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Manipulation of the charge of the dielectric interface between two bulk liquids not only enables the adjustment of the interfacial

tension but also controls the storage capacity of ions in the ionic double layers adjacent to each side of the interface. However,

adjusting this interfacial charge by static external electric fields is difficult since the external electric fields are readily screened

by ionic double layers that form in the vicinity of the external electrodes. This leaves the liquid-liquid interface, which is at a

macroscopic distance from the electrodes, unaffected. In this study we show theoretically, in agreement with recent experiments,

that control over this surface charge at the liquid-liquid interface is nonetheless possible for macroscopically large but finite

closed systems in equilibrium, even when the distance between the electrode and interface is orders of magnitude larger than the

Debye screening lengths of the two liquids. We identify a crossover system-size below which the interface and the electrodes are

effectively coupled. Our calculations of the interfacial tension for various electrode potentials are in good agreement with recent

experimental data.

1 Introduction

The ion distribution in the vicinity of charged surfaces in

a liquid electrolyte is a classic and important topic within

physical chemistry. This field goes back to at least the 1910s

when Gouy1 and Chapman2 identified the existence of a

diffuse ionic cloud in the vicinity of a charged surface. This

ionic cloud with a net charge exactly opposite to that of the

surface has a thickness (now called the Debye screening

length) typically in the range of 1-1000 nm depending on

the ion concentration and the dielectric constant of the elec-

trolyte. This implies that the effect of a static external charge

immersed in a bulk electrolyte is only noticeable at distances

smaller than several Debye lengths; at larger distances the

external charge is fully screened by its surrounding ionic

cloud. Indeed, it is well known that the effective electrostatic

interactions between colloidal particles stem from their

overlapping ionic clouds, thereby setting the interaction range

equal to the Debye length of the supporting electrolyte3. The

notion of ionic screening also implies that an electrolyte in

between two planar electrodes can (in the absence of chemical

reactions) only be manipulated by a static applied voltage

if the electrode-electrode separation is of the order of the
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Debye length or smaller; macroscopic electrode separations,

e.g. on the centimetre scale, much larger than any typical

Debye length, lead to two fully screened decoupled electrodes

sandwiching a bulk electrolyte that is insensitive to the

applied static voltage (time-dependent voltages in which ionic

clouds need to be built up can have a much longer range). The

nature of the distribution of ions in the vicinity of electrified

oil-water interfaces has received a lot of recent attention5–8,

with theoretical analyses mostly focusing on specific ion and

correlation effects that go beyond the mean-field level of the

traditional Poisson-Boltzmann theories. The present work, by

contrast, takes a different perspective and concentrates on the

surprisingly strong influence of the (at first sight macroscopic)

electrode-electrode separation and the statistical ensemble

(canonical versus grand canonical) within which the ions are

treated. In order to focus on the key idea, we do not include

any ion and correlation effects, except for a phenomenological

Born self-energy, in this work, although these effects will

play a role in a quantitative analysis of the experiments.

Building on the notion of ionic screening, one would at

first sight also expect that a planar interface between two

demixed bulk electrolytes (e.g. oil and water) sandwiched

by two planar electrodes in the geometry of an electrolytic

cell cannot be manipulated by the applied voltage if both

electrodes are at a macroscopic distance from the interface.

Recent experiments, however, challenge this expectation. It

was shown that oil-water interfaces, which in the absence of

any external potential exhibit two back-to-back ionic double
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layers due to a repartitioning of the ions10, can actually be

electrified by ‘remote’ external electrodes12,13. In particular,

it was shown that the oil-water surface tension could be

modified by applying a voltage across electrodes separated

from the interface by several centimetres, while the Debye

lengths are orders of magnitude smaller13.

In the present article we will provide a theoretical explana-

tion of the experimental observations by extending the classi-

cal Gouy-Chapman solution of the Poisson-Boltzmann equa-

tion to include two electrodes, an oil-water interface, and four

ionic species each with their own affinity for oil and water

as described by a Born self energy difference between an ion

in oil and water. The mechanism that we will describe in this

work does not rely on the possible occurrence of (steady-state)

ion currents between the electrodes, yet follows entirely from

thermodynamic equilibrium in the presence of an applied elec-

tric field. Before embarking on a detailed theoretical analysis,

we first consider an extreme case that qualitatively illustrates

the possible emergence of a large (macroscopic) length scale

in this problem. Imagine a demixed oil-water system with two

hydrophilic ion species that cannot penetrate into the oil and

two hydrophobic ion species that cannot penetrate into the

water. The impossibility of ion migration implies that both

phases are constrained to be charge neutral, not only in bulk

but even if they are put in contact in a macroscopic electrolytic

cell of the type cathode-water-oil-anode. Upon the applica-

tion of a voltage between the cathode and the anode, the cath-

ode will be screened by an excess of hydrophilic cations and

the anode by an excess of the hydrophobic anions. However,

global neutrality of the individual volumes of water and oil

causes the formation of a back-to-back double layer of ionic

charge at the oil-water interface, with an excess of hydrophilic

anions at the waterside of the interface and an excess of hy-

drophobic cations at oil side. The neutrality constraint im-

poses the magnitude of these oil-water ionic excess charges to

be identical to that on the electrodes. In other words, in this

limiting case the charge of the oil-water interface can be per-

fectly tuned by the applied voltage across the electrodes, even

at macroscopic distances from the interface. By contrast, if at

least one of the ionic species is ‘sufficiently’ soluble in both

oil and water, then the neutrality constraint only applies to the

oil-water system as a whole: ionic excess charge can migrate

from one electrode to the other, thereby leaving the oil-water

interface unaffected (if the Debye lengths are much smaller

than the cell-size). These two extreme cases give rise to the ex-

pectation of a crossover from a microscopic to a macroscopic

length scale. We will show below that this length scale is of

the order of (|σ |/ρ)exp(| f |) with ρ a typical salt concentra-

tion and | f | the magnitude of the smallest Born self energy

of the four ionic species (in units of the thermal energy kBT ).

Note that eσ is a particle density of the electrodes; the sur-

face charge density is given by ±eσ . Clearly |σ |/ρ is a mi-

croscopic length scale, but with | f | varying from order unity

up to 20-30 the exponential dependence on | f | gives rise to a

wide range of lengths, strictly speaking microscopic but easily

exceeding any realistic macroscopic system size. In cases that

this new length scale exceeds the system size, the macroscopic

system is anomalously ‘small’ such that ‘remote’ electrodes

can modify the oil-water interface statically.

2 Poisson-Boltzmann theory of an electrified

oil-water interface

2.1 Gouy-Chapman theory for a single electrode

Before considering the actual system of interest in this study,

the electrified oil-water interface as illustrated in Fig. 1, we re-

mind ourselves of the simpler problem of a single planar elec-

trode in contact with a half-space of a 1:1 electrolyte, treated

within Poisson-Boltzmann theory for point ions. Assuming

lateral translational invariance, and denoting the perpendicu-

lar distance to the electrode by z > 0, we wish to calculate

the electrostatic potential Ψ(z) and equilibrium concentration

profiles of the cations and anions ρ+(z) and ρ−(z), respec-

tively. Setting the potential far from the electrode to zero,

Ψ(∞) = 0, and denoting the bulk ion concentration by ρ , so

that ρ+(∞) = ρ−(∞)≡ ρ by bulk neutrality, we relate the ion

distributions to the electric potential for z > 0 via the Boltz-

mann distribution ρ±(z) = ρ exp[∓φ(z)] with the dimension-

less potential φ(z) = eΨ(z)/kBT . Here e is the proton charge,

T the temperature, and kB the Boltzmann constant. The two

Boltzmann distributions are complemented by the Poisson

equation φ ′′(z) = −4πλB[ρ+(z)− ρ−(z) +σδ (z)] for z ≥ 0,

where a prime denotes a derivative with respect to z, where

λB = e2/εkBT is the Bjerrum length (in Gaussian units) of the

solvent in terms of its relative dielectric constant ε , and where

the surface charge density in the plane z = 0 of the electrode

is given by eσ . Combining these results gives the Poisson-

Boltzmann equation with its boundary conditions

φ ′′(z) = κ2 sinhφ(z); (1)

φ(∞) = 0;

φ ′(0+) = −4πλBσ ,

where the screening parameter is defined as κ2 = 8πλBρ . This

closed set of equations can be solved analytically to yield1,2,15

φ(z) = 2log

[

1+ γ exp(−κz)

1− γ exp(−κz)

]

, (2)

where the integration constant is given by

γ =

√

(2πλBκ−1σ)2 +1−1

2πλBκ−1σ
. (3)
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the dimensionless electrostatic potential φ(z) take constant

bulk values. It is convenient to gauge the electrostatic poten-

tial in bulk water at zero, so φ(−H/4) = 0, and to use the ionic

bulk concentrations in water, denoted by ρα±(−H/4)≡ ρw
α±,

as control variables. Using the ionic bulk concentrations ρw
α±

as control variables implies a grand-canonical treatment of the

ions, and in this sense the system is regarded as “open”. Bulk

neutrality imposes that ∑α(ρ
w
α+−ρw

α−) = 0. Note that, while

bulk neutrality is required within the grand-canonical treat-

ment, charge can accumulate at at both electrodes as well as

at the interface, and separate phases are not necessarily charge

neutral. With these definitions, the Boltzmann distribution of

the ions throughout the cell takes the form

ρα±(z) = ρw
α± exp[∓φ(z)−Vα±(z)/kBT ], (6)

which in the bulk oil phase leads to bulk ion concentrations

ρα±(H/4)≡ ρo
α± given by

ρo
α± = ρw

α± exp[∓φD − fα±]. (7)

Here the so-called Donnan potential of the bulk oil phase,

φD ≡ φ(H/4), follows from the neutrality condition in the

bulk oil, ∑α(ρ
o
α+−ρo

α−) = 0, which can be rewritten as

φD =
1

2
log







∑
α

ρw
α+ exp(− fα+)

∑
α

ρw
α− exp(− fα−)






. (8)

Note that Eq.(8) only holds for monovalent ions. The numera-

tor in the logarithm contains a sum over all cation species and

the denominator sums over all anionic species.

With the (neutral) bulk oil state completely specified in

terms of the bulk water state and the self-energy parame-

ters fα in Eqs.(7) and (8), we are now ready to describe

the three interfaces. By writing the Poisson equation as

φ ′′(z) = −4πλ
w,o
B ∑α(ρα+(z)− ρα−(z)), where one should

take λ w
B for −H/2 < z < 0 and λ o

B for 0 < z < H/2, and in-

troducing the screening constants κ2
w = 4πλ w

B ∑α(ρ
w
α++ρw

α−)
and κ2

o = 4πλ o
B ∑α(ρ

o
α+ + ρo

α−), one can write the resulting

Poisson-Boltzmann equation as

φ ′′(z) =

{

κ2
w sinhφ(z) if z < 0

κ2
o sinh(φ(z)−φD) if z > 0,

(9)

with boundary conditions on the interfaces at z = ±H/2 and

at z = 0, and with appropriate asymptotic bulk states at z =
±H/4, given by

φ ′(−H/2) = −4πλ w
B σ ;

φ(−H/4) = 0;

φ(0−) = φ(0+);

εwφ ′(0−) = εoφ ′(0+);

φ(H/4) = φD;

φ ′(H/2) = −4πλ o
Bσ . (10)

Here 0± is short for the limit to z = 0 from below (−) or from

above (+). Typically, H is orders of magnitude larger than

either of the two Debye lengths κ−1
w and κ−1

0 , such that H/4

can be seen as an asymptotic “infinite” distance from elec-

trodes and/or the oil-water interface. The solution of this set

of equations can therefore be written as follows, in analogy

with Eq.(2):

φ(z) =






















































2log

{

1+ γw exp[−κw(z+
H
2
)]

1− γw exp[−κw(z+
H
2
)]

}

, if z ∈
[−H

2
, −H

4

]

;

2 log

{

1+Cw exp(κwz)

1−Cw exp(κwz)

}

, if z ∈
[−H

4
,0
]

;

2 log

{

1+Co exp(−κoz)

1−Co exp(−κoz)

}

+φD, if z ∈
[

0, H
4

]

;

2 log

{

1+ γo exp[κo(z− H
2
)]

1− γo exp[κo(z− H
2
)]

}

+φD, if z ∈
[

H
4
, H

2

]

.

(11)

The integration constants γw and γo are fixed by the boundary

conditions at z = ±H/2, and are analogous to the integration

constant for the single-electrode case, Eq. (3), given by

γw =

√

(2πλ w
B κ−1

w σ)2 +1−1

2πλ w
B κ−1

w σ
; (12)

γo =

√

(2πλ o
Bκ−1

o (−σ))2 +1−1

2πλ o
Bκ−1

o (−σ)
. (13)

The integration constants Cw and Co follow from the two con-

tinuity conditions at z = 0 (Eq.10), such that

Cw =
κo + exp(φD)κo +2exp( φD

2
)κw

εw
εo

κo(exp(φD)−1)

− 2
√

k

κo(exp(φD)−1)
; (14)

Co =
κw

εw
εo
+ exp(φD)κw

εw
εo
+2κo exp( φD

2
)

κw(exp(φD)−1)

− 2
√

k

κw(exp(φD)−1)
, (15)

with

k = exp(φD)

(

κ2
o +κ2

w

(

εw

εo

)2

+2κoκw

εw

εo

cosh

(

φD

2

)

)

.

The dimensionless charge density σ is imposed on the left

electrode.
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We have obtained the closed-form expression for φ(z) as

represented by Eqs.(11) in terms of the bulk ion concentra-

tions ρw
α± in the water phase, the energy differences kBT fα±,

and the electrode charge densities ±eσ . The ionic concentra-

tion profiles follow explicitly from insertion of φ(z) into the

Boltzmann distribution of Eq.(6). Moreover, two emerging

electrostatic quantities can be deduced from our results. The

first is the voltage ∆Ψ between the electrodes, which is given

by

∆Ψ =
kBT

e
(φ(−H/2)−φ(H/2)) . (16)

The second quantity is the apparent surface charge density

eσ ′ ≡ e
∫ 0
−H/4 dz∑α(ρα+(z)−ρα−(z)) at the water-side of the

interface, which by global neutrality is the opposite of the ap-

parent surface charge density at the oil-side of the interface.

Using the Poisson equation and applying the Gauss law, we

find

σ ′ =
φ ′(0−)
4πλ w

B

(

=
φ ′(0+)
4πλ o

B

)

. (17)

Moreover, for later reference we will also calculate the adsorp-

tion Γab
α± of cation/ion species α to the a−b interface, where

a−b can refer to the electrode-water (e-w), the water-oil (w-

o), or the oil-electrode (o-e) interface. In line with Eq.(4) we

now find

Γew
α± =

∓4ρw
α±

κw

γw(σ)

1± γw(σ)
;

Γow
α± =

∓4ρw
α±

κw

γw(σ
′)

1± γw(σ ′)
+

∓4ρo
α±

κo

γo(σ
′)

1± γo(σ ′)
;

Γoe
α± =

∓4ρo
α±

κo

γo(−σ)

1± γo(−σ)
, (18)

which with Eqs.(12) gives analytic expressions in terms of the

control variables.

For fixed ion concentrations in bulk water, and for fixed sur-

face charge density on the electrodes ±eσ we have thus found

explicit results for the voltage ∆Ψ between the electrodes, the

Donnan potential ΨD = (kBT/e)φD between water and oil, the

ion concentrations ρo
α± in the bulk oil phase, the degree of

charge separation σ ′ at the oil-water interface and the ion ad-

sorption at the three interfaces of the cell. Note that for conve-

nience we use σ as a control variable with a resulting voltage

∆Ψ that we calculate, although we could have reversed this

by fixing ∆Ψ and calculating the resulting electrode charge σ ,

a procedure that would be closer to the experimental reality.

However, the one-to-one relation between voltage and charge

renders both alternatives equivalent.

2.3 Closed electrified water-oil interface

Interestingly, for fixed fα± our analysis of the open system

above also reveals that the Donnan potential φD as defined in

Eq.(8) only depends on the set of concentrations ρw
α± in bulk

water, and not on the cell size H or the electrode charge den-

sity σ . The same holds for the ion concentrations ρo
α± in bulk

oil given in Eq.(7), for the integration constants Cw and Co in

Eq.(14), and hence also for the interfacial surface charge den-

sity σ ′. In other words, for fixed ρw
α± all thermodynamic and

electrostatic properties of the “electrified” oil-water interface

are independent of the electrode separation, charge, and volt-

age. This independence is easy to understand qualitatively if

one realizes that the electrode charge is completely screened

beyond a few Debye lengths κ−1
w and κ−1

o , which are assumed

to be much smaller than the cell size H. However, in the ex-

periments of Ref.13 it is argued that the properties of a water-

oil interface can be tuned significantly by applying a voltage,

even if H is in the centimetre regime and the Debye lengths

in the nanometer regime, i.e. in a regime where the assump-

tion of asymptotically large H should be perfectly valid. The

present theory can only explain the tunable electrified water-

oil interface if the electrode charging process affects the bulk

ion concentrations. This seems unlikely at first sight, in view

of the macroscopic (cm-range) size of the cell. However, be-

low we will show that charging the electrodes while treating

the ions either canonically or grand-canonically makes a qual-

itative difference. We will identify a new length scale H∗,

of the order of σ exp(| f |)/ρw, which can be of order mm-m

for typical self energies | f | = minα±{| fα±|} ≃ 10− 20, typ-

ical electrode charges σ ≃ nm−2, and typical salt concentra-

tions ρw
α± ≃ mM-M. Only for H ≫ H∗ is the system size

large enough for the charging process of the electrodes to be

viewed as grand canonical in the ions. For smaller cells a

canonical treatment turns out to be appropriate. For that rea-

son we now consider a closed system with fixed numbers Nα±
of cations/anions of species α .

Denoting the total surface area of an electrode by A, such

that the volume of the cell is AH, we can write

Nα± =
AH

2
ρw

α±+
AH

2
ρ0

α±+A
(

Γew
α±+Γow

α±+Γoe
α±
)

, (19)

where we note that ρo
α± and all Γab

α± are explicitly known in

terms of the set of bulk water concentrations {ρw
α±}. In other

words, the right hand side of Eq.(19) is an explicit function of

these variables, and hence we can view Eq.(19) as a closed set

of equations to calculate ρw
α± for given Nα± at fixed A and H.

We will focus on the specific case of an inorganic (hy-

drophilic) salt (e.g. NaCl) and an organic (hydrophobic) salt,

corresponding to α = 1 and α = 2 respectively. We assume

complete dissociation and therefore set N1+ = N1− = AHρ1

and N2+ = N2− = AHρ2, where ρ1 and ρ2 are the (imposed)

overall concentration of the inorganic and organic salt in the

cell, respectively. By inserting these definitions into Eq.(19)

the dependence on the surface area A cancels, and we can ap-

ply standard numerical root finding procedures to calculate the
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the other phase is, following from equation (7), described by

ρo
1± ≈ 2ρ1 exp[∓φD− f1±] and ρw

2± ≈ 2ρ2 exp[±φD+ f2±]. As

we have seen before, the Donnan potential that enters here im-

plicitly depends on these ion densities. However, as we are in-

terested in the dependence of σ ′ on H for sufficiently small H,

we may approximate φD assuming σ ′ ≈ σ . Equation (2) can

be applied to find the electrostatic potential difference between

the bulk water phase and the charged interface, as well as the

electrostatic potential difference between the charged inter-

face and the bulk oil phase. The sum of these contributions

adds up to the Donnan potential, which for the parameters in

Figure 4 is φD ≈−2.6. Charge neutrality dictates that the ap-

parent charge of the interface is related to the number of ions

that have migrated, σ ′ ≈ σ − H
2

(

−ρo
1++ρo

1−+ρw
2+−ρw

2−
)

.

This approximation holds for the case that the double lay-

ers occupy only a small portion of both phases, which is in-

creasingly accurate for H ≫ κ−1
o and H ≫ κ−1

w . Although

all four ion species migrate, they do so in different propor-

tions. Those that are subject to a low self-energy penalty

and/or those that lower their electrostatic energy upon cross-

ing the barrier can be the dominant migrating species and

will therefore have a decisive influence on σ ′ for small H.

For the special case (– f ,– f , f , f ) that we consider in Figure

4, the process is governed by the cations that migrate from

the water phase to the oil phase as well as the anions that mi-

grate from the oil phase to the water phase. We therefore find

σ ′(H)≈ σ −H(ρ1 +ρ2)exp( f −|φD|), and thus

H∗ ≈ σ

(ρ1 +ρ2)
exp( f −|φD|). (20)

The dashed line in Figure 4 represents this analytical approx-

imation to H∗, demonstrating very good agreement with our

numerical approach. We also include numerical data corre-

sponding to the parameters sets (− f ,0, f , f ) and (− f ,0,0, f )
in the figure, which turn out to be barely distinguishable from

each other. Our results therefore indicate that the presence

of one ion species without a preference for water or oil will

affect the system in much the same way as two species with

this zero self-energy difference, resulting in a decrease of

the crossover length by orders of magnitude in both cases.

The analytical approach that we described above cannot be

applied to quantitatively estimate H∗ for these cases, since

some of the ion species have no preference for either phase.

Nevertheless, it can be understood from e.g. equation (20)

that decreasing f to small values yields a dramatic decrease

in H∗, which is in line with our observations.

The experiments of Ref.13 formed a direct motivation to

study the electrolytic cell in more detail. An electrolytic cell of

length H = 4 cm containing aqueous (εw = 78.54) and organic

(εo = 10.43) electrolyte solutions is considered at T = 294 K.

Sodium chloride was dissolved in water to produce a 10 mM

solution. A solution of BTPPATPFB in DCE was prepared at a

concentration of 5 mM. Because of the low dielectric constant

of DCE only partial dissociation into BTPPA+ and TPFB−

occurs, producing an organic solution with a dissociated ionic

concentration of 2.7 mM13. The differences between the bulk

values of the potentials of mean force (PMFs), which were

modeled by molecular dynamics (MD) simulations, are given

by17

( fTPFB− , fBTPPA+ , fCl− , fNa+)

= (−29.9,−22.9,22.3,21.2).

In Figure 5 we examine three parameter sets of the self-

energies

1. fα± = (−29.9,−22.9,22.3,21.2) (experimental values

of the Gibbs free energies)

2. fα± = (−29.9,0,0,21.2) (Gibbs free energies of transfer,

where self-energies of BTPPA+ and Cl− have been set to

zero)

3. fα± = (−49.9,−42.9,42.3,41.2) (Gibbs free energies

after addition of 20: the canonical limit is appropriate

for these self-energies).

Fig. 5 shows that the set of experimental self-energy pa-

rameters (set 1) gives rise to an oil-water interfacial charge

density σ ′ that can indeed be tuned throughout the in-

terval [−0.15,+0.12] nm−2 by the electrode charge σ ∈
[−0.3,+0.3] nm−2, very strongly so in the small-σ regime

|σ | < 0.05 nm−2 where σ ′ = σ , and only weakly for larger

σ where σ ′ approaches a saturation regime. The ability to

tune σ ′ of parameter set 1 is to be contrasted by the behav-

ior of set 2 with two ion species having a vanishingly small

self-energy, which gives rise to a large interfacial charge den-

sity σ ′ = +0.33 nm−2 that is, however, not at all tunable

by the electrode charge σ . For set 3, with its additional 20

kBT of self-energy for all ionic species (which essentially pre-

vents any ion migration to the unfavoured solvent), we see

from Fig.5 that perfect tuning is possible with σ ′ = σ in the

whole regime of σ that is considered.

The grand-canonical behaviour that is revealed by the self-

energies of set 2 (for the present ion concentration and system

size) in Fig.5 is also observed for any self-energy set that con-

tains at least one vanishing self-energy, since in such a case the

presence/absence of this ‘transferable’ ion can take care of the

screening of the electrodes, thereby decoupling the oil-water

interface from the electrodes. We also find that a minimum

value of about | fα±|> 20 is needed for all ion species in order

to be able manipulate σ ′ by σ to a degree comparable that of

set 1.
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serve that an exponential relation exists between the distance

H∗ and the self energies, provided that all self energies are

significant, i.e. | fα±| ≫ 1. These observations are in line with

our analytical approximation, which relates H∗ to the various

system parameters. An expression for the charge-induced sur-

face tension at the liquid-liquid interface was derived, which

we found to be in reasonably good agreement with experimen-

tal data obtained by Laanait et al.13
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A Derivation of Eq. (21)

We consider an open, non-electrified Coulombic system con-

taining an organic and an inorganic salt, made of inorganic

ions (α = 1) and organic ions (α = 2). If we assume two bulk

phases and an interface at z = 0, the grand potential for this

system may be written as

Ω[{ρα±}]/kBT = ∑
α±

A

∫ H/2

−H/2
dz ρα±(z)

[

ln

(

ρα±(z)
ρw

α±

)

−1+
Vα±(z)

kBT
± 1

2
φ(z, [{ρα±])

]

, (22)

where A denotes the surface area of the interface and Vα is de-

fined as in Eq. (5). We are primarily interested in the densities

ρα , which are sensitive to the presence of electrodes. Func-

tional differentiation of Eq. (22) with respect to ρα yields the

Boltzmann distributions Eq. (6). The relative potential and

bulk concentration in oil are respectively defined as:

φ̃(z) = φ(z)−φD;

ρo
α± = ρw

α± exp(∓φD − fα±), (23)

where φD is the Donnan potential as given by Eq.(8). We de-

fine the grand canonical potential for the interface as the con-

tribution to expression (22) bounded by −H
4

and H
4

. We dis-

tinguish between the water (z < 0) and oil (z > 0) phases, such

that Ω/kBT = Ωw/kBT +Ωo/kBT . Substitution of equations
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(6) and (23) into equation (22) yields

Ωw/kBT = A

∫ 0

−H/4
dz

[

∑
α±

ρw
α± exp(∓φ(z))

(

∓φ(z)

2
−1

)

]

;

(24)

Ωo/kBT

= A

∫ H/4

0
dz

[

∑
α±

ρw
α± exp(∓φ(z)− fα±)

(

∓φ(z)

2
−1

)

]

= A

∫ H/4

0
dz

[

∑
α±

ρo
α± exp(∓φ̃(z))

(

∓ (φ̃(z)+φD)

2
−1

)

]

.

(25)

Hence the Donnan potential makes a nontrivial contribution

to the grand canonical potential (22) in the interfacial region.

Whilst in the water phase we find

Ωw/kBT = Aρw

∫ 0

−H/4
dz [φ(z)sinh(φ(z))−2cosh(φ(z))] ,

(26)

in the oil phase we obtain

Ωo/kBT = Aρo

∫ H/4

0
dz
[

φ̃(z)sinh(φ̃(z))−2cosh(φ̃(z))
]

− 1

2
A

∫ H/4

0
dz

[

∑
α

(ρα+(z)−ρα−(z))φD

]

, (27)

where 2ρo/w = ρ
o/w

1+ +ρ
o/w

1− +ρ
o/w

2+ +ρ
o/w

2− . Note that the in-

tegrand in Eq. (26) reduces to −2 when the electrostatic po-

tential reaches its vanishing bulk value. This also holds for

the first integrand in Eq.(27) when the electrostatic potential

reaches the Donnan potential. By subtracting these bulk con-

tributions we can identify the interfacial energy density,

γ int/kBT = ρw

∫ 0

−H/4
dz [φ(z)sinh(φ(z))−2cosh(φ(z))+2]

+ρo

∫ H/4

0
dz
[

φ̃(z)sinh(φ̃(z))−2cosh(φ̃(z))+2
]

+
1

2
σ ′φD,

for which we have used that the charge density in

the double layer on the oil side of the interface will

exactly balance the charge density of the interface,
∫ H/4

0 dz [∑α(ρα+(z)−ρα−(z))] =−σ ′.
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