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atoms or macromolecules, and even stars, that interact each other

through a given potential15. Therefore, MD simulations can be

used to compute, for instance, the correlation functions that de-

scribe entirely the dynamical properties of many-body systems.

For example, MD simulations have already been employed to de-

termine the friction coefficient, ξ , of a system made up of a col-

loidal particle of infinite mass immersed in both hard-sphere16

and Lennard-Jones17 solvents. However, colloids have a finite

mass and are much bigger than the solvent molecules. In fact,

a current challenge for any simulation technique is to deal with

systems whose components exhibit very large size and mass asym-

metries, e.g., colloids immersed in an explicit solvent. Nowadays,

due to the enormous increase in the speed of the computer pro-

cessors together with advanced numerical methods that allow us

to optimise MD algorithms, one can study systems with moderate

size and mass asymmetries18. Thus, it is possible to fully describe

the Brownian motion in the nano-colloidal regime.

One of the main characteristics of a colloid immersed in an

aqueous environment is the so-called Brownian motion. The the-

oretical description of the Brownian motion by the pioneering

work of Einstein13 and Smoluchowski12 established the bases

for the understanding of the transport of macromolecules in

a suspension19. The description of the Brownian motion by

Langevin20 is based on the fact that there exist essentially two

forces acting on a single colloid: thermal forces induced through

collisions with the solvent molecules, typically referred to as ther-

mal noise and modelled as Gaussian noise, and the friction force

originated by the solvent viscosity, which damps the particle mo-

tion. In such description, the solvent is considered as a continuum

medium characterised by a constant viscosity, however, its nature

and thermodynamics are not taken into account explicitly. Nev-

ertheless, in an effort to incorporate the microscopic details of

the solvent within the Langevin description, Deutch and Oppen-

heim employed the projection operator technique to describe the

Brownian motion of a single heavy particle21 and several heavy

particles22 immersed in a bath of N light particles. From compu-

tational point of view, recent advances on the Brownian motion

with the explicit inclusion of the solvent are related with systems

composed of a colloid of finite mass and size in a repulsive LJ

solvent23,24, with particular interest in the calculation of both

diffusion23 and friction24 coefficients.

Mori has suggested deviations in the so-called generalised

Langevin equation (GLE) that arise from the molecular informa-

tion of the solvent, which includes memory effects25. Mori for-

malism is directly based on the calculation of correlation func-

tions, however, they cannot always be easily computed26. Never-

theless, in the particular case of the Brownian motion of a single

heavy particle of mass M interacting with a large number of sol-

vent particles of mass m, a Markovian description can be done in

the limit m/M → 0
27.

In a system where several species with widely different char-

acteristic time and space scales coexist, it is almost impossible

to take into account all the degrees of freedom and it is a com-

mon practice to resort to a coarse grained description integrating

from the description, i.e., from either the equations of motion or

the partition function, all degrees of freedom that do not belong

to the main larger constituent. This leads to a state dependent

effective description for the main constituent, thereby allowing

a one-component model description (for example, the standard

Langevin equation of motion for the colloids only). The moti-

vation for such a procedure is not only to facilitate contact with

experiments, where most of the time the small constituents can-

not be probed directly, but also to simplify the theoretical treat-

ment. However, in the particular case of a colloidal dispersion,

the solvent details, i.e., the interaction potential among solvent

molecules and the thermodynamic state, are of considerable im-

portance because recent studies have shown that a Langevin ap-

proach cannot longer be applied since the thermal motion due to

the collisions with the solvent deviates from the classical Gaussian

noise picture28,29. Additionally, Pesce et al. experimentally mea-

sured the effects of fluid inertia on the diffusion of a Brownian

particle at very long time scales30; their experimental data are

consistent with a generalised theory that takes into account not

only the inertia contribution of the colloidal particle, but also the

inertia of the solvent molecules. Furthermore, interesting phe-

nomena, such as the critical Casimir forces31 and the colloidal

self-assembly near critical solvents32 cannot be fully understood

if the role of the solvent on the static and dynamical properties

of colloidal dispersions is not studied in detail. Therefore, the ex-

plicit inclusion of the solvent becomes relevant to understand the

underlying mechanisms that lead to such phenomena.

Hence, the aim of this work is to study the Brownian motion

of a single nano-colloid immersed in an explicit solvent. In par-

ticular, we focus on the effects caused by both the nature and

thermodynamic state of the solvent. More specifically, we are

mainly interested in the following question: what is the role of a

solvent that exhibits a gas-liquid coexistence on the diffusion of a

nano-colloid? Then, from the molecular information, we evaluate

all the correlation functions needed to fully describe the diffusion

of the colloidal particle. The memory kernel is thus computed

and analysed in order to highlight the influence of the solvent on

the particle dynamics.

After the previous Introduction, the manuscript is organised as

follows. In section 2, we present the generalised Langevin equa-

tion in the framework of the Mori theory and the expressions to

calculate the memory and the fluctuating force autocorrelation

functions are shown. In section 3, we briefly describe the micro-

scopic details of the system under study and provide the main

characteristics of the MD simulations carried out in this contri-

bution. The results for the momentum autocorrelation function,

memory kernel and momentum-fluctuating force correlation of

the nano-colloid in terms of the thermodynamic state of the sol-

vent are presented in section 4, including those near the critical

point. Finally, we summarise our main findings in the section of

concluding remarks.

2 Description of Brownian motion from the

molecular dynamics and the Generalised

Langevin equation

Mori theory describes the Brownian motion in terms of cor-

relation functions, such as the momentum autocorrelation,
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momentum-force and total force autocorrelation functions25.

These functions allow one to compute the so-called memory ker-

nel, as it is explained further below, and to fully describe the

features of the Brownian motion. Furthermore, within the Mori

framework, the change of a given variable is determined by two

contributions; one of them called systematic, which is composed

of an instantaneous and a retarded contribution, and the second

one is random. The retarded contribution is determined by the

memory kernel and is associated with the momentum autocorre-

lation function through the dissipation-fluctuation theorem33.

Let us choose the linear momentum P of the Brownian particle

as the variable of interest and assume a system free of external

fields. Then, the generalised Langevin equation can be written

as17,25,34,

Ṗ(t) =−
∫ t

0

dsk(t − s)P(s)+F+ (t) , (1)

where F+ is the fluctuating force with mean value 〈F+〉= 0, with

〈·〉 denoting an ensemble average, k is the memory kernel and t−s

is related to the correlation time. According to the dissipation-

fluctuation theorem, the components of the fluctuating force are

related with the memory kernel through the expression33

〈F+
α (t)F+

β
(s)〉= ∑

γ

〈Pα Pβ 〉kγ,β (t − s) , (2)

where α,β ,γ denote the cartesian components: x,y,z. Due to the

isotropy of the microscopic model, the previous equation reduces

to the following set of equations,

〈F+
α (t)F+

β
(s)〉= δαβ 〈F

+ (t)F+ (s)〉, (3)

〈Pα Pβ 〉=
δαβ

3
〈P2〉, (4)

kα,β (t − s) = δαβ k (t − s) . (5)

Then, one can write the relation between the Cartesian compo-

nents of the fluctuating force and the memory kernel as follows,

〈F+ (t)F+ (s)〉= 〈P2〉k (t − s) . (6)

Every component of the force must satisfy the same scalar gener-

alised Langevin equation, i.e.,

Ṗ(t) =−
∫ t

0

ds k (t − s)P(s)+F+ (t) , (7)

and F+ obeys the scalar fluctuation-dissipation theorem given by

eq. (6).

By multiplying eq. (7) with P(0) and taking the ensemble av-

erage, one obtains

〈Ṗ(t)P(0)〉 = −
∫ t

0

ds k (t − s)〈P(s)P(0)〉

+〈F+ (t)P(0)〉. (8)

Let us now define the momentum autocorrelation function as

C (t)≡ 〈P(t)P(0)〉. Then, by considering that the fluctuating force

F+ (t) and the momentum P(0) are statistically independent, one

can rewrite eq. (8) as an equation of motion for the momentum

autocorrelation function

Ċ (t) =−
∫ t

0

ds k (t − s)C (s) . (9)

2.1 Memory kernel from molecular dynamics simulations

In a MD simulation, one has full access to the microscopic infor-

mation, like the particle position, momentum and total force at

every instant. In fact, with a MD simulation, one can compute

directly the momentum autocorrelation function, nevertheless, it

is not possible to determine the random contribution to the total

force in this way. As one can observe in eq. (9), it is possible to

determine the memory function from this relation and use eq. (6)

to calculate the random contribution.

Usually, from eq. (9), a Laplace transform is performed in or-

der to calculate the memory function, however, this procedure

can bring errors due to the numerical stability implied in the

Laplace transformation35,36. In general, eq. (9) describes a first

kind Volterra equation37 for the memory kernel. However, every

integral of first kind Volterra equation can be rewritten as a sec-

ond kind Volterra equation by taking the derivate with respect to

the independent variable. In this case, one obtains the following

expression,

C̈ (t) =−C (0)k (t)−
∫ t

0

ds Ċ (t − s)k (s) . (10)

It is possible to numerically calculate C̈ (t) and Ċ (t), but one

should avoid the numerical differentiation considering that such

functions can be expressed as the total force autocorrelation and

the momentum total force correlation functions, respectively,

C̈ (t) =−〈F (t)F (0)〉, (11)

Ċ (t) = 〈F (t)P(0)〉, (12)

Then, the correlation function can be determined directly from

the MD simulation. Thus, the GLE (see eq. (9)) can be reex-

pressed as,

〈F (t)F (0)〉=C (0)k (t)+
∫ t

0

ds 〈F (t − s)P(0)〉k (s) . (13)

There are different proposals to solve a Volterra integral equa-

tion of second kind38–40, nevertheless, one does not have to for-

get that in this case the memory kernel is unknown. According to

the estimation of the correlation functions, one knows its value at

every ∆t, so one can use this information to apply a very standard

discretisation procedure. With the discretisation of eq. (13), one

immediately gets

〈F (i∆t)F (0)〉 = C (0)k (i∆t)+ (14)

∆t
i

∑
j=0

w j〈F (i∆t − j∆t)P(0)〉k ( j∆t) ,

where w j = 1/2 for j = 0, i, and w j = 1 in other case, represents

the integration weight factor. Then, k (t) at each t = i∆t can be
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computed in an iterative way as,

k (i∆t) = [C (0)+∆twi〈FP〉]−1 × (15)

[

〈F (i∆t)F (0)〉−∆t
i−1

∑
j=0

w j〈F ((i− j)∆t)P(0)〉k ( j∆t)

]

,

with the initial condition k (0) = 〈F2〉/C (0). Thus, by means

of MD simulations, the memory kernel can be straightforwardly

computed.

In this contribution, we systematically study the memory kernel

of a single nano-colloidal particle as a function of the thermody-

namic state of the solvent.

2.2 Stationarity

A MD simulation begins with a specification of initial conditions,

where neither the bath nor the Brownian particle are in thermo-

dynamic equilibrium. Even if the initial conditions can be such

that the system is near the equilibrium state, it is necessary to

run the simulation a long enough time until the equilibrium state

has been established. In order not to choose a particular initial

state, in the GLE the initial state is shifted to the infinitely remote

past34 , i.e.,

Ṗ(t) =−
∫ t

−∞
ds k (t − s)P(s)+F+ (t) . (16)

Hence, to be consistent with the Mori formulation (7), one has

to keep the relation (9) between the memory kernel k(t) and the

momentum autocorrelation function. Then, the fluctuating force

and the momentum are correlated as follows

〈P(0)F+ (t)〉=
∫ ∞

0

ds k (t + s)C (s) . (17)

In contrast with Mori formalism25, where the initial momen-

tum and the fluctuating force at positive times are uncorrelated,

as we early mentioned, the stationarity in the simulation requests

a correlation between these quantities. Moreover, one can show

that the stationary Langevin equation in conjunction with relation

(17) implies the fluctuation-dissipation theorem. For the fluctu-

ating force, one can write

F+ (t) = Ṗ(t)+
∫ t

−∞
ds k (t − s)P(s) , (18)

where the force F (t) gives the acceleration of the Brownian par-

ticle, i.e., F (t) = Ṗ(t). By multiplying eq. (18) with P(0) and

performing an equilibrium ensemble average, one finds

〈P(0)F+ (t)〉 = Ċ (t)+
∫ t

0

dsk (t − s)C (s)

+
∫

0

−∞
dsk (t − s)C (s) . (19)

According to eq. (9), the first two terms in eq. (19) cancel each

other and only the third term remains. Changing the variable of

integration s → −s and considering the symmetry of the corre-

lation function 〈P(0)P(t)〉 ≡ C (t) = C (−t), one immediately ob-

tains the expression of the fluctuating force momentum correla-

tion (17). Thus, from MD simulations one can extract the set of

correlations functions that allow us to fully understand the nature

of the Brownian motion.

3 Microscopic model

We consider a 2D system made up of N soft discs of mass m and di-

ameter σ f l that form the solvent and a single Brownian particle of

mass M and diameter σB. The Hamiltonian of the colloid-solvent

system is given by22,24,34

H =
1

2M
P2 +

N

∑
i=1

1

2m
p2

i +
N

∑
i

UB (|ri −R|)

+
N

∑
i6= j

U f l

(

|ri − r j|
)

, (20)

where ri and R are the solvent particle and Brownian particle

positions, respectively. Similarly, pi and P are the linear mo-

menta, respectively. The solvent-Brownian inter-particle poten-

tial is given by the potential UB, which in this work is expressed

by the so-called WCA potential (introduced further below). The

solvent-solvent interaction is given by the potential U f l with the

functional form of a WCA potential for the repulsive solvent and

a Lennard-Jones potential for the attractive solvent.

Hauge and Martin Löf41 pointed out that a necessary condi-

tion to observe Brownian motion, i.e., a stochastic-like motion,

is described by the ratio γ ≡
(

ρ f l

ρB

)1/2

≪ 1, where ρ f l and ρB are

the mass densities of the solvent and the Brownian particles, re-

spectively. However, Lebowitz 27,42 and Zwanzig43 found that

an appropriate criterium to establish Brownian motion is given

by the condition γ ′ ≡
(

m
M

)1/2
≪ 1. Both conditions, γ and γ ′, are

equivalent if one considers the mass of the Brownian particle, M,

as the main physical parameter to be varied. In this work, we

particularly consider a Brownian particle of mass, M = 100m, so

γ ′ = 0.1. Hence, strictly speaking, we are not working in the limit

previously mentioned, but, this chosen value for γ ′ is close to the

one for nano-colloids immersed, for example, in benzene44.

The MD simulations are carried out in the NV T ensemble with

a system composed of N = 15000 solvent discs and a single Brown-

ian disc. The discs are initially distributed on a surface in a square

array as initial particle configuration with random velocities that

satisfy the equipartition theorem; this allows us to reach the ther-

mal equilibrium much faster. In the MD simulations, we have

used the so-called iso-kinetics thermostat, i.e., a simple rescaling

of the particle velocities. To improve the statistics, we have aver-

aged all the correlation functions over 10 different initial seeds,

i.e., different initial points in the phase space. This method allows

the system to follow different paths in the phase space. However,

it is important to point out that we are dealing with one single

nano-colloid and, therefore, the statistical uncertainties associ-

ated to any physical observable are not negligible. Clearly, the

ideal scenario is to have many colloids in the very dilute regime

to avoid colloid-colloid interactions to get a better statistics. Un-

fortunately, from computational point of view, this case cannot be

reached in a realistic time because increasing the number of nano-

colloids leads to a considerable increase, of several orders of mag-
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nitude, in the number of solvent molecules. Thus, a simulation

with a larger number of colloids with the explicit incorporation

of the solvent molecules is currently a challenging task. The sta-

tistical uncertainties associated to each correlation function were

obtained according to the procedure described in Ref.45.

The reduced units of length, temperature and time are defined

as r∗ ≡ r/σ f l , T ∗ ≡ kBT/ε and t∗ ≡ t/τ, respectively, where the

time unit is τ = σ f l

√

m/ε, with kB and T being the Boltzmann’s

constant and the absolute temperature, respectively, and ε is de-

fined further below. The reduced density is defined as ρ∗ = 4η/π,

where η is the solvent packing fraction η = Nπσ2

f l/4A, i.e., the

ratio between the area occupied by the solvent discs and the total

available area, A.

The equations of motion are integrated with the standard ve-

locity Verlet algorithm45, employing a time step ∆t = 1×10
−3τ to

guarantee its stability. In all cases, we have done 5×10
6 integra-

tion steps to establish thermal equilibrium. From the subsequent

3× 10
7 time steps, we compute the observables to fully recon-

struct the generalised Langevin equation.

To better understand the effect of the thermodynamic state of

the solvent on the Brownian motion, as first scenario we consider

a purely repulsive solvent with a temperature T ∗ = 1.0; this state

is particularly defined as the high temperature regime, and two

solvent densities, namely, ρ∗ = 0.40,0.80. In a second case, we

study the effects of an attractive solvent on the dynamical be-

haviour of the Brownian particle. In this case, the dynamics is

studied near the saturated regions; close to the vapour and liquid

branches, and in the neighbourhood of the solvent critical point.

The gas-liquid phase diagram of the attractive solvent is here

computed by means of Monte Carlo computer simulations in the

Gibbs ensemble (GEMC)46–48. For the construction of the phase

diagram, we consider a system of N = 1000 solvent discs randomly

distributed in two square surfaces of area A. In both surfaces, we

impose periodic boundary conditions. The thermalisation of the

system is reached with 9×10
7 Monte Carlo (MC) steps and 9×10

8

additional steps are employed to compute the liquid and vapour

coexistence densities. The maximum particle displacement and

the volume change ratio are adjusted to obtain 30% and 50% of

acceptation ratios, respectively.

As mentioned in the previous paragraph, the determination of

the gas-liquid coexistence is carried out by means of GEMC sim-

ulations. However, a few points of the binodal reported in Fig. 3

(see below) were also corroborated with our MD simulation tech-

nique (data not shown) using the so-called canonical method49.

Thus, we are confident that the MD simulations are reproducing

the actual dynamics of the system.

3.1 Repulsive solvent

During the study of Brownian motion, the solvent is typically

treated implicitly50,51, however, recent investigations show that

the thermodynamic state of the solvent plays an important role in

explaining new emergent phenomena, such as the critical Casimir

forces52–55. Hence, in this work we deal with the explicit incor-

poration of the solvent to systematically study the dynamics of

a nano-colloidal particle. As a first case of study, we consider

a repulsive solvent, i.e., a system whose molecules interact only

via repulsive forces. The intermolecular interaction between the

solvent discs is given by the so-called WCA potential56

uWCA (r) =

{

4ε

[

(σ f l

r

)12

−
(σ f l

r

)6
]

+ ε

}

Θ(r− rc) , (21)

where ε is the interaction strength between discs. Θ is the Heav-

iside function, r is the inter-molecular separation and rc is the

cut-off radius. The WCA potential contains only repulsive inter-

actions, see dashed line in Fig. 1. Inset of Fig. 2 shows that

the structural behaviour of this solvent is basically independent

of the reduced temperature, T ∗. This solvent and its role in the

Brownian motion of a single particle has already been studied by

Shin et al.34. In such contribution, authors studied the Brownian

motion for various characteristics of the Brownian particle. How-

ever, due to the repulsive nature between molecules, this system

only undergoes liquid and solid phases57. Then, in such system

the colloid dynamics near the liquid-vapor transition could not be

studied.

3.2 Attractive solvent

The interaction potential among discs of the attractive solvent

is given by the Lennard-Jones potential58,59. This potential has

been subject of extensive investigations60–62. The main reason

resides in its simple functional form that allows one to model at-

tractive interactions of relative short-range. It has been shown

that the optimal LJ potential to be used in a molecular dynam-

ics simulation should be truncated at the cut-off radius, rc, and

shifted to be zero at longer inter-particle separations; this proce-

dure avoids the discontinuity of the force due the truncation and

the inclusion of the so-called long-tail corrections63. The differ-

ences between both LJ and WCA potentials are shown in Fig. 1.

The potential uLJ(r) has the following functional form,

uLJ (r) = [φ(r)−φ(rc)]Θ(r− rc) , (22)

where the function φ(r) is the standard LJ potential,

φ (r) = 4ε

[

(σ f l

r

)12

−
(σ f l

r

)6
]

, (23)

We identify eq. (22) as the Lennard-Jones spherical truncated and

shifted (LJ-STS) potential.

As it is well-known, the short-range attractive interaction con-

fers to the solvent a richer structural and thermodynamic be-

haviour than the one observed in a solvent with repulsive in-

teractions. One can verify this statement directly from Fig. 2,

where the radial distribution function, g(r), for both solvents at

the same reduced density for different temperatures is explicitly

shown; main body displays the g(r) of the attractive solvent and

inset shows the corresponding one of the repulsive solvent. There,

one can notice that the microscopic structure of the attractive sol-

vent depends strongly on the temperature, however, as expected,

in the high temperature regime, the behaviour of both solvents is

very similar. In fact, the potential (21) was originally proposed

to investigate the influence of repulsive interactions on the struc-

ture of LJ-like solvents56, i.e., simple liquids. However, when the
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Fig. 1 WCA (dashed line) and LJ (continuos line) potentials for the

interaction between repulsive and attractive, respectively, solvent

molecules. The repulsive potential is given by eq. (21) and the attractive

one by eq. (23) shifted and truncated at rc = 2.5σ .

temperature decreases, the system becomes more structured and,

particularly, the second maximum of the g(r) exhibits a split, see

Fig. 2 for T ∗ = 0.4; this structural behaviour is typically associated

to a liquid-solid transition64.

Fig. 2 Radial distribution function, g(r), for various reduced

temperatures at the reduced density ρ∗ = 0.80 of the attractive solvent

(23). At T ∗ = 0.40, the second maximum shows a dislocation; this

characteristic indicates a solid-liquid phase transition. Inset shows the

radial distribution functions for the same reduced density and

temperatures for the repulsive solvent (21).

In order to make a systematic study along several isotherms

close to the binodal, we also calculate the phase diagram of the

LJ potential (22). The results of the GEMC simulations are shown

in Fig. 3. The critical point is estimated by using a scaling law and

the law of rectilinear diameters65. According to this procedure,

the critical point parameters, ρc and Tc, are fitting parameters of

the following equations

ρ∗
l −ρ∗

v =C1 (T
∗

c −T ∗)β , (24)

ρ∗
l +ρ∗

v

2
= ρ∗

c +C2 (T
∗

c −T ∗) , (25)

where ρ∗
l and ρ∗

v are the reduced coexistence densities of liquid

and vapour, respectively, at the reduced temperature T ∗. The

critical exponent used is β = 1/8
66, with C1 and C2 being fit-

ting parameters. Thus, our estimation for the critical point is

ρ∗
c = 0.36±0.01 and T ∗

c = 0.451±0.003.

Fig. 3 Phase diagram of the attractive solvent given by eq. (22) with a

cut-off radius rc = 2.5σ . The circles are the orthobaric densities

calculated by the GEMC simulation technique. The diamond is the

critical point at (ρ∗
c ,T

∗
c ) = (0.36±0.01,0.451±0.003) obtained by fitting

the simulation data with eqs. (24) and (25). The stars are

thermodynamic states for the repulsive solvent at the high temperature

regime; this system has also been studied by Shin et al. 34 (see eq.

(21)).

4 Results and discussion

The numerical evaluation of any correlation function, particu-

larly at long times, is a technical problem of great difficulty67.

Therefore, to reduce the statistical uncertainties, all the correla-

tion functions are averaged over a large time window (two orders

of magnitude greater than the one reported in the plots). Addi-

tionally, we have run the simulations in a sufficiently large box in

order to avoid strong fluctuations of the correlation functions at

long times. Such fluctuations are typically associated to the sound

wave generated by the nano-colloidal particle, i.e., the motion of

the nano-colloid generates a perturbation in the solvent, which

propagates across the simulation box and could influence the mo-

tion of the nano-colloids placed in the image boxes68. Then, in

order to reduce these fluctuations, the simulation domain must

be large, so the time it takes the sound wave to traverse the sim-

ulation area does not affect the determination of the correlation

functions used, for example, to compute the memory kernel. In

particular, we tested several box sizes, ranging from N = 1000 to

N = 15000, and found that the largest one allowed us to reduce

drastically this effect. We collect the simulation data every third

time step ∆t = 3×10
−3τ.

We firstly focus on two solvent densities at a high temperature

and analyse the way in which the nature of the interaction poten-

tial between solvent molecules affects the dynamical behaviour of

the nano-colloid. Secondly, we explore the dynamical changes of

the nano-colloid when the thermodynamic state of the attractive
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solvent is near to its critical point.

4.1 High temperature regime

4.1.1 Momentum autocorrelation function

The momentum autocorrelation function, C (t), for a Brownian

particle of diameter σB and mass M = 100m immersed in a sol-

vent at the temperature T ∗ = 1.0 for two different solvent con-

centrations is shown in Fig. 4. We have particularly chosen those

thermodynamic states indicated by a star in the phase diagram

of Fig. 3, which correspond to densities higher than the critical

concentration in the high temperature domain. For comparison

purposes, Fig. 4 also includes simulation results for the repulsive

case studied by Shin et al.34.

Fig. 4 Momentum autocorrelation function, C (t), of a Brownian particle

of mass M = 100m immersed in a solvent with a particle concentration of

(a) ρ∗ = 0.4 and (b) ρ∗ = 0.8 at the reduced temperature T ∗ = 1.0. These

state points correspond to the stars indicated in Fig. 3 above the critical

density. The direction of increase of the Brownian particle size is

indicated with the arrow. The symbols and lines denote the cases for the

repulsive and attractive solvents, respectively. Crosses denote the

simulation results for the pure repulsive solvent reported by Shin et al. 34.

In this regime, C (t) has a similar qualitative behaviour for both

repulsive and attractive solvents, although small variations are

noticed. This similarity is related with the fact that at high tem-

peratures the repulsion among solvent discs dominates and the

solvent structure is only a function of the density, see Fig. 2. It

is also evident that at low and moderate solvent concentrations,

for example, ρ∗ = 0.4 (see Fig. 4a), the function displays a mono-

tonic and slower decay due to the Brownian particle has a larger

mean free path, in contrast with a higher solvent density, ρ∗ = 0.8,

where C (t) exhibits a much faster decay (see Fig. 4b). In all cases,

our simulation results for the repulsive case is in excellent agree-

ment with the ones reported by Shin et al.34.

From Fig. 4, it is evident that the amplitude of the correlation

for the attractive solvent is slightly higher at short times, whereas

at longer times there appears a crossover and the amplitude be-

comes now lower; this is more notorious at moderate concentra-

tions and the time at which such crossover occurs decrease when

the size of the Brownian particle increases. This behaviour might

be associated with the heterogeneous distribution of solvent discs

around the Brownian one due to the (weak) attraction among

the former ones. This mechanism produces voids, i.e., the empty

areas, of variable size and shape where the colloid is moving69.

Thus, the results point toward that the attraction among solvent

discs induces a heterogeneous distribution of voids that favour the

momentum correlation at short-times, i.e., within the time win-

dow at which the colloid moves inside a void, but make difficult

the colloid diffusion at longer times.

Additionally, one can observe that at high densities and high

size asymmetries, C (t) exhibits an oscillating decay behaviour.

This feature might be associated with the following combined

facts. On one hand, at high concentrations the medium becomes

highly structured due to the enhancement of the inter-particle col-

lision rate (this mechanism favours the association among solvent

molecules) and, therefore, the colloid should diffuse in a strong

correlated network, see Fig. 2. On the other hand, when the col-

loid is much bigger than the solvent molecules, the former spends

much more time inside the (huge) cage created by the latter ones.

Then, the process of colloidal diffusion should happen in regular

leaps, i.e., when the colloid is able of escaping from the cage69.

4.1.2 Memory kernel

We now turn our discussion to the effects of the solvent on the be-

haviour of the memory kernel. Again, for comparison purposes,

simulation results for the repulsive case studied by Shin et al.34

are explicitly included in the plot. As one can see in Fig. 5, the

memory kernel depends strongly on the nature of the solvent.

In fact, unlike C (t), where the qualitative behaviour is similar

in both types of solvents, the memory kernel exhibits clear dif-

ferences associated to the intrinsic features of the solvent. This

means that k(t) is more sensitive to the details or functional form

of the intermolecular potential between solvent discs. Further-

more, it decays much faster than the momentum autocorrelation

function (see Fig. 4).

The memory kernel, k(t), decays in the same fashion for all

sizes of the Brownian particle, although at short times its ampli-

tude in the case of the repulsive solvent is greater than that of the

attractive one. However, the opposite trend is observed at long

times. Another interesting characteristic observed in the mem-

ory kernel for the case of the attractive solvent is seen when the

size of the Brownian particle increases, its decay becomes slower

and the k (0) value decreases monotonically as compared with the

case of the repulsive solvent. This behaviour is more evident at

lower solvent densities. Additionally, at higher solvent densities

the magnitude of the memory kernel increases but its form is un-
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affected. Again, our simulation results for the repulsive solvent

are in good agreement with the ones presented by Shin et al.34.

To better understand the features discussed in the previous

paragraph, one should take a look at equation (15). Therefore,

the decrease in the amplitude and the slower decay when increas-

ing the Brownian particle size in the case of the attractive solvent

is strongly connected with the enhancement of the momentum-

force correlation contribution due to the attractive forces between

solvent molecules, as compared with the repulsive case, which

seems to be highly dominated by the momentum autocorrela-

tion contribution due to the (possible) dominance of the repulsive

forces. Hence, the degree of association of the solvent molecules

(even at high temperatures) clearly affects the dynamics of the

Brownian particle.

Fig. 5 The memory kernel k (t) of the Brownian particle for the same

scenarios displayed in Fig. 4.

4.1.3 Momentum-fluctuating force correlation function

The stationary momentum-fluctuating force correlation function,

from now on denoted as 〈P(0)F+ (t)〉, is calculated by means of

Eq. (17) and its behaviour at high temperatures for solvent con-

centrations above the critical one is depicted in Fig. 6. As can be

seen from the figure, the correlation function has mainly negative

values, except at very short-times where it is positive. This means

that the momentum and the stochastic force are anti-correlated,

i.e., they act in opposite directions, excluding the short-times

where they act cooperatively.

The correlation 〈P(0)F+ (t)〉 depends on the product of the

memory kernel and the momentum autocorrelation function (see

Eq. 17). Thus, it possesses features that are clearly a combina-

tion of both functions. In particular, one notices that its magni-

tude becomes more negative when the diameter of the Brownian

particle increases and goes to zero faster when the solvent den-

sity increases. In the case of the attractive solvent, it is less anti-

correlated, however, its decay is slower. In both solvents, when

the size of the Brownian particle is equal to the size of the solvent

molecules, it goes to zero very quickly. Interestingly, the position

of its minimum is a function of the details of the interaction po-

tential among solvent molecules and the size ratio, but not of the

solvent concentration.

Fig. 6 Momentum-fluctuating force correlation function calculated from

Eq. (17) of the Brownian particle for the same scenarios displayed in

Fig. 4.

4.2 Critical Regime

So far we have studied the effects that the solvent has on the dy-

namics of a single nano-colloid when the interaction potential be-

tween solvent molecules is characterised mainly by either a repul-

sion or an attraction. We have also pointed out the way in which

the solvent concentration and the size ratio among the Brownian
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particle and a solvent molecule both affect the colloidal diffusion.

We have particularly investigated the region of high temperatures

and even there we observed that a small attraction among the sol-

vent molecules can modify drastically the dynamical behaviour of

a colloidal particle.

Now, in order to study the influence of the thermodynamic state

of the attractive solvent on the dynamics of the Brownian particle,

we focus on the colloidal dynamics in the neighbourhood of the

critical point of the solvent (see Fig. 3). We particularly consider

three solvent concentrations, namely, ρ∗ = 0.045 (gas phase),

ρ∗ = ρ∗
c = 0.36 (critical density) and ρ∗ = 0.70 (liquid phase)

at temperatures close to the critical one T ∗
c = 0.451. In what

follows, only results for the attractive solvent with σB = 10σ f l

and M = 100m are shown. Figure 7 displays characteristic con-

figurations of the system under study at those densities referred

above close to the critical temperature. Clearly, the distribution of

solvent molecules around the nano-colloid are different; this be-

haviour indicates that the collision rate between the solvent discs

and the nano-colloid is a function of the thermodynamic state of

the system.

4.2.1 Momentum autocorrelation function

We first analyse the changes in the momentum autocorrelation

function due to temperature variations at the critical density, ρ∗
c ,

see Fig. 8(a). To better understand the results, Fig. 7(b) shows

a snapshots of the system where one can see that the solvent

discs around the nano-colloid are not uniformly distributed. As

can be observed from figure Fig. 8(a), C(t) exhibits a slow de-

cay in all the temperatures explored. Nonetheless, its decay is

not a monotonous function of the temperature; this behaviour

is related with the strong density fluctuations of the solvent that

lead to a wide spectrum of long-range correlation lengths when

the system is near to the critical region. When the temperature

increases, the correlation function approaches to the behaviour

seen in the high temperature regime previously discussed.

We now discuss the changes in C(t) due to density variations

at the reduced temperature, T ∗ = 0.456 (slightly above the criti-

cal temperature as can be seen in Fig. 3), see Fig. 8(b). In the

vapour and critical regions, the behaviour of C(t) is quite simi-

lar, although its decay is the main feature that differentiates both

regions, being lower in the vapour phase due to the longer mean-

free path of the colloid because the low collision rate among the

solvent molecule and the Brownian particle, see Fig. 7(a). In fact,

for times t > 250τ the correlation function still oscillates around

zero (data not shown). This means that at thermodynamic states

below the critical density and close to the critical temperature,

the momentum relaxation of the Brownian disc occurs in a ex-

tended window of time. On the other hand, in the liquid branch

of the solvent, the correlation function goes to zero quickly due

to the increase of the inter-particle collisions. Thus, the momen-

tum relaxation of the colloid within the liquid region of the host

medium is reached much faster in good agreement with the orig-

inal Langevin approach, which assumes that it occurs at times

t ≥ τB = M/ξ 17.

Fig. 8 Momentum autocorrelation function, C (t), of a Brownian particle

of mass M = 100m and diameter σB = 10σ f l in various thermodynamic

states of the solvent. In (a) the solvent density is ρ∗ = 0.36 (the critical

value) at several temperatures slightly above the critical temperature. In

(b) a comparison between the behaviour of C (t), in the vapor, critical

and liquid densities of the solvent at the temperature T ∗ = 0.456.
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Fig. 7 Configurations of the system composed of a nano-colloid (big sphere) and an attractive solvent (small spheres) at different thermodynamic

states. In panel (a) the solvent is in the gas phase ρ∗ = 0.045, in panel (b) the solvent is in its critical density ρ∗ = ρ∗
c = 0.36 and in panel (c) the solvent

is in the liquid phase ρ∗ = 0.7. In all cases, the reduced temperature is T ∗ = 0.456, just above the critical value (see Fig. 3). The mass and the

diameter of the nano-colloid are M = 100m and σB = 10σ f l , respectively.

4.2.2 Memory kernel

The results for the memory kernel in the critical regime, for the

same thermodynamics conditions reported in Fig. 8, are shown

in Fig. 9. As it can be noticed, the memory kernel is a soft func-

tion of the thermodynamic state of the attractive solvent, whose

magnitude does not change dramatically with the temperature,

see Fig. 9a, but it does with the density, see Fig. 9b. In fact, inset

of Fig. 9a shows that the memory kernel collapses onto a master

curve when it is normalised with its value at t = 0. This behaviour

indicates that k (t) is a function of the density only. Below the crit-

ical density, its decay is relative fast, contrary to its slower decay

at higher densities.

4.2.3 Momentum-fluctuating force correlation

The momentum-fluctuating force of the Brownian particle is dis-

played in Fig. 10. Along the isobaric points, we observe an inter-

esting behaviour, see Fig. 10a. For the nearest temperature to the

critical one, T ∗ = 0.456, the correlation function does not exhibit

the anti-correlation mechanism observed in the high temperature

regime, see Fig. 6, and it is purely cooperative. This means that

both the momentum and the stochastic force act in the same di-

rection at all times. To fully understand this behaviour, it is then

necessary to study in more detail the underlying (microscopic)

mechanisms that induce this kind of cooperativeness near the

critical point. Furthermore, above such temperature, the correla-

tion function becomes anti-cooperative at intermediate- and long-

times, but, more interesting, it follows a similar quantitive depen-

dence, suggesting that in such vicinity the momentum-fluctuating

force correlation is not a function of the temperature. Of course,

this is a property that holds in a narrow window of temperatures

close to the critical one. Below the critical density, along the

isotherm T ∗ = 0.456 (see Fig. 10b) the correlation function keeps

its cooperative behaviour, however, it changes when the density

increases and becomes highly correlated, i.e., its magnitude in-

creases notably with the density.

Finally, we should stress that the dynamics of the Brownian

particle seems to be more sensitive to the variations of the density

rather than the changes in the temperature when it is close to the

vicinity of the critical point.

Fig. 9 Memory kernel, k(t) of a Brownian particle of mass M = 100m

and diameter σB = 10σ f l for the same thermodynamic states reported in

Fig. 8.
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Fig. 10 Momentum-fluctuating force correlation function of a Brownian

particle of mass M = 100m and diameter σB = 10σ f l for the same the

thermodynamic states reported in Fig. 8.

5 Concluding remarks

We reported on an extensive molecular dynamics study of the

Brownian motion of a single nano-colloid immersed in a model

solvent. We mainly focused on the effects on the colloid dy-

namics due to the nature of the solvent and its thermodynamic

state. Then, by means of the molecular information, the Brow-

nian motion was generated and analysed in terms of the gener-

alised Langevin equation within the framework of the Mori the-

ory.

In particular, the memory kernel was computed directly from

the momentum autocorrelation function and the total force auto-

correlation. We avoided the reference to a particular initial state

inside the simulation, so the momentum-fluctuating force corre-

lation is not null and its value was estimated from the memory

kernel.

We also studied the momentum autocorrelation function for

various diameters of the nano-colloid for two solvents of differ-

ent nature, namely, repulsive and attractive, at different ther-

modynamic states; at high temperatures and near to the critical

point. At high temperatures and large sizes of the nano-colloid,

the shape of the momentum autocorrelation function was very

similar in both solvents and such shape seemed to depend on the

solvent concentration only. This behaviour was also confirmed

around the critical temperature. At lower temperatures, partic-

ularly in the case of the attractive solvent and in the vicinity of

the critical point, we found evidence of cooperativeness in the

momentum-fluctuating force correlation function at long-times.

Finally, the memory kernel of the Brownian particle allowed us to

distinguish the effects associated to the interaction between sol-

vent molecules and those linked to the thermodynamic state of

the whole system. However, it is important to point out that the

colloid dynamics became a function of the solvent concentration

in the neighbourhood of the critical point.

Last, but not least, we should stress that in this work we em-

ployed potentials that historically have been used to model simple

liquids. However, it would be very interesting to explore the col-

loidal dynamics by using those coarse-grained potentials that are

able to capture the thermodynamic anomalies of real substances,

such as the water70. Additionally, the effects of the (explicit)

solvent on the correlation of a few colloidal particles, for exam-

ple, colloids trapped in optical tweezers71,72, is of great interest

in order to better understand the hydrodynamic correlations in

few-body systems. Work along these lines is in progress.
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