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Chemical control of dissolution-driven convection in
partially miscible systems: theoretical classification

V. Loodts, L. Rongy and A. De Wit

Dissolution-driven convection occurs in the host phase of a partially miscible system when a
buoyantly unstable density stratification develops upon dissolution. Reactions can impact such
convection by changing the composition and thus the density of the host phase. Here we study
the influence of A+B→ C reactions on such convective dissolution when A is the dissolving species
and B a reactant initially present in the host phase. We perform a linear stability analysis of related
reaction-diffusion density profiles to compare the growth rate of the instability in the reactive case
to its non reactive counterpart when all species diffuse at the same rate. We classify the stabilizing
or destabilizing influence of reactions on the buoyancy-driven convection in a parameter space
spanned by the solutal Rayleigh numbers RA,B,C of chemical species A, B, C and by the ratio β
of initial concentrations of the reactants. For RA > 0, the non reactive dissolution of A in the host
phase is buoyantly unstable. In that case, we show that reaction is enhancing convection provided
C is sufficiently denser than B. Increasing the ratio β of initial reactant concentrations increases
the effect of chemistry but does not significantly impact the stabilizing/destabilizing classification.
When the non reactive case is buoyantly stable (RA < 0), reactions can create in time an unstable
density stratification and trigger convection if RC > RB. Our theoretical approach allows classifying
previous results in a unifying picture and developing strategies for chemical control of convective
dissolution.

1 Introduction
Dissolution-driven convection can occur in partially miscible sys-
tems when a phase dissolves into another one with a finite solubil-
ity. Even if the density stratification is initially buoyantly stable, a
hydrodynamic instability can develop in the gravity field if the dis-
solution modifies the density of the host phase. This situation can
happen in solutions separated by a semi-permeable membrane1,2

or in biphasic systems, with the dissolving phase being for in-
stance liquid3,4, solid5, or gaseous6–13. Dissolution-driven con-
vection has recently gained much interest in the context of carbon
dioxide (CO2) capture or sequestration14–16. When CO2 is in-
jected in geological sites, it dissolves into a host liquid phase (oil
or water), increasing thereby its density, which results in a buoy-
antly unstable density stratification. The contact zone between
the denser CO2-rich and the less dense bulk solution layers is then
destabilized in the form of buoyancy-driven fingering10–12,14–19.
It is of current interest to characterize this dissolution-driven con-
vective instability as it contributes to the mechanism of CO2 se-
questration known as “solubility trapping”15.
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In particular, the early-stage development of this instability
has been characterized both theoretically and experimentally for
porous media or Hele-Shaw cells with a focus on the critical
time and wavenumber for the onset of convection5,10–12,16,18–29.
Studies have reported the impact on these properties of bound-
ary conditions21,22,28, anisotropy of the permeability16,23–25,28,
geometry of the system26, compressibility and interface move-
ment27, a geothermal gradient28,29, and control parameters in
laboratory experiments5,10–12,19. However, an important aspect
that has been less investigated is the impact of chemical reactions
on such instabilities. This is important as geochemical reactions
may occur between dissolved CO2 and minerals in geological stor-
age sites30–34.

It is known that chemical reactions can affect the density of the
solution and thus impact the development of buoyancy-driven in-
stabilities in miscible35–37 and immiscible systems38. Reactions
can similarly affect the early-stage development of dissolution-
driven convection3,13,31–34. A reaction between the dissolving
species and a solid delays the onset of convection as the reac-
tion consumes the dissolving species at the origin of the instabil-
ity31–34. However, as the solid reactant is static, the dissolving
species is then the only one contributing to the dynamics in the
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fluid phase. By contrast, it has been shown in miscible systems
that when all species contribute to hydrodynamics, different be-
haviors can be observed35,39,40.

Recently, we have shown that chemical reactions with
a dissolved reactant can either stabilize3,13 or destabilize13

dissolution-driven convection compared to the non reactive case.
In particular, we have shown an experimental example of a reac-
tion that accelerates the onset of convection after dissolution of
CO2 in an aqueous host phase. The dissolving CO2 reacts with a
base (sodium hydroxide, NaOH) present in the host phase, lead-
ing to density profiles even more unstable with regard to con-
vection than the non reactive profile. For the case of an ester
on top of water, its dissolution can on the contrary be slowed
down by a reaction3. We have shown theoretically that the rel-
ative contributions of the dissolved reactant and product to the
density can control the effects of reactions on dissolution-driven
convection13. However, the system is also characterized by other
parameters, such as the contribution of the dissolving species to
the density or the ratio between the initial concentration of the
reactants. There is thus a need to assess the impact of these pa-
rameters on the possibility of a reaction to control the convective
dissolution.

In this context, the objective of this study is to propose a gen-
eral framework to classify the effects of A+B → C chemical reac-
tions between the dissolving species A and a dissolved reactant B
on the early-stage development of dissolution-driven convection.
To do so, we consider both cases where the dissolving species
increases or decreases the density in the host phase. We also
analyze the impact on convection of the ratio of initial reactant
concentrations. This generalized classification highlights the link
between previous disparate studies and paves the way for pre-
dictions in new experimental systems. More specifically, we cou-
ple the incompressible Darcy’s equations for the velocity of the
fluid in a porous medium to two-dimensional reaction-diffusion-
convection (RDC) equations for the concentration fields through a
linear state equation for the density of the fluid. We suppose that
all diffusion coefficients are equal to avoid any double diffusive
instabilities. We first classify the generic reaction-diffusion (RD)
density profiles as a function of their properties (monotonic or
non-monotonic), which impacts the development of dissolution-
driven convection. To quantify the effect of the reaction on the
instability, we then perform a linear stability analysis.

This article is structured as follows: in section 2 we describe
the physical system and the model. We classify the RD density
profiles in section 3. In section 4, we describe the method of
linear stability analysis and use it to characterize the early-stage
development of the instability for different areas of the parame-
ter space. Finally, in section 5, we show how our classification
encompasses previous studies and we discuss the implications of
our results for possible applications, in particular CO2 sequestra-
tion.

2 Description of the physical model
Let us consider a pure phase A, called here the dissolving phase or
species, which dissolves into a host solution containing a reactant
B at an initial concentration B0

3,13. The two phases are in contact

(a) (b)

Fig. 1 Two-dimensional model system. The dashed line represents the
boundary layer of A dissolving into the host phase. Case (a): the host
phase is below the dissolving phase; case (b): the host phase is above
the dissolving phase.

along a horizontal interface and the initial condition is buoyantly
stable with the less dense phase lying on the top. Figure 1a illus-
trates the case where the denser host phase is located below the
less dense dissolving phase while the opposite case (less dense
host phase on the top) is shown in Fig.1b.

We assume a local equilibrium at the interface located at z = 0
so that the concentration of A at the interface is always equal to
its solubility A0 in the host phase, which may depend on exper-
imental parameters (temperature, salinity, pressure, ...)19 and is
not limited by diffusion. We assume that the volume of the host
phase does not change significantly upon dissolution of A and do
not consider any thermal29,41 or dispersion effects42.

We further assume that the interface is only permeable to A
but impermeable to B and C, i. e. B and C can not dissolve
into phase A. In this situation, we can focus on the dynamics in
the host phase only, which is considered infinite in the horizontal
direction y and semi-infinite in the vertical direction z from the
interface located at z = 0 to the bulk of the reactive host phase at
z → ∞. A and B react in the host phase according to the reaction
A+B → C with a kinetic constant q.

To describe the dynamics in the host phase, we choose Darcy’s
equations as flow equations for the incompressible velocity field
uuu = (u,v) because it describes flow dynamics in porous media
like geological sites for CO2 storage14 and thin Hele-Shaw cells43

used in laboratory experiments. The incompressible Darcy’s equa-
tions read:

∇∇∇p = −μ
κ

uuu+ρg, (1a)

∇∇∇ ·uuu = 0, (1b)

where p is the pressure and ρ is the density of the host solution.
The dynamic viscosity μ, permeability κ and norm of the gravity
field g = ‖ggg‖ are assumed constant.

The RDC equations governing the evolution of the concentra-
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tion fields A, B and C read:

∂A
∂ t

+(uuu ·∇∇∇)A = DA∇2A−qAB, (2a)

∂B
∂ t

+(uuu ·∇∇∇)B = DB∇2B−qAB, (2b)

∂C
∂ t

+(uuu ·∇∇∇)C = DC∇2C+qAB. (2c)

To avoid any double diffusive instabilities, we assume that the
molecular diffusion coefficients D j are constant and equal (D =

DA = DB = DC). The following linear state equation for ρ 25 cou-
ples Eqs.(1) and Eqs.(2):

ρ = ρ0(1+αAA +αBB+αCC), (3)

where ρ0 is the density of the solvent of the lower phase, α j =
1
ρ0

∂ρ
∂ j is the solutal expansion coefficient of species j of concentra-

tion j.

To obtain dimensionless equations, we use the characteristic
RD scales13,39,40: length lc =

√
Dtc, velocity uc =

√
D/tc with the

reactive time scale tc defined as

tc =
1

qA0
. (4)

For the case illustrated in Fig.1a, where the gravity field and the
z axis have the same direction (ggg = g111z with 111zzz the unit vector
along z), we define

Ã = A/A0, B̃ = B/A0, C̃ =C/A0, (5a)

z̃zz = zzz/lc, t̃ = t/tc, ũuu = uuu/uc, (5b)

p̃ =
p− pa −ρ0gz

pc
, ρ̃ =

(ρ −ρ0)gκlc
μD

. (5c)

The ambient pressure pa, the hydrostatic pressure ρ0gz and the
pressure scale pc = μD/κ have been used to define a dimension-
less dynamic pressure.

Substituting the nondimensional quantities (5) in Eqs.(1)-(3)
and dropping tildes for convenience leads to the dimensionless
model

∇∇∇p = −uuu+(RAA+RBB+RCC)111zzz, (6a)

∇∇∇ ·uuu = 0, (6b)

∂A
∂ t

+(uuu ·∇∇∇)A = ∇2A−AB, (6c)

∂B
∂ t

+(uuu ·∇∇∇)B = ∇2B−AB, (6d)

∂C
∂ t

+(uuu ·∇∇∇)C = ∇2C+AB, (6e)

where R j is the solutal Rayleigh number of species j expressed for
the case illustrated in Fig.1a as

R j =
α j A0 κ lc

ν D
g (7)

with ν = μ/ρ0 the kinematic viscosity of the solvent. In the rest of
this study, we will focus on the description of the case shown in
Fig.1a. It is, however, straightforward to extend the conclusions
of our study to the case shown in Fig.1b (ggg =−g111zzz) by replacing
g by −g in Eq.(7). Note that the Rayleigh number RA is positive in
case (1a) if αA > 0, i.e. A dissolves from the top of the host phase
and increases the density of the solution. In case (1b) where A
dissolves from the bottom of the host phase, RA > 0 if αA < 0,
i.e. A decreases the density of the solution. In both cases without
reaction, RA > 0 corresponds then to the development of a buoy-
antly unstable density stratification upon dissolution of A in the
host phase while RA ≤ 0 corresponds to the stable case.

The dimensionless density of the solution can be reconstructed
from the concentration fields as

ρ = RAA+RBB+RCC. (8)

We note that in Eq.(8), R j quantifies the contribution of species j
to the density of the solution. Introducing in Eqs.(6) the stream
function Ψ with u =−Ψz and v = Ψy, which satisfies Eq.(6b), and
using the notation ∂x f = ∂ f

∂x for the derivative of a function f
relative to a variable x yields:

∇2Ψ = RA∂yA+RB∂yB+RC∂yC, (9a)

∂tA−∂zΨ∂yA+∂yΨ∂zA = ∇2A−AB, (9b)

∂tB−∂zΨ∂yB+∂yΨ∂zB = ∇2B−AB, (9c)

∂tC−∂zΨ∂yC+∂yΨ∂zC = ∇2C+AB. (9d)

with ∇2 = ∂ 2

∂y2 +
∂ 2

∂ z2 . The initial conditions at t = 0 and ∀y are

Ψ(z) = 0 ∀z, (10a)

A(z = 0) = 1; A(z > 0) = 0, (10b)

B(z) = β = B0/A0 ∀z, (10c)

C(z) = 0 ∀z. (10d)

The boundary conditions ∀y, t are

Ψ(z = 0) = 0; Ψ(z → ∞) = 0, (11a)

A(z = 0) = 1; A(z → ∞) = 0, (11b)

∂zB(z = 0) = 0; B(z → ∞) = β , (11c)

∂zC(z = 0) = 0; C(z → ∞) = 0. (11d)

The addition of Eqs.(9c) and (9d) with the initial conditions
(10c)-(10d) and boundary conditions (11c)-(11d) shows that
(B+C) remains constant over time and equal to its initial value
β . Therefore, the concentration field C can be reconstructed from
B with

C = β −B, ∀y,z, t. (12)

By inserting Eq.(12) in Eq.(9a), our final model is function of A
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and B only and reads:

∇2Ψ = RA∂yA− (RC −RB)∂yB, (13a)

∂tA−∂zΨ∂yA+∂yΨ∂zA = ∇2A−AB, (13b)

∂tB−∂zΨ∂yB+∂yΨ∂zB = ∇2B−AB. (13c)

Further, we also simplify the expression for the density profile in
the host phase by inserting Eq.(12) in Eq.(8):

ρ = RAA− (RC −RB)B+RCβ . (14)

The parameters of the model are the Rayleigh number RA, the
difference RC − RB between the Rayleigh numbers of C and B,
and the initial concentration β of reactant. Let us classify the RD
density profiles reconstructed from the RD concentration profiles
with Eq.(14).

3 Classification of Reaction-Diffusion den-
sity profiles

It is crucial to analyze the RD density profiles to qualitatively un-
derstand the development of the buoyancy-driven instability. In
the non reactive case, the only species contributing to the den-
sity profile is A. Its concentration profile is solution of Fick’s law
2ηA′ + A′′=0 with the notations f ′ = d f

dη , f ′′ = d2 f
dη2 and η the

self-similar variable η = z
2
√

t
, the initial conditions (10b) and the

boundary conditions (11b), i. e. A = 1− erf(η). The related non
reactive density profile is thus

ρ(η) = RAA(η) = RA[1− erf(η)]. (15)

Figure 2a shows that the non reactive concentration profile is
monotonically decreasing as A enters into the solution from the
interface and then diffuses to the bulk of the host phase. When
RA > 0, in case 1a, A increases the density of the solution upon
dissolution, which leads to a denser zone rich in A above the less
dense host bulk solvent16–19,44. In case 1b, A decreases the den-
sity of the solution upon dissolution so that a less dense zone
rich in A forms below the denser host bulk solvent. The density
stratification that develops over time is then buoyantly unstable
in both non reactive cases. On the contrary, if RA ≤ 0, A decreases
(or does not affect) in case 1a and increases (or does not affect)
in case 1b the density of the solution upon dissolution. In both
non reactive cases, the density stratification that develops over
time is then buoyantly stable.

In the reactive case, all three contributions of A, B and C have
to be taken into account to reconstruct the density profile. The
RD concentration profiles of A and B are obtained by solving
Eqs.(9b)-(9c) without flow, withe the initial conditions (10b)-
(10c) and the boundary conditions (11b)-(11c):

∂tA = ∇2A−AB, (16a)

∂tB = ∇2B−AB. (16b)

Let us recall that the concentration profile of C can be recon-
structed from B with Eq.(12) with the initial conditions (10d) and

0.0 0.2 0.4 0.6 0.8 1.0

Concentration

0.0

0.5

1.0

1.5

2.0

η

A

(a)

0.0 0.2 0.4 0.6 0.8 1.0

Concentrations

0.0

0.5

1.0

1.5

2.0

η

A
B Cηf

(b)

Fig. 2 (a) Non reactive concentration profile of A; (b) Asymptotic RD
concentration profiles (18) for β = 1.

the boundary conditions (11d). Note that the solution of Eqs.(16)
depends on β only, which appears in the initial condition (10c).

3.1 A+B → C reaction fronts in partially miscible systems

Because Eqs.(16) are non linear, they do not admit general analyt-
ical solutions. Following the reasoning of previous works39,45,46,
we can, however, compute analytical asymptotic solutions. At
large times, the consumption of the reactants is no more limited
by the reaction but rather limited by the rate at which the species
diffuse to the reaction zone. In this limit, the reaction is localized
at a reaction front where A and B are immediately and entirely
consumed, while there is no reaction anywhere else (Fig.2b). This
reaction front moves on a diffusive time scale and is thus located
at z f = 2η f

√
t with η f > 0. Outside the reaction front, the concen-

tration fields j are solutions of diffusive equations 2η j′+ j′′ with
the boundary conditions

η = 0 : A = 1, B = 0, (17a)

η = η f : A = 0, B = 0, (17b)

η → ∞ : A = 0, B = β . (17c)

The asymptotic concentration fields between the interface and the
reaction front (0 ≤ η ≤ η f ) denoted by "U" as "Upper" and those
between the reaction front and the bulk of the solution (η f < η <

∞) denoted by "L" as "Lower" are:

AU = 1− erf(η)

erf(η f )
, AL = 0, (18a)

BU = 0, BL = β
(

1− erfc(η)

erfc(η f )

)
. (18b)

To compute these concentration profiles (18), we need to cal-
culate η f by equalizing the fluxes of A and B at the reaction front,
i.e. −∂η AU (η f ) = ∂η BL(η f ), which yields

erf(η f ) =
1

1+β
. (19)

η f is computed from Eq.(19) with a Newton-Raphson iteration47.
In particular, for β = 1, η f is equal to erfinv(0.5) ≈ 0.48. Figure
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Fig. 3 Position of the reaction front η f as a function of the initial
concentration β of reactant.

3 shows that, when β increases, the reaction front η f becomes
closer to the interface in self-similar coordinates, i.e. moves
slower towards the bulk of the solution.

Figure 2b shows the asymptotic RD concentration profiles (18).
The dissolving species A enters the solution from the interface
where its concentration is maximum and is then consumed by the
reaction. The reaction front advances in time away from the in-
terface towards the bulk of the solution (z f = 2η f

√
t with η f > 0).

Between the interface and the reaction front, B has been totally
consumed to produce C. The concentration of B increases from 0
at η = η f to its initial value β in the bulk of the solution. C is
present mainly between the interface and the reaction front but
also extends to the bulk of the solution by diffusion. We note that,
in the limit of instantaneous reactions, the length scale lc =

√
DAtc

becomes small (see Eq.(4)), so that the zone between the inter-
face and the reaction front can be neglected and only the region
between the reaction front and the bulk solution be considered9.
In summary, the system is divided into three zones: between the
interface and the reaction front (0 ≤ η < η f ) where only A and
C are present, between the reaction front and the bulk solution
(η f < η < ∞) where B and C are the only chemical species in
presence, and the bulk solution (η → ∞) where only B remains.

3.2 Asymptotic density profiles

We obtain the asymptotic RD density profiles by inserting
Eqs.(18) in Eq.(14):

ρU = RA

(
1− erf(η)

erf(η f )

)
+RCβ , (20a)

ρL = (RC −RB)β
(

erfc(η)

erfc(η f )
−1

)
+RCβ . (20b)

Extrema in the density profile have been shown to affect the be-
havior of chemically-driven buoyancy convection, depending on
the relative contribution of each species to the density13,39,40,46.
We thus look for the presence of extrema created by the reaction
in the density profile ρ (20), by analyzing for what value of pa-
rameters its derivative ρη changes sign at a given location. The
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Density

0.0

0.5

1.0

1.5

2.0

η

ηf

RA +RC β

RB β

RC β

0.0-0.5-1.0

RA =−1

(d)

Fig. 4 Asymptotic RD density profiles (20) with β = 1, RB = 0 and values
of RC indicated on the graphs. The non-reactive (NR) density profile is
plotted as a dashed curve. (a) RA = 1 and RC −RB ≥ 0; (b) RA = 1 and
RC −RB ≤ 0; (c) RA =−1 and RC −RB ≥ 0; (d) RA =−1 and RC −RB ≤ 0.

derivatives of ρU and ρL relative to η are

ρU
η = − 2√

π
RA

erf(η f )
e−η2

, (21a)

ρL
η = − 2√

π
(RC −RB)β

erfc(η f )
e−η2

. (21b)

The sign of ρU
η depends on RA only and the sign of ρL

η depends on
RC −RB only. If RA and RC −RB have the same sign, ρU

η and ρL
η

are both increasing or both decreasing, so that the global density
profile is monotonic. Therefore, an extremum can appear at the
reaction front only if RA and RC −RB have opposite signs.

Figure 4 shows the reactive density profiles (20) plotted for
different RA and RC −RB. The non reactive density profile (15) is
also plotted as a dashed black curve for comparison. The upper
figures 4a and 4b illustrate the case RA > 0 when the non reac-
tive density profile is already unstable. If RC −RB ≥ 0 as in Fig.
4a, the density profile is monotonically decreasing along η like
its non reactive counterpart. By contrast, if RC −RB < 0, the den-
sity profile has a minimum created by the reaction (see Fig.4b).
Indeed, the upper part of the density profile (above the reaction
front) is decreasing due to the contribution of A to density. At the
reaction front, only C contributes to the density with a contribu-
tion equal to RCβ . Far into the bulk solution, only B contributes
to the density, and the density of the solution comes back to its
initial value RBβ . As RC is smaller than RB, a minimum appears at
the reaction front. That minimum affects the stability of the den-
sity profile because locally less dense fluid lies on top of denser
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Fig. 5 Asymptotic concentration profiles (18) (plain line) and numerical
concentration profiles (dashed line) for β = 1, at times (a) 10 and (b)
1000.

fluid3,13.
The lower figures 4c and 4d illustrate the case RA ≤ 0 when

the non reactive density profile is monotonically increasing along
η and stable. If RC −RB ≤ 0 like RA, the density profile remains
stable (see Fig.4d). In the opposite case, if RC −RB > 0, a maxi-
mum is created by the reaction (see Fig.4c). Similarly to the case
RA > 0 and RC −RB < 0, this can be explained by the different
contributions of the species to density. This maximum affects the
stability of the system as locally denser fluid lies on top of less
dense fluid. We suspect that this maximum destabilizes the sys-
tem with regard to non reactive buoyancy-driven convection.

3.3 Numerical density profiles
As the analytical asymptotic density profiles are only valid for fast
reactions or long times, we check that the classification discussed
in subsection 3.2 is also valid for density profiles computed nu-
merically at different times. Equations (16) are solved numeri-
cally using a Crank-Nicolson method47. We approximate a semi-
infinite system by taking a system long enough such that the RD
concentration profiles are not affected by the lower boundary.

Figure 5 shows that the numerical concentration profiles con-
verge over time to the analytically predicted concentration pro-
files. We will nevertheless use the numerical concentration pro-
files, valid for all times, to perform the linear stability analysis
used to assess the stability of the RD profiles (see Section 4).
However, we have checked that the classification discussed in
subsection 3.2 still holds at short times as the profiles are qualita-
tively similar.

4 Characterization of the instability
In this section, a linear stability analysis (LSA) is used to compare
the stability of the density profiles to their non reactive counter-
part. We recall that the parameters defining the problem are β ,
RA and RC −RB.

4.1 Method of linear stability analysis
There exist several methods of LSA with different constraints or
drawbacks linked to the starting assumptions and that give differ-
ent results depending on how the perturbation growth is defined

and measured20,48,49. We note, however, that all these methods
give a time for the linear onset of convection on the same order of
magnitude than experimental results5. Here we make the quasi-
steady state approximation (QSSA) that the perturbations vary at
a much faster pace than the base state solutions so that these so-
lutions can be considered frozen at a given time t f

13,50. We add
normal form perturbations to the base state profiles such as

(A,B,C,Ψ)(y,z, t f +Δt) = (As,Bs,Cs,0)(z, t f ) (22)

+ eσ(t f +Δt)+i k y(a,b,c, i k ψ)(z)

with i2 = −1, k the wavenumber and σ the growth rate of the
perturbation.

We substitute (22) in Eqs.(13), and neglect non linear pertur-
bative terms, which gives

∂zzψ − k2 ψ = k2(RAa− (RC −RB)b), (23a)

σa−∂zAs ψ = ∂zza− k2a−Bsa−Asb, (23b)

σb−∂zBs ψ = ∂zzb− k2b−Bsa−Asb, (23c)

with the notation ∂xx f = ∂ 2 f
∂x2 . Equations (23) are solved numeri-

cally on a discrete set of points with the derivatives approximated
using finite differences to allow the system to be expressed in ma-
trix form and yield the eigenvalue problem

J · s = σ s , (24)

A dispersion curve representing the growth rate of the pertur-
bation σ as a function of its wavenumber k is obtained by plotting
the largest real part of eigenvalue σ for a given k. We have per-
formed convergence tests to find the optimal discretization for
space and time. Typical values for the length of the numerical
domain and the mesh size to achieve an accuracy of 1.0% in the
computation of the maximum growth rates are 400 and 0.25, re-
spectively. For this domain length of 400 or larger, the assumption
of semi-infinite domain is thus valid as the profile is not affected
by the lower boundary.

From the dispersion curves obtained at different frozen times,
we extract the maximum growth rate σm corresponding to the
most unstable wavenumber km. Figure 6a illustrates the typical
variation of σm and km with time for RA > 0. The system is initially
stable with regard to buoyancy-driven convection as σm is nega-
tive. Some time is indeed needed to build a denser fluid layer that
is sufficiently extended to trigger the instability. σm increases over
time, so that after some time, it changes sign and becomes posi-
tive. This means that the system becomes unstable with regard to
convection. σm continues to increase with time up to a maximum
value and then decreases. This decrease is related to a weakening
of the unstable density gradient by diffusion as time goes by. The
wavenumber km associated to the maximum growth rate can also
vary non monotonically as a function of time as shown in Fig. 6b.
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Fig. 6 (a) Maximum growth rate σm and (b) most unstable wavenumber
km of the dispersion curves as a function of time with β = 1, RA = 1 and
RC −RB = 1.

4.2 Definition of the characteristics of the instability

Most previous papers devoted to a LSA of a transient growing
boundary layer have characterized the instability by the onset
time t0 at which σm = 0, beyond which the system thus becomes
unstable, and by the related onset wavenumber k0

m
20,48. At this

time, however, as the growth rate is by definition equal to zero,
we have no information on the growth of the perturbation. In-
stead, to avoid any dependence on the initial conditions, we com-
pute a characteristic growth rate σ∗ of the instability quantifying
the rate at which perturbations grow once the system is unstable
and still in the linear regime. Following Trevelyan et al. 51 , the
characteristic growth rate σ∗

m is defined as the maximum growth
rate at t∗ for which σ∗

m t∗ = 1, such that the amplification fac-
tor exp(σ∗

m t∗) of the perturbation at t∗ is of order unity. We
also compute the characteristic wavelength λ ∗

m = 2π/k∗m, where
k∗m is the wavenumber corresponding to σ∗

m at t∗ and is thus the
fastest developing mode at t∗. We aim to compare these char-
acteristic values in the reactive case to those in the non reactive
(NR) case. Adapting the parameterless characteristic values for
the NR case19 in our scalings gives for RA > 0, t∗NR = 252R−2

A ,
σ∗

NR = 3.96×10−3 R2
A, k∗NR = 6.19×10−2 RA, λ ∗

NR = 101.5/RA. σ∗
NR

is in agreement with experimental5 and numerical44,52 values re-
ported in the literature for the growth of the dissolution-driven
perturbation in the linear regime. For RA ≤ 0, the non reactive
density profile is always stable as σm is always negative.

4.3 Effects of reactions on the characteristics of the instabil-
ity in the case RA > 0

Using the linear stability analysis described above, we compare
the characteristics of the instability - growth rate σ∗

m and wave-
length λ ∗

m - in the reactive case to their counterparts in the non
reactive case. We first analyse the case RA > 0 when a buoyantly
unstable density stratification develops upon dissolution of A. Fig-
ure 7a shows that when RA > 0, σ∗

m increases with RC −RB, cor-
responding to replacing reactant B with an increasingly denser
product C. For small values of RC −RB, σ∗

m is smaller than the non
reactive growth rate σ∗

NR. We can then define ΔR as the critical
value of RC −RB needed for σ∗

m to be larger than σ∗
NR. As a conse-

quence of this definition, if RC −RB < ΔR (regions I-II), σ∗
m < σ∗

NR:

the perturbation grows slower in the reactive system than in the
absence of reaction, and the reaction stabilizes the system with
regard to convection. On the contrary, if RC −RB > ΔR (region
III), σ∗

m > σ∗
NR: the reaction accelerates the development of the

perturbation. We find that ΔR slightly changes with β (Fig.7).
In zone I (RC−RB < 0), the RD density profiles have a minimum

located at the reaction front η f where locally less dense fluid lies
on top of denser fluid (stable situation). When RC −RB increases,
the weight of the fluid layer above the reaction front remains the
same compared to the minimum of density RCβ , but the density
difference between this minimum and the density of the bulk so-
lution RBβ decreases (see Fig.4b). The decrease of this density
difference with RC −RB explains the increase of the characteris-
tic growth rate. It is thus the zone below the minimum which
acts as a stabilizing barrier and slows down the development of
convection.

In zone II (0 ≤ RC −RB < ΔR), by contrast, the RD density pro-
files are monotonic (see Fig.4a). We can easily understand the
stabilizing effect of reactions in zone II when RB = RC: the con-
sumption of B is exactly compensated by the production of C in
terms of density, but the species A, which increases the density, is
consumed by the chemical reaction. Hence, the global effect of
reaction is to weaken the density stratification at the origin of the
instability. ΔR can thus be seen as the additional contribution to
density that C must have with respect to B to compensate for the
consumption of A.

In zone III (RC − RB > ΔR), C is dense enough to more than
compensate for the loss of A by reaction. The perturbation grows
faster than in the non reactive case (σ∗

m > σ∗
NR), and the reactive

system is more unstable with regard to buoyancy-driven convec-
tion than its non reactive counterpart.

In addition, Fig.7a shows that increasing the initial concentra-
tion β of reactant amplifies the effect of the reaction (stabiliz-
ing or destabilizing). If the reaction slows down the growth of
the perturbation (zones I-II), the growth rate decreases with β .
In zone I, the density difference between the minimum of den-
sity and the bulk solution, (RC −RB)β , indeed increases with β .
We can explain the stabilizing effect observed in zone II by the
increase with β of the consumption of A, which decreases the
weight of the denser fluid layer. If the reactive system is more
unstable than the non reactive one (zone III), the growth rate in-
creases with β because the production of C, which increases the
weight of the denser fluid layer, increases with β .

Figure 7b shows that, for all values of RC −RB, the wavelength
λ ∗

m is smaller in the reactive system than in the non reactive one.
In zone I, the wavelength does not vary significantly with RC−RB,
while it decreases in zone III. λ ∗

m decreases with β everywhere ex-
cept in zone II. The reason why in this zone II, λ ∗

m has a maximum
and the effect of β is reversed remains unclear.

As ΔR plays a major role in the classification of the effects of
reactions, we detail below its variation with RA and β . Figure 8a
shows that ΔR linearly increases with RA > 0 as ΔR = 0.32RA+0.00.
We recall that ΔR represents the excess contribution to density
that C must have with respect to B to compensate for the con-
sumption of A. Since RA represents the contribution of A to the
density of the solution, ΔR increases when A contributes more to
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Fig. 7 Characteristic (a) growth rate and (b) wavelength of the instability
as a function of RC −RB with RA = 1, and various β . The non reactive
values are given by the dashed black line (β = 0.0). The critical value ΔR
varies slightly as a function of β (see Fig.8b) and is shown in the graph
for β = 1.
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Fig. 8 (a) Critical value ΔR as a function of RA for β = 1; (b) critical value
ΔR as a function of β for RA = 1.
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Fig. 9 Characteristic (a) growth rate and (b) wavelength of the instability
as a function of RC −RB with β = 1, and different negative RA.
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Fig. 10 Numerical density profiles for t = t∗NR, β = 1, RB = 0.0 and
RC = 0.1 and different RA ≤ 0.

the density, i.e., the product C must be denser to compensate for
the consumption of the increasingly denser species A.

Figure 8b shows that the variation of ΔR with β is much smaller
than its variation with RA. We have represented the error on ΔR

computed from the propagation of error on σm in Fig.8b to show
that the non monotonic variation of ΔR with β is within the er-
ror and thus possibly non significant for the concentration range
tested here. However, from β = 1.5 to β = 2.0, the decrease of ΔR

is slightly larger than the error. When β increases, the reaction
becomes stronger: the consumption of A increases, which tends
to decrease the extent of the denser fluid layer at the origin of
the instability (see Fig.3). In addition to the weight of the denser
layer, the local gradient probably influences the stability of the
density profile, which renders physical interpretation intricate.

4.4 Effects of reactions on the characteristics of the instabil-
ity in the case RA ≤ 0

The non reactive case for RA ≤ 0 is stable for all times, which
means that all modes have a negative growth rate. We recall that
this corresponds here to the buoyantly stable dissolution down-
wards (Fig.(1a)) of a solute A decreasing density (αA ≤ 0) or up-
wards (Fig.(1b)) of a solute increasing density (αA ≥ 0). We will
thus not compare the reactive case to the non reactive case but
rather discuss when the reaction creates buoyancy-driven convec-
tion, and in that case what parameters increase the growth rate
of the perturbation.

Figure 9a shows that when RA ≤ 0, the perturbation is charac-
terized by a positive growth rate only when RC −RB > 0 (zone
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Fig. 11 Classification of the density profiles as a function of RC −RB and
RA. Zone I: non monotonic stabilizing, zone II: monotonic stabilizing,
zone III: monotonic destabilizing, zone IV: monotonic stable, zone V:
non monotonic destabilizing. The dashed diagonal is the line
RA = (RC −RB)/0.32 which separates zones II and III (see Fig.8a).

V in Fig.11), i.e. when a maximum appears in the density pro-
file thanks to the reaction (see Fig.4c). Note that we have not
represented characteristic values corresponding to small RC −RB

in Fig.9 because the numerical system is finite and the diffusive
profile reaches the boundary of the system before the character-
istic time. A semi-infinite system, however, should be unstable
even for small RC −RB > 0 at arbitrarily large times. The initially
stable system is destabilized with regard to convection because
the reaction creates a non monotonic density profile with a max-
imum where locally denser fluid lies on top of a less dense one.
σ∗

m increases with RC − RB because the amplitude of the maxi-
mum compared to the bulk solution increases with RC −RB (see
Fig.4c). Figure 10 shows that for RA = 0, the denser area extends
from the interface down to the reaction front while it becomes
more localized near the reaction front when RA decreases. In ad-
dition, C must be denser to compensate for the larger decrease in
density when RA decreases. This explains that σ∗

m decreases when
RA decreases. The characteristic wavelength λ ∗

m decreases with
RC −RB, and decreases with RA, which is illustrated in Fig.9b.

5 Discussion
Figure 11 summarizes the classification of the effects of reactions
in the parameter plane (RC −RB, RA) by taking into account the
analysis of the RD density profiles and the results of the LSA.
When RC − RB > 0, the reactive density profile is more unsta-
ble than its non reactive counterpart if RA < ΔR (zone III). More
specifically, if RA ≤ 0 (zone V), the reaction creates in the density
profile a maximum at the origin of the buoyancy-driven insta-
bility. If RA > ΔR (zone II), the RD density profile is less unsta-
ble than its non reactive counterpart. Note that the numerical
value of ΔR might depend on the LSA technique used and on
the criterium used for the classification (for example σ∗ or t0)

Table 1 Studies on reactive dissolution-driven instabilities

Zone RA RC −RB Case References
I > 0 < 0 Stabilizing 3

II > 0 ≥ 0 and < ΔR Stabilizing 31–34

III > 0 > ΔR Destabilizing 13

IV ≤ 0 ≤ 0 Stable
V ≤ 0 > 0 Destabilizing 54

but the overall structure of profile classification is robust. When
RC −RB ≤ 0, the RD density profile remains stable like its non re-
active counterpart if RA ≤ 0 (zone IV), and is less unstable than
its non reactive counterpart if RA > 0 (zone I).

The classification proposed in section 4 encompasses previous
experimental or theoretical studies on reactive dissolution-driven
instabilities (see Table 1). We first discuss the stabilizing cases
observed in zone I and II. Budroni et al. 3 have shown that a reac-
tion of an ester dissolving downwards into an aqueous solution of
NaOH produced a density profile with a minimum (RC −RB < 0,
zone I), so that the instability grows slower than in the non reac-
tive case. We note that a similar stabilization by a minimum in the
density profile has also been observed in an electrochemical sys-
tem53. Other studies have shown that the reaction of the dissolv-
ing species CO2 with a solid in excess, producing another solid, is
expected to slow down the development of the dissolution-driven
instability31–34. This type of reaction corresponds to the stabiliz-
ing case RA > 0, RC = RB = 0 (zone II).

Destabilizing cases also exist in the literature. We have recently
illustrated zone III (RA > 0, RC − RB > ΔR) in an experimental
study of gaseous CO2 dissolving into a reactive aqueous solution
of NaOH13. We have shown that the reaction between the dis-
solving CO2 and the dissolved NaOH produces a chemical species
sufficiently denser than the dissolved reactant, so that dissolution-
driven convection develops faster than in the non reactive case13.
The blue bottle reaction studied e.g. by Bees et al. 54 is an exam-
ple of zone V (RA = 0, RC > RB = 0) where the chemical reaction
is at the origin of the buoyancy-driven instability. In their model,
the reaction produces gluconic acid which increases the density
of the solution, while the dissolving species and the dissolved re-
actants do not increase the density of the solution.

Although our study could be extended to take into account dif-
ferences in diffusion coefficients2,9 and/or to include different
stoichiometries and reaction schemes7,13,55, it can be used to pre-
dict behaviors in laboratory experiments. The values of the solutal
Rayleigh number RA, RB and RC tested here are relevant to labo-
ratory experiments, for example in the case of CO2 dissolving into
an aqueous solution of NaOH, RA = 0.102, RC −RB = 0.76013.

A realistic effect of reactions on dissolution-driven convection
in underground storage sites for CO2 sequestration is difficult to
estimate because of the number of possible different reactions,
feedback between chemistry and permeability/porosity, etc. We
note that Ennis-King and Paterson 31 showed that the coupling
of the concentrations of dissolved ions with the density of the
solution affected the development of the dissolution-driven insta-
bility in a simulation of a realistic storage site. The fingers of
denser fluid advanced faster in the system with the coupling than
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Table 2 Typical values in geological storage sites for CO2
sequestration 56

Parameter Symbol Value
Porosity φ 0.10

Permeability κ 2 ×10−13 m2

Viscosity μ 10−3 Pa s
Diffusion coefficient of CO2 DA 5 ×10−9 m2 s−1

Density difference between CO2
saturated brine and fresh brine Δρ 5 kg m−3

without it, which indicated that the instability grew faster. With
typical values in geological sites for CO2 sequestration shown in
Table 2, RA can be of the order of 10−2 - 102 considering that
the reaction rate can vary between 10−5 and 10−10 mol m−3 s−1

depending on the reaction57. Reactions in storage sites are of-
ten approximated as reactions between CO2 and a solid to pro-
duce another solid. However, these reactions can also produce
or consume dissolved salts. For example, the reaction of albite
with CO2 produces Na-smectite, silicon dioxide and sodium bicar-
bonate33. This reaction could possibly accelerate the dissolution-
driven instability that develops upon dissolution of CO2 in the
saline aquifer (RA > 0, RC > RB = 0).

6 Conclusion
We have proposed a general classification of the effects of reac-
tions on the early-stage development of dissolution-driven con-
vection, including cases where the non reactive counterpart is
stable. This classification unifies previous disparate experimen-
tal and theoretical studies. It also sets the framework in which to
predict the effects of reactions on dissolution-driven convection in
natural and laboratory systems and to develop laboratory exper-
iments to test our predictions. Further analysis of the impact of
reactions on the late-stage nonlinear development of convection
and on the evolution of the dissolution rate has been undertaken.
We intend also to extend this classification to cases including dif-
ferential diffusion and different stoichiometries55. Differential
diffusion phenomena are indeed known to be able to impact the
properties of convection or even be at the origin of double dif-
fusive or diffusive layer convection instabilities in miscible sys-
tems37,46. It is expected that, similarly, the inclusion of differen-
tial diffusion in the present classification will enlarge the number
of possible different instability scenarios.

In the context of CO2 sequestration, such classifications allow
comparing different geological storage sites according to their
dominant mineralogy and select those where reactions are op-
timal in enhancing convective dissolution. For other applications
where convection enhances mass transfer, controlling the proper-
ties of the dissolution-driven convection should become possible
by selecting the appropriate reactant to be dissolved in the host
solution.
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