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Fig. 1 (a) Isotherms in the “pressure-volume" plane. The green oval
indicates the region where the critical point is presumed present. (b)
T -Pzz phase diagram. The first-order phase boundary, loci of maximum
heat capacity c∗p, and those of isothermal compressibility κ∗

T are shown.
The green circle marks the location of the solid-liquid critical point.

single-walled carbon nanotube. A periodic boundary condition is
imposed in the axial direction (z-axis) of the nanotube.

In the NV T -MD simulations, the tube length Lz is fixed to a
value ranging from 800 to 1050 Å and the number N of the
LJ particles is 1000. In the NPT -MD simulations, Lz fluctu-
ates around the mean value determined by N, D, Pzz, and T ,
where Pzz is the pressure tensor parallel to the z-axis, and the
finite-size scaling analysis is performed with N=200, 400 and
600 and other analyses with N=400. The temperature T and
the internal axial pressure Pzz are controlled using the modified
Nośe-Andersen’s method.18 Trajectories of the confined LJ fluid
are generated by the Gear predictor-corrector method with a
time step of 0.5 fs. For each state point, the equilibration run of
20 ns is followed by the production run for analyses: the length
is 30-80 ns for the NV T -MD simulations, 100 ns for most cases of

a

b

Fig. 2 Inherent structures of (a) solid phase VII obtained from the
NV T -MD trajectory at T = 50 K and Lz = 800 Å and (b) solid phase VI at
50 K and 900 Å . The side views and unrolled structures are shown.

the NPT -MD simulations, and extended to 1 µs for the finite-size
scaling analysis. The instantaneous configurations are used for
the analyses except for the snapshots in Fig. 2. For the latter,
we use the inherent structures, i.e., the structures obtained by
applying the constant-volume steepest descent method to the
instantaneous structures visited by the trajectories.

3 Results and Discussion

In Fig. 1(a) we show isotherms in the “pressure-volume" plane.
At low temperatures, the isotherms have a horizontal segment
where Pzz is independent of Lz, i.e., dPzz/dLz = 0. This indicates
that a phase separation takes place under these conditions
(in small systems, a van der Waals loop will appear19,20).
At high temperatures, the slope of the isotherms is always
negative, dPzz/dLz < 0. A critical point can be located between
the highest-temperature isotherm with dPzz/dLz = 0 and the
lowest-temperature isotherm without the horizontal portion.
Additionally, the existence of two phases can be judged from the
local density profile (see below). With this approach a critical
point is located at (Tc/K, Pc/MPa) = (75 ± 5, 153.5 ± 9.3) in a
region indicated by the green mark in Fig. 1(a).

In Fig. 1(b) we plot the T -Pzz phase diagram. The first-order
phase boundary (coexistence line) is determined from the aver-
age Pzz of the horizontal portion of each isotherm at a given tem-
perature. The first-order phase boundary at sufficiently low tem-
peratures is that of two distinct solid phases, the so-called phase

VI and phase VII 11. Their structures are those of close-packed
balls in a cylinder and are specified by the roll-up vector of the
two-dimensional triangular lattice.11 Panels (a) and (b) of Fig. 2
illustrate the inherent structures of both phases obtained from
NV T -MD runs at Lz = 800 Å and 900 Å respectively, and T=50 K.
From these views, we can easily see the regular arrangement of
the argon particles and their long-range ordered structures in the
axial direction. At higher temperatures up to 75 K the first-order
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Fig. 3 Time evolution of the scaled local density ρ(z, t) for trajectories at
(a) 90 K, (b) 80 K, (c) 70 K and (d) 60 K obtained from the NV T -MD
simulations with Lz = 850 Å . The color for ρ(z, t)< 1.0 is the same as
that for ρ(z, t) = 1.0.

boundary is that of solid and liquid phases (as phase VI contin-
uously transforms to a liquid phase with increasing T along the
phase boundary) and it ultimately terminates at the solid-liquid
critical point. Below the critical point the solid phase VII melts
discontinuously whereas at and above the critical point it melts
continuously as T increases at a fixed pressure or as Pzz decreases
at fixed T .

To confirm spontaneous phase separations below the crit-
ical temperature and to observe density fluctuations near
the critical point, we calculated the scaled local density
ρ(z, t) = (∆N(z, t)/∆z)/(N/Lz),21 where ∆N is the number of
molecules in a cylindrical slab of width ∆z (= 5 Å ) centered at
z and N/Lz is the average number of molecules per unit length.
Figures 3(a)–(d) show the time evolution of ρ(z, t) in the NV T -
MD simulations at different temperatures (T = 90, 80, 70 and
60 K) and fixed volume (Lz = 850 Å). The initial configuration
at t = 0 is a randomly generated structure, common to the four
NV T -MD runs. Higher and lower values of ρ(z, t) represent phase
VII and the disordered phase VI (or liquid phase), respectively. At
temperatures above the critical point (80 and 90 K), the system
is microscopically inhomogeneous, i.e., there are numerous
domains with higher or lower local densities. They are variable
in size and tend to form and disappear spontaneously; but they
do not grow beyond microscopic sizes. (Such microscopic phase
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Fig. 4 Finite-size scaling analysis of the Challa-Landau-Binder
parameter of the density distribution function Q(α). (a)(b) Q(α) for the
system with N = 600 at selected temperatures for 200 MPa and
140 MPa, respectively. The temperature at which the Q(α) gives a
minimum Π (Πmin) is 96 K at 200 MPa and 68 K at 140 MPa. (c)
Finite-size scaling of Πmin along isobars of 140 MPa and 200 MPa: Πmin

vs. 1/N. According to a linear fit to the data, Πmin approaches 0.6667
(2/3+0.0001) at 200 MPa and 0.6654 at 140 MPa.

separation above the critical point is also observed in cylindrically
confined water.15) As T is lowered to Tc the average size of
domains becomes larger. When T is close to but below Tc (i.e.
at 70 K) there appear most of the time only two domains in the
nanotube of length 850 Å although fluctuations are large and
more than two appear intermittently. At the lowest investigated
temperature (60 K), the two phases are clearly separated with
their sizes nearly constant. The spontaneous phase separation
observed in the NV T -MD simulation is direct evidence of a
first-order phase transition, as it has been for the liquid-liquid
phase transition in model water.19–21

To ensure the presence of the solid-liquid critical point in the
thermodynamics limit, we implement the finite-size analysis of
the Challa-Landau-Binder parameter22–24 Π ≡ 1 − 〈α4〉/3〈α2〉2

of the density α = N/πσ2
wLz, where σw (=3.189Å ) is the radius

at which the potential energy from the wall is zero. Π quantifies
the bimodality in the density distribution function Q(α). The
minimum of Π (Πmin) along an isobar approaches 2/3 as N → ∞ if
Q(α) is unimodal whereas it approaches a value < 2/3 if Q(α) is
bimodal. We investigate Π for two isobars: Pzz=140 MPa which
passes slightly below what is conjectured to be the critical point
(the green mark in Fig. 1b) and 200 MPa which passes above
that point. At 140 MPa, NPT -MD runs are performed for systems
of N=200, 400 and 600 at temperatures between 65 and 72 K,
each with 1µs production run. Very long MD runs are required to
observe phase flipping between the solid and liquid. At 140 MPa
and 68 K, for example, fifteen independent freezing events (and
the corresponding melting events) are observed in 1 µs of the
MD run with N = 400. At 200 MPa, NPT -MD runs are performed
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Fig. 5 Temperature (T ) dependence of (a)(c) the configurational part of
the enthalpy H =U +PzzV , (b) (d) the isobaric specific heat capacity cp,
(e) the diffusion coefficient along the tube axis and (f) the average bond
order parameter. The isobars in (a)(b)(e) and (f) are the paths of
continuous freezing into phase VII, whereas those in (c) and (d) are the
paths of continuous freezing into phase VI. Red circles indicate the
temperature of maximum heat capacity T ∗ along each isobar.

for the systems at T between 90 and 100 K, now 100 ns each.
As shown in Fig. 4(a)(b), at 200 MPa Q(α) is unimodal at any
temperatures while Q(α) becomes bimodal at some temperatures
at 140 MPa. The parameter Π(T ) at fixed pressure takes a
minimum value Πmin at the temperature where the deviation
of Q(α) from a Gaussian is largest. Evaluation of Πmin is done
by choosing the interval of T to be 0.5 K for 140 MPa and 1 K
for 200 MPa near the temperature of Πmin. Fig. 4(c) shows the
finite-size behavior of Πmin. The Πmin at 200 MPa approaches
2/3+0.0001 linearly with 1/N, indicating the absence of a
first-order phase transition in the thermodynamic limit. On the
other hand, at 140 MPa Πmin approaches a value significantly
smaller than 2/3, proving the presence of a first-order phase
transition.

To investigate the nature of the continuous solid-liquid phase

transformations, we perform long-time NPT -MD simulations of
the N = 400 system at states along the isobaric paths. First, we
evaluate the configurational part of the isobaric heat capacity
cp from (H2 − H

2
)/kBT 2, which describes the fluctuations in

the configurational part H of the enthalpy:U +PzzV with U the
potential energy of the entire system and V ≡ πσ2

wLz the inner
volume of the tube. Plotted in panels (a) and (b) of Fig. 5
are H(T ) and cp(T ) at Pzz= 180, 200, 250, 300 and 350 MPa,
where the system undergoes continuous freezing to phase VII.
There is a maximum cp

∗ of the heat capacity for each isobaric
path. The lower the pressure Pzz, the larger c∗p and the lower
the temperature T ∗ of the maximum heat capacity. This result is
consistent with the fact that the maximum slope of H(T ) at T ∗

becomes steeper as Pzz is reduced. The loci T ∗(Pzz) are smoothly
connected with the first-order phase boundary (see the T -Pzz

phase diagram in Fig. 1(b)). At Pzz= 50 and 100 MPa, too,
continuous enthalpy change and maximum heat capacities cp

∗

are detected during continuous freezing to phase VI (Fig. 5(c)
and (d)): The loci T ∗(Pzz) are shown in Fig. 1(b). Along the loci
the cp

∗ increases with decreasing Pzz. We have also performed
a series of NPT -MD simulations at a pressure below 50 MPa.
Upon heating at 0.1 MPa, solid phase VI becomes unstable
and separates into clusters at 50 K, suggesting that a vapor
phase is stable at that condition. Accordingly, at the diameter D

chosen here a liquid-solid (phase VI) discontinuous change is not
observed at any pressures. The locus of the continuous changes
terminates at a low pressure where the solid or the liquid phase
becomes unstable. But at smaller D there would appear the
first-order phase boundary which is smoothly connected with the
locus of T ∗(Pzz).

Next, the isothermal compressibility κT ≡ −(∂Lz/∂Pzz)T /Lz in
the axial direction is evaluated along the isotherms in Fig. 1(a).
The κT is obtained by fitting a third-order polynomial function
to each Pzz-Lz curve, and determining the locus P∗

zz(T ) of the
maximum isothermal compressibility κ∗

T . The result is shown
in the T -Pzz phase diagram (Fig. 1(b)). As found for c∗p, the
locus of the maximum compressibility is smoothly connected
with the first-order phase boundary. Near the critical point,
the loci of c∗p and κ∗

T converge into a single line, the so-called
Widom line25. The loci bifurcate as they recede from the critical
point, as recently reported in the liquid-liquid critical behavior
of supercooled water.26 Thus, the behaviors of the response
function maxima, too, suggest the existence of a solid-liquid
critical point in the confined LJ fluid.

We now look at, in the course of continuous freezing to, or
melting of, phase VII, how dynamic and structural properties
of the LJ particles change. Figure 5(e) shows the temperature
dependence of the diffusion coefficient of the LJ particles along
the tube axis: Dz = limt→∞ |z(t)− z(0)|2/2t. It is the plot of logDz

vs. 1/T for various isobars. There are broadly three stages
with different slopes and the slope d logDz/d(1/T ) is steepest in
the second stage, i.e., in the intermediate temperature range,
which includes the temperature of c∗p and κ∗

T . The temperature
dependence of Dz may be regarded as the Arrhenius behavior
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over limited high and low temperature ranges, but overall it is
non-Arrhenius.

To measure an order parameter of the local structure, we first
unroll the instantaneous structure by projecting the positions of
particles on the two-dimensional surface of the cylinder of radius
r′ as shown in Fig. 2. Then we find a two-dimensional structure
on the x′-z plane with x′ the coordinate along the circumference of
the cylinder. We choose r′ = 2σ/π to ensure that four LJ particles
at the same z in the solid phase VII are aligned at intervals of σ

in the x′-direction. Periodic boundary conditions are assumed in
the x′ and z directions. We then calculate the local bond order
parameter of particle j on the x′-z plane defined as

ψ j =
1

N j
|

N j

∑
k=1

exp(6iθ jk)|,

where the sum is over N j neighbours of particle j, and θ jk is the
angle between the vector ~r jk from j to its k-th neighbor and a
reference axis (e.g., the x′ axis). Two particles are considered
neighbours if their separation is less than 5 Å, the location of
the first minimum of the two-dimensional radial distribution
function. Note that ψ j becomes 1 when N j=6 and the six
neighbours form a regular hexagon with j at the center. In the
close-packed structure of spheres on a plane, ψ j = 1 for any j.
The ensemble and time average 〈ψ〉 is plotted as a function of
T for various isobars in Fig. 5(f). As T increases 〈ψ〉 gradually
decreases, an indication of gradual transformation of the ordered
structure to disordered one. The change in 〈ψ〉 is rapid at an
intermediate range of temperatures, which coincides with the
range over which lnDz varies most rapidly, and also with the
ranges of maximum heat capacity and compressibility. The
temperature range of the intermediate stage shrinks as the
critical point is approached. The marked changes in the dynamic
and structural properties around the temperature of maximum
heat capacity and compressibility are also observed for a model
system of cylindrically confined water.15

The convergence of the simulation data reported here was con-
firmed as follows. The production run of MD simulation at each
thermodynamic state is divided into blocks of equal length, the
block averages of a quantity of interest are obtained, and the stan-
dard deviation of the averages is examined. First, we focus on
the average pressure at Lz=850 Å and T=80 K in Fig. 1, where
the dispersion is expected to be large owing to the critical point.
The production run of 30 ns is divided into three blocks of 10 ns
each and the standard deviation of the block averages is found
to be 0.24 MPa. Second, the accuracy of the minimum of the
Challa-Landau-Binder parameter (Πmin) for a system of N=600
is evaluated. The temperature at which the density distribution
function gives Πmin is 96 K at 200 MPa and 68 K at 140 MPa (see
Fig. 4). The production runs are divided into four blocks and
the estimated standard division of Π is 0.00001 and 0.0001, re-
spectively. Third, we take the simulation data at 180 MPa and
88 K in Fig. 5, where the maximum heat capacity is exhibited.
The production run of 80 ns is divided into four blocks of 20 ns

each. The estimated standard deviation is 0.02 kJmol−1 for the
enthalpy, 0.004 kJmol−1K−1 for the heat capacity, 0.002 m2 s−1

for the diffusion coefficient, and 0.007 for the average bond or-
der parameter. Thus, these small standard deviations ensure that
the MD simulation runs are sufficiently long for the convergence
of quantities reported in this study.

4 Summary

The existence of the solid-liquid critical point in cylindrically
confined LJ particles was revealed by investigating the isotherms
of pressure, the spontaneous phase separation, and the diverging
behaviors of the response functions. Furthermore, the finite-size
scaling analysis supports the presence of both first-order and
continuous freezing in the thermodynamic limit. With our pre-
vious study of cylindrically confined water,15 we now have two
examples of realistic models of fluids in nanopores that exhibit
the solid-liquid critical point. The present result indicates that a
highly directional intermolecular interaction such as hydrogen
bonding is not a necessary condition for the presence of the
critical point, although it often plays a crucial role in phase tran-
sitions of bulk water.27–29 Rather, the solid-liquid critical point
presumably exists in a variety of quasi-one-dimensional systems
(e.g., colloids in microchannels30–32, fullerenes in nanotubes33

and biological microstructures34) and of quasi-two-dimensional
systems (e.g., molecules or colloids confined in a slit pore and
those adsorbed on solid surfaces and fluid interfaces).35–37 It is
of great significance to explore solid-liquid critical phenomena in
a wider class of realistic systems by numerical simulation. And
equally important and extremely valuable are rigorous studies
on the necessary condition for the solid-liquid critical point
using simple models in various dimensions which may be exactly
solvable.9,38–40
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