PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

Journal Name

COMMUNICATION

A Cocatalyst-Free Eosin Y-Sensitized P-type Co₃O₄ Quantum Dots for Highly Efficient and Stable Visible-Light-Driven Water Reduction and Hydrogen Production[†]

Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Received 00th January 20xx,

Ning Zhang,^a Jinwen Shi,^a Fujun Niu,^a Jian Wang^a and Liejin Guo^{*a}

37

64

65

66

67

www.rsc.org/

 $_1$. Owing to the effect of energy band bending, p-type $\text{Co}_3\text{O}_{4^2}$

² quantum dots sensitized by eosin Y performed high and stable³

 $_3$ photocatalytic activity (~13440 μ mol h⁻¹ g⁻¹_{cat}) for water reduction⁴

and hydrogen production under visible-light irradiation without⁵
 any cocatalyst.

Dye-sensitized semiconductor (DSS) system for photocatalytie® water reduction and hydrogen production is considered as one of the most promising routes for making efficient use of solar light too 8 produce clean energy.¹⁻⁴ In a typical DSS system, electrons are excited by light from dye and then transfer to the conduction band² 10 (CB) of semiconductor for reduction reaction. In order to reduce the³ 11 overpotential of hydrogen evolution and improve reaction44 12 efficiency, cocatalysts are usually loaded on semiconductors 13 catalysts.⁵⁻⁷ However, until now, the large-scale use of cocatalysts 14 are entirely unrealistic, because most paths for loading cocatalysts7 15 are of unacceptable high cost. 16

In this work, we reported a novel DSS system which performed⁹ 17 high photocatalytic efficiency without any cocatalysts loadingso 18 Significantly, our system can keep stable photocatalytic activity for 19 more than 35 hours. In this system, p-type Co₃O₄ quantum dots² 20 (Co₃O₄ QDs), which showed capability of splitting pure water under 21 visible-light irradiation as we reported in the previous paper,⁸ were⁴ 22 used as catalyst, Eosin Y (EY) was used as dye and triethanolamine⁵ 23 (TEOA) was used as sacrificial agent. Co₃O₄ QDs was prepared by 24 the method according to ref⁸, and the process of EY sensitization⁷⁷ 25 was described in ESI, finally a EY-sensitized Co₃O₄ QDs solution was 26 obtained. To distinguish samples, original Co₃O₄ QDs was designed⁹ 27 as Co₃O₄ QDs, and EY-sensitized Co₃O₄ QDs was designed as Co₃O₄⁰ 28 QDs/EY. 29

To explore the effect of EY sensitization on Co_3O_4 QDs, $Co_3O_{4^2}$

31 QDs/EY was separated from solution, washed with deionized water

Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, Shaanxi 710049, P. R. China. Email: lj-guo@mail.xjtu.edu.cn and then dried at 80°C in vacuum. Powder X-ray diffraction (PXRD) patterns (see Fig. S2, ESI⁺) reveals that the crystal phase of Co₃O₄ QDs is not changed after EY sensitization and are also in cubic phase (JCPDS Card No. 00-001-1152). Compared with Co₃O₄ QDs, a few diffraction peaks emerge at 20 value below 30° in Co₃O₄ QDs/EY, which is probably due to EY adsorption. Survey-scan X-ray photoelectron spectroscopy (XPS) (see Fig. S3a, ESI+) proves that Co, O and C elements can be found in both Co₃O₄ QDs and Co₃O₄ QDs/EY. Different from Co₃O₄ QDs, satellite peak of C and feature peaks of Br 2p can be observed in the XPS spectrum of Co₃O₄ QDs/EY, which indicates EY existing on the surface of Co_3O_4 QDs. High-resolution XPS spectra of Co 2p (see Fig. S3b, ESI⁺) announce that peaks at 779.0, 780.5, 794.4, 795.8, 789.5, and 802.4 eV correspond to Co^{2+} (2p_{1/2}), Co^{3+} (2p_{1/2}), Co^{2+} (2p_{3/2}), Co^{3+} (2p_{3/2}), shake-up satellites of $Co^{2+}(2p_{1/2})$ and $Co^{2+}(2p_{3/2})$, respectively, and the calculated area ratio of $Co^{3+} (2p_{3/2})$ to $Co^{2+} (2p_{3/2})$ for both samples approximates to 2. Thus it is deduced that both Co_3O_4 QDs and Co_3O_4 QDs/EY are in the chemical form of $Co^{2+}(Co^{3+})_2O_4$. Transmission electron microscopy(TEM) image (see Fig. S4a, ESI⁺) indicates that the morphology of Co₃O₄ QDs is agglomerated nanocrystals in size of 3-4 nm, which agrees with previous report.⁸ The morphology of Co₃O₄ QDs/EY is similar to Co₃O₄ QDs (see Fig. S4b, ESI⁺), which implies that EY sensitization cannot affect the morphology of Co₃O₄ QDs.

The Fourier transform infrared spectra (FTIR) of Co₃O₄ QDs/EY and Co_3O_4 QDs are shown in Fig. S5 (ESI⁺). The feature peaks centering at 559 cm⁻¹ and 659 cm⁻¹, assigned to Co–O stretching and Co-OH vibrations,¹⁰ are observed in FTIR spectra of both Co₃O₄ QDs/EY and Co₃O₄ QDs, which confirm that the two samples contain cobalt oxide. It can be seen that dodecanol shows some feature peaks locating at the wavenumbers of 3329, 2956, 2925, 2866 and 1467 cm⁻¹, which can be also found in the FTIR spectrum of Co_3O_4 QDs, demonstrating that the surface of newly synthesized Co₃O₄ QDs are really adsorbed by dodecanol. Nevertheless, after the coating process of EY on Co_3O_4 QDs, the feature peaks of dodecanol disappear. Instead, some new peaks similar to the feature peaks of Eosin Y are found, which indicates that dedacanol is removed, and only EY adsorbs on the surface of Co₃O₄ QDs in the Co₃O₄ QDs/EY sample, in accord with the description of EY sensitization process (see ESI).

Above all, the results of PXRD, XPS, TEM and FTIR jointly indicate

^a International Research Center for Renewable Energy (IRCRE), State Key

⁶⁹ tellectronic Supplementary Information (ESI) available: [The process of EY sensitization; PXRD spectra of Co_3O_4 QDs/EY and Co_3O_4 QDs; Survey scan XPS spectra and high⁷⁰ resolution XPS spectra in Co 2p of Co_3O_4 QDs/EY and Co_3O_4 QDs; TEM and HRTEM1 images of Co_3O_4 QDs and (b) Co_3O_4 QDs/EY; FTIR spectra of Eosin Y, Co_3O_4 QDs/EY₇₂ dodecanol and Co_3O_4 QDs.]. See DOI: 10.1039/x0xx00000x

60

COMMUNICATION

- 7 Co₃O₄ QDs/EY and Co₃O₄ QDs systems. The concentration of EY was 0.01 mM in
- 8 Co₃O₄ QDs/EY and EY systems.

2

3

4

5

6

¹⁰ that, in the Co₃O₄ QDs/EY sample, EY just adsorbs on the surface of f_2 ¹¹ Co₃O₄ QDs, and has little effect on elemental and phase f_3 ¹² compositions, crystal structures, and particle morphologies of f_4 ¹³ Co₃O₄ QDs.

UV-Vis diffusive reflectance, photoluminescence (PL) spectra and₆ 14 15 the PL decay curves were measured on three liquid samples. UV-Vis7 16 spectra (see Fig. 1a) show that the absorption edge of Co_3O_4 QD_{\$8} solution locates at about 600 nm, while the absorption peak of EX₉ 17 solution centers at 518 nm. When Co₃O₄ QDs is added into the EY₀ 18 solution, the absorbance is different from the simple sum of Co_3O_{a1} 19 QDs and EY, which implies that some interaction really exists, 20 between Co₃O₄ QDs and EY. Another evidence of interaction is₃ 21 presented in the insert picture of Fig. 1a. As it is shown, Co_3O_4 QDs₄ 22 can be dispersed in EY/TEOA solution easily and form a stables 23 colloidal solution, while they are difficult to be disperse in absolute₆ 24 TEOA solution and precipitate rapidly. This result deduces that, due₇ 25 to the interaction between EY and Co₃O₄ QDs, EY is adsorbed on the₈ 26 surface of Co₃O₄ QDs and protects Co₃O₄ QDs from the effects of 27 agglomeration and precipitation which are caused by TEOA. The 28 interaction between EY and Co_3O_4 QDs is further supported by $P_4^{\&0}$ 29 spectra (see Fig. 1b). It shows that the peak of Co₃O₄ QDs locates at 30 539 nm, while that of EY locates at 567 nm. Compared with that of 31 EY, the PL peak of Co₃O₄ QDs/EY performs red-shift, which can be 32 mainly ascribed to the noncovalent π - π interaction of Co₃O₄ QDs 33 with EY and the interfacial electron transfers from the attached EY* 34 to the Co₃O₄ QDs.^{11,12} And this interaction benefits the transmission 35 of charge between EY and Co₃O₄ QDs. The PL decay curves (see Fig. 36 S6, ESI⁺) show that the fluorescence lifetime of EY is 0.303 ns, 37

Fig.2 (a) LSV curves of bare FTO glass and Co₃O₄ QDs- and P25 TiO₂-coated FTO⁵ electrodes in a solution of 0.1 mol/L Na₂SO₄ at pH 7. The scan rate was 1 mV s_{37}^{160} Insert of (a): Transient photocurrent-time profiles of Co₃O₄ QDs-FTO with applied bias of -0.2V (vs Ag/AgCl). (b) Mott-Schottky plots and open circuit potential⁸⁹ time (OCPT) curve of a Co₃O₄ QDs-FTO electrode. Test conditions of (b): pH and⁰ the concentration of TEOA and EY were 10.95, 0.29 M and 40 mM, respectively.

which changes insignificantly in the presence of Co_3O_4 QDs (0.319 ns). This result reveals that the exist of Co_3O_4 QDs has little effect on the fluorescence lifetime of system.

To further investigate the transmission capability of electrons from semiconductor surfaces to water, the linear sweep voltammetry (LSV) technique is employed. As shown in Fig. 2a, at the same applied bias, the value of cathodic current of Co₃O₄ QDs-FTO is higher than that of P25 TiO₂-FTO and FTO. This result reveals that electrons in Co₃O₄ QDs can easily transfer from semiconductor surfaces to water for H⁺ reduction and H₂ production.¹³ Transient photocurrent-time profiles of Co₃O₄ QDs-FTO is inserted in Fig. 2a, which shows that the current value of Co₃O₄ QDs-FTO increases in negative direction under light irradiation. And this result conforms that Co₃O₄ QDs is a p-type semiconductor. To investigate the structure of energy band on the surface of Co3O4 QDs, Mott-Schottky plots and open circuit potential-time (OCPT) curve were measured on a Co₃O₄ QDs-FTO electrode. As shown in Fig. 2b, the flat band potential (E_{FB}) of Co_3O_4 QDs, which can be determined by the x-axis intercept of straight-line portion of Mott-Schottky plots (dark), is 0.67 V vs. Ag/AgCl. And the open circuit potential (E_{OCP}) is 0.42 V vs. Ag/AgCl, which is lower than the flat band potential. This results suggest that energy bands bend downwards on the surface of Co_3O_4 QDs if Fermi level pins. However, according to literature¹⁴ the adsorption of organic molecules can form surface states which will trap minority carriers and cause Fermi level unpinning under light irradiation. To evaluate the effect of surface states, Mott-Schottky plot under visible-light ($\lambda \ge 420$ nm) irradiation was measured. It can be seen that the x-axis intercept of straight-line portion of Mott-Schottky plot (illumination) shifts only 0.01 V cathodically compared with that of Mott-Schottky plot (dark). This result indicates that surface states have little effect on the structure of energy band, and thus the energy bands of Co_3O_4 QDs performs downwards bending.

Fig.3 (a) Time courses of hydrogen evolution over Co₃O₄ QDs/EY, P25 TiO₂/EY, EY and Co₃O₄ QDs systems. (b) The action spectrum of Co₃O₄ QDs/EY system . The system was irradiated with a 300 W Xe lamp with a bandpass filter. The testing time was 2 h. (c) Stability testing of H₂ evolution over Co₃O₄ QDs/EY system. The reaction was continued for 5 runs (~7 h each run). Before each run, some TEOA was added into system to keep pH 10.95. Test conditions of (a), (b) and (c): The concentration of TEOA and pH in each system were 0.29 M and 10.95, respectively. The weight concentration of photocatalysts was 50 mg L⁻¹ in P25 TiO₂/EY, Co₃O₄ QDs/EY and Co₃O₄ QDs systems. The concentration of EY was 40 mM in Co₃O₄ QDs/EY, P25 TiO₂/EY and EY systems.

Journal Name

63

64

а

Journal Name

QDs system. 5

2

6

Fig. 3a shows the photocatalytic activities for H_2 evolution over EY, Co₃O₄ QDs, Co₃O₄ QDs/EY and P25 TiO₂/EY under visible-light (λ_{6} 8 420nm) irradiation in 100 mL aqueous TEOA solution₆₇ ≥ 9 In order to reduce the mechano-catalytic H₂ production effect,¹⁵ the 10 photocatalytic systems was run with weakly stirring. Control 11 experiments showed that no H₂ was formed when the reaction 12 proceeded in TEOA aqueous solution without Co₃O₄ QDs/EY, pure 13 water or in the dark while other conditions remained unchanged. 14 As shown in Fig. 3a, in absence of EY or Co_3O_4 QDs, the system of 15 Co_3O_4 QDs/EY performs almost no H₂ produced for 7 h, which 16 indicates that the photocatalytic efficiency of single Co₃O₄ QDs is 17 very low and the electron generated on the excited EY can not 18 transfer to solution for H^+ reduction easily without semiconducto⁷⁶ 19 photocatalysts. The system of P25 TiO₂/EY also shows low $H_2^{\gamma\gamma}$ 20 production rate, about 4.4 µmol h⁻¹, which is consistent with the 21 reported work¹⁶. This result implies that, due to high over-potential⁷⁵ 22 electrons in the conduction band of TiO₂ which are transferred from 23 EY can not reduce H^+ effectively without cocatalysts. However, the 24 Co₃O₄ QDs/EY system shows higher photocatalytic activity than that² 25 of P25 TiO₂/EY, and the rate of H₂ evolved is 67.2 μ mol h⁻¹ (~13440³ 26 μ mol h⁻¹ g⁻¹_{cat}) in 7 h, which is 15.3 times higher than that of the 27 latter at the same experimental conditions. As far as we know, thiss 28 value can be one of the highest value in the systems of EY₈₆ 29 sensitized oxide semiconductor for H₂ production without loading₇ 30 cocatalyst under visible light irradiation. To investigate these 31 wavelength dependence of photocatalytic H₂ evolution, the action₉ 32 spectrum of Co3O4 QDs/EY systems was examined over a wide 33 visible light range of 435-540 nm (see Fig. 3b). As shown in Fig. 3b, 34 the apparent quantum yield (A.Q.Y.) of the system shows the trend, 35 rising-declining-rising with the decrease of the incident 36 of wavelength. A locally maximal A.Q.Y. located at 520 nm is 8.1% due 37 to strong absorption of light of EY, and the globally maximal A.Q.Y 38 located at 435 nm is 14.2% due to higher energy of photons. The 39 conversion efficiency of solar energy to hydrogen energy on $\mathrm{Co}_3\mathrm{O}_4^{\prime\prime}$ 40 QDs/EY systems at room temperature and under 100 mW/cm² 41 illumination in a solar simulator with an AM1.5 global filter is 1.37%. 42 Furthermore, the stability of the Co_3O_4 QDs/EY system for 5 runs⁹ 43 (~7 hours each run) were carried out under visible light ($\lambda \ge 420$ nm)⁹⁰ 44 irradiation(see Fig. 3c). In the first run, the controlling experiments¹ 45 46 were carried out in dark before and after photocatalytic reaction, 47 which shows that the system performs no photocatalytic activity without light irradiation. The average rates of hydrogen evolution df^2 48 first, second, third, fourth and fifth run are 67.2, 66.8, 65.2, 63.63 49 and 62.4 μ mol h⁻¹. No significant decrease of H₂ evolution is 50 observed after 5 runs, indicating the good stability of the presents 51 system for photocatalytic H₂ production. 52 106 107

COMMUNICATION

The high and stable photocatalytic activity of EY-sensitized p-type Co₃O₄ QDs for water reduction and hydrogen production under visible-light irradiation without any cocatalyst can be explained by the theory of energy band bending induced by space charge region. When dye adsorbs on the surface of semiconductor, the free electrons/holes will transfer between dye and semiconductor due to the existence of interaction and the chemical potential difference. This transmission of electrons/holes causes the free charge carrier concentration near the semiconductor surface to be different from the bulk, thus forms the known space charge region.¹⁷ In the space charge region, energy band of semiconductor performs bending due to the electric field.¹⁷⁻²⁰ Similarly, near the surface of semiconductor and water, energy band bending is also formed.²⁰ In tranditional dye-sensitized semiconductor system, n-type semiconductor, such as TiO₂, is usually used as catalyst. As it is shown in Fig. 4a, on the surface between n-type semiconductor and dye, the energy bands of n-type semiconductor bend upward, and the electron can flow from excited dye molecule to the conduction band (CB) of n-type semiconductor. However, the upward bent bands on the surface between n-type semiconductor and water increase the barrier width and height for electron tunneling from the CB of the semiconductor to water, decreasing the electron transmission probability from semiconductor to water for reduction reaction. Thus dye-sensitized n-type semiconductor system performs low photocatalytic activity without cocatalyst. In the EYsensitized p-type Co₃O₄ QDs system, as it is shown in Fig. 4b, the downward bent bands on the surface between Co3O4 QDs and EY forms a barrier which hinders electron transmission from EY molecule to the conduction band (CB) of p-type Co₃O₄ QDs. Under visible light irradiation, EY will gain a photon and produce singlet excited state EY1*, and subsequently produce a lowest-lying triplet excited state EY^{3*} which owns a long life time via an intersystem crossing (ISC). EY3** will be reductively quenched by a sacrificial donor TEOA to produce EY^{-•}.¹² Because the free electron in EY^{-•} species has a much higher chemical potential than that in the CB of Co_3O_4 QDs, it tend to jump over the barrier and flow to the CB of Co_3O_4 QDs. After losing electron, EY^{-•} changes back to EY, and the electron cannot transfer from the CB of p-type Co₃O₄ QDs to EY again. On a surface between p-type Co₃O₄ QDs and water, the energy bands bend downward, and the tunneling barrier is eliminated, which facilitates the electron transfer across the surface of Co₃O₄ QDs to water for reduction reaction. Thus EY-sensitized ptype Co₃O₄ QDs performs high photocatalytic activity for water reduction and hydrogen production under visible-light irradiation without any cocatalyst. Moreover, the barrier on the surface between Co₃O₄ QDs and EY can prevent the transport of photo- or thermal-excited holes from the valance band of p-type Co₃O₄ QDs to EY molecule, thus reduces oxidative damage of EY and further enhances the stability of the system.

In summary, we present a cocatalyst-free, highly efficient and stable EY-sensitized p-type Co₃O₄ QDs system for visiblelight-driven H₂ production. The system exhibits an average hydrogen evolution rate of 67.2 μ mol h⁻¹ (~13440 μ mol h⁻¹ g⁻¹ $\lambda~\geqslant$ 420 nm). This high and stable photocatalytic activity is

Conclusions

COMMUNICATION

- mainly due to energy band bending: 1) on the surface between
- $_{2}$ $\,$ p-type $\,$ Co_{3}O_{4}\, QDs and water, the downward bent bands
- $_{\scriptscriptstyle 3}$ facilitates the electron transfer across the surface of Co_3O_4
- $_4\,$ QDs to water; 2) on the surface between p-type Co_3O_4 QDs
- $_{\rm 5}$ $\,$ and EY, the downward bent bands prevent holes transmission
- $_{\rm 6}$ $\,$ from the valance band of p-type Co_3O_4 QDs to EY molecule,
- which reduces oxidative damage of EY and further enhances
- 8 the stability of the system. This work provides a promising
- 9 strategy for designing efficient and stable photocatalytic
- ¹⁰ hydrogen generation systems based on p-type semiconductor.

Acknowledgements

- ¹² We are grateful for financial support by the National Natural
- ¹³ Science Foundation of China (Nos. 51236007 and 51323011),
- the China Postdoctoral Science Foundation (Nos.2014T70915),
- 15 the Natural Science Basic Research Plan in Shaanxi Province of
- ¹⁶ China (No.2014JQ2-5022), and the Postdoctoral Science
- 17 Foundation in Shaanxi Province of China.

18 Notes and references

- W. J. Youngblood; S-H. A. Lee; K. Maeda; T. E. Mallouk, Acc.
 Chem. Res., 2009, 42, 1966–1973.
- 21 2 W. Zhang; J. D. Hong; J. W. Zheng; Z. Y. Huang; J. R. Zhou; R.
- Xu, J. Am. Chem. Soc., 2011, 133, 20680–20683.
 J. W. Shi; X. Guan; Z. Zhou; H. Liu; L. J. Guo, J. Nanopart. Res.,
- J. W. Shi; X. Guan; Z. Zhou; H. Liu; L. J. Guo, *J. Nanopart. Res.*,
 2015, **17**, 252.
- ²⁵ 4 P. W. Du; R. Eisenberg, *Energy Environ. Sci.*, 2012, 5,
 6012–6021.
- M. G. Walter; E. L. Warren; J. R. McKone; S. W. Boettcher; Q.
 Mi; E. A. Santori; N. S. Lewis, *Chem. Rev.*, 2010, 110,
 6446–6473.
- ³⁰ 6 N. Z. Bao; L. M. Shen; T. Takata; K. Domen, *Chem. Mater.*,
 ³¹ 2008, **20**, 110–117.
- ³² 7 H. Yan; J. Yang; G. Ma; G. Wu; X. Zong; Z. Lei; J. Shi; C. Li, J.
 ³³ *Catal.*, 2009, **266**, 165–168.
- ³⁴ 8 N. Zhang; J. Shi; S. S. Mao; L. Guo, *Chem. Commun.*, 2014, **50**, 2002-2004.
- ³⁶ 9 L. Fu; Z. M. Liu; Y. Q. Liu; B. X. Han; P. G. Hu; L. C. Cao; D. B.
 ³⁷ Zhu, Adv. Mater., 2005, **17**, 217-221.
- ³⁸ 10 J. Li; W. Zhao; F. Huang; A. Manivannan; N. Wu, *Nanoscale.*, ³⁹ 2011, **3**, 5103-5109
- ⁴⁰ 11 H. Zhang; X. Lv; Y. Li; Y. Wang; J. Li, *ACS Nano*, 2010, **4**, ⁴¹ 380–386
- 42 12 C. Kong; S. Min; G. Lu, ACS Catal., 2014, 4, 2763-2769.
- ⁴³ 13 X. Zong; G. P. Wu,; H. J. Yan; G. J. Ma; J. Y. Shi; F. Y. Wen; L.
 ⁴⁴ Wang; C. Li, *J. Phys. Chem. C*, 2010, **114**, 1963–1968.
- ⁴⁵ 14 A. Hagfeldt; U. Bjorksten; M. Gratzel, *J. Phys. Chem.*, 1996,
 ⁴⁶ 100, 8045-8048.
- 47 15 S. Ikeda; T. Takata; T. Kondo; G. Hitoki; M. Hara; J. N. Kondo;
 48 K. Domen; H. Hosono; H. Kawazoe; A. Tanaka, *Chem*.
- 49 *Commun.*, 1998, **998**, 2185-2186.
- ⁵⁰ 16 Z. Yan; X. Yu; Y. Zhang; H. Jia; Z. Sun; P. Du, *Appl. Catal. B*-⁵¹ *Environ.*, 2014, **160**, 173-178.
- ⁵² 17 Z. Zhang; J. T. Yates, *Chem. Rev.*, 2012, **112**, 5520–5551
- ⁵³ 18 L Li; P. A. Salvadora; G. S. Rohrer, *Nanoscale*, 2014, 6, 24-42.
- ⁵⁴ 19 C. Yang; Q. Zhu; T. Lei; H. Lia; C. Xie, *J. Mater. Chem. C*, 2014,
 ⁵⁵ 2, 9467-9477.
- ⁵⁶ 20 M. G. Walter: E. L. Warren: J. R. McKone: S. W. Boettcher: Q.
- ⁵⁷ Mi; E. A. Santori; N. S. Lewis, *Chem. Rev.*, 2010, **110**, 6446– 6473.