the exponent is dependent on the

models from other studies: fragile liquids have greater values

than strong liquids. The rotational dynamics also shows the

same dynamic heterogeneity giving the same ζdh value as the

translational one despite the strong breakdown of DSE relation.

It is apparent that the time scale of dynamic heterogeneity is a

distinctive time scale from the two-point correlation functions,

such as the structural relaxation and the rotational relaxation.

The exponent, ζdh, is irrelevant to the charge distribution on

the molecule, type of interactions, and even the length scales

of the two-point correlation function. With the longer length

scale the structural relaxation is detected, the more it becomes

Fickian while the dynamics is seemingly maintaining its hetero-

geneity. We expect that our results provide useful insight on the

relation between the dynamic heterogeneity and the types of

molecular interaction although the 3TCFs need more theoreti-

cal supports compared to the conventional four-point correla-

tion function. The length scale and other properties of dynamic

heterogeneity of these models are to be obtained in our further

study.72
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