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The blue line shows the enhancement in the energy transter
rate due to quantum coherence between donor molecules
relative to the rate when there is no coherence (red line).
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We investigate the role of quantum coherence in modulating the energy transfer rate between

two independent energy donors and a single acceptor participating in an excitonic energy transfer
process. The energy transfer rate depends explicitly on the nature of the initial coherent superpo-
sition state of the two donors and we connect it to the observed absorption profile of the acceptor
and the stimulated emission profile of the energy donors. We consider simple models with meso-
scopic environments interacting with the donors and the acceptor and compare the expression
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we obtained for the energy transfer rate with the results of numerical integration.

1 Introduction

The success and applicability of Forster’s theory of resonant en-
ergy transfer 12 lies in connecting the expression for the rate of
energy transfer between a donor molecule and acceptor to read-
ily measurable spectra of either chromophore. Forster Resonant
Energy Transfer (FRET)® has been used to understand a wide
variety of phenomena starting from the quenching of fluores-
cence in concentrated dyes*® to modeling the efficient energy
transfer processes in biological systems %2 including the impor-
tant problem of understanding the energy harvesting and transfer
mechanism in photosynthesis 1912, However the theory of FRET
was constructed with the energy transfer between a single energy
donor and a single acceptor in mind and so one needs to be mind-
ful of this limitation in extending the applicability of the theory to
much more complex scenarios like the ones typically encountered
in biological systems. Significant progress has been made in re-
cent years both in generalising FRET to more complex system as
well as in formulating alternate ways of addressing the problem
of energy transfer in biologically relevant systems as can be seen
from 1322 and references therein. Notably, in2! FRET was gener-
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alised to the case where there are multiple donors and acceptor:.
In this paper we build on the results in?! and consider in detail
the case where there are two energy donors and one acceptor.

The importance of understanding the efficient and fast en-
ergy transfer processes like the ones involved in Photosynthe-
sis10 cannot be understated and over the past few years, there
is a growing belief that quantum coherence and entanglement

23 Direct evi-

may be enabling resources for these processes
dence using two dimensional fourier transform electronic spec
troscopy 242426 methods reveal remarkably long-lived quantum
coherences in Fenna-Matthews-Olson (FMO) protein complex27,
within photosynthetic structures. The coherences that are ob-
served are both vibronic and electronic in nature and as such
there is indirect evidence that these coherences may have a role
to play in the photosynthetic processes'*. Given the intricacies
of the photosynthetic complex there is also some evidence that
even the immediate environment of the chromophores that di-
rectly participate in the energy transfer process have been en
gineered by nature to enhance the coherence assisted transpoi:

instead of being detrimental to it as is the norm 28532,

In this paper we explore in detail a simple model in which er.-
ergy is transferred via resonance transfer from two energy donors
to a single acceptor. We assume that there can be quantum me-
chanical coherences between the two donor molecules and we
also assume that the entire system is in contact with a rather
simplified and mesoscopic (low dimensional) “environment”. We
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look for the signatures of coherence in the energy transfer rate
between the donors and the acceptor as well as for signs that
under specific conditions the effect of the environment is to influ-
ence the energy transfer process positively by enhancing its effi-
ciency and rate. We derive the expression for the rate of energy
transfer between independent donors which are coherently ex-
cited into the single excitation section and an acceptor. In the
present case the number of localised excitations in the donor and
acceptor molecules provide a natural basis relative to which the
quantum coherences refers to the existence and persistence of su-
perposition states of one or more molecules.

Systems with two energy donors and a single acceptor fur-
nish one of the simplest possible extensions of FRET. Similar
systems have been previously synthesised and studied in labo-
ratories. Rapid energy transfer in Perylene Bisimide based two
donor-single acceptor systems have been reported 33. Bithiophene
perylenediimide based two donor-single acceptor systems34 are
also reported to be good candidates for efficient organic photo-
voltaic devices. These systems serve as the immediate examples
to which our model would be applicable. In addition we also dis-
cuss a plausible experimental setup in Section 2.2 for potentially
observing the effects we predict based on our theoretical analysis.

Multiple donors being coherently and simultaneously excited
is a very plausible scenario in the context of photosynthetic pro-
cesses in light of the fact that a single photon is typically ’bigger’
than the photosynthetic complex itself. To put the length scales
involved in context, the distance between the Magnesium cen-
ters of chromophores in the B850 ring of the antenna complex of
the photosynthetic bacterium Rhodopseudomonas acidophila is
around 4-10 A3, The radius of the eighteen member ring of chro-
mophores in antenna complexes of Rhodobacter sphaeroides3° is
around 30 A. The absorption peak of the chromophores is at 850
nm, indicating a single chromophore or a single antenna com-
plex is absorbing photons or wave packets with typical deBroglie
wavelengths of around 700 to 900 nm37. Taking the deBroglie
wavelength as the typical size of a photon we see that a photon
can instantaneously span across several chromophores and an-
tenna complexes and it is eventually absorbed. Hence it is quite
possible that each photon can induce coherences - however short
lived they may be - between the chromophores that, in turn, pass
on the absorbed excitation to other units of the energy transfer
pathway leading to a reaction centre.

The donors are not typically independent of each other in the
photosynthetic complex since they are closely packed together.
However in what follows we assume for simplicity that the energy
donors are not coupled to each other. Note that the development
in the following can be extended to a system of strongly coupled
donors by considering the normal modes of the coupled system
rather than the individual levels of the independent constituents.
A comparison of the analytical rate expressions for a mesoscopic
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environment indicate that the enhancement of the rate due to the
coherent donors may be measurable at short times. The initial
enhancement to the energy transfer rate is expressed as a mea-
surable spectral overlap integral which would be detectable at
high frequencies in a pump probe experiment.

This paper is organised as follows: In the next section we briefly
recap FRET and its extensions to the multiple donor case with ref-
erence to the model we are considering. In Section 3, we look at
the mesoscopic environment and its effects on the energy transfer
rate. We also show a way of computing the effect of the environ-
ment utilising Wigner functions. Our conclusions are in Section 4.

2 FRET with multiple donors and coherence

The incoherent energy hopping mechanisms for energy transfer
proposed by Forster 1238
count for short time non-equilibrium kinetics as well as for mul-
tiple donor and acceptor case by Jang et. al21:40. Forster’s ap-
proach, as outlined in*142 applies to two chromophores, one
being the donor and the other the energy acceptor. Each chro-
mophore has two valance electrons with spins denoted by 1 and
1. Let ¢4y (Wit) and ¢y () denote the spin orbitals in the High-
est Occupied Molecular Orbitals (HOMO) of the donor(acceptor)
chromophore respectively. The corresponding Lowest Unoccu-
pied Molecular Orbitals (LUMO) are labelled as ¢;; 1) (wi a1))-
It is further assumed that the orbitals localized on the same
chromophore are orthonormal, though inter chromophore orbital
overlaps are allowed. The states with complete localization of ex-
citation in the donor (denoted by |D)) and the acceptor (denoted
by |A)) are

and Dexter3® was generalised to ac-

D) = vi(I90+ Wit Oy Wiy |+ | Ot Wiy &1y Wiy |)

14) = »( VirOn Va0 Wi dn vy D),

where y; and » are the normalization factors. The states are
Slater determinants since there can be orbital overlap between
the chromophores making all the electrons indistinguishable from
one another. The rate of energy transfer is obtained starting from
the matrix element describing the transition from the |D) state in
which the excitation is localized in the donor chromophore to the
|A) state in which it is localized in the acceptor. We can write this
matrix element as

Vpa = (DIH|A) = 2(¢rn|wiw1) —2(9rvi| Win)

+O((w9)?) +0((w|9) ) + ..., (D

where
(abled) = (Wa()We( )15 ¥ ()%a ()

This journal is © The Royal Society of Chemistry [year]
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The relative strengths of the various terms in Eq. (1) depends on
the separation r;; between the chromophores. At short range (3-6
A), both orbital overlap effects and Coulomb effects are relevant.
In the intermediate range (6-20 A), the orbital overlaps can be
ignored and only the electromagnetic interaction, which is typi-
cally dipole-dipole, is relevant. At long range one has to include
the modifications to the dipole-dipole interaction adding retarda-
tion effects etc that arise from real photons being emitted and
re-absorbed 3. Forster’s theory was originally developed for the
intermediate regime where the orbital overlaps are small and so
only the first term in Eq. (1) contributes. This term is a two elec-
tron integral that describes the de-excitation of the donor and the
excitation of the acceptor that happens simultaneously. The in-
tegral can be thought of as the Coulomb interaction between the
two transition densities. These transition densities, in turn, can
be approximated - through a multipole expansion - by dipoles and
the interaction reduces to a dipole-dipole coupling with a charac-
teristic 1/r% dependence for the transition rate as a function of the
distance between the chromophores. For completeness, it may be
noted that Dexter’s theory3® holds good for the transition rate
when the distances between the chromophores is very short.

In this paper we focus on the case where there is a single ex-
citation present in a system with multiple energy donors and a
single acceptor. The separation between the donors is assumed to
be small so that orbital overlap effects are relevant and in partic-
ular there can be quantum coherences between the donor chro-
mophores. In the discussions that follow, the energy acceptor is
well separated from the donor chromophores so that orbital over-
lap effects between the donors and the acceptor are not relevant.
To keep the focus on the effects of coherence and on the influence
of the structured environment we resist the temptation to give
the donors and acceptors realistic and complicated level struc-
tures*»% and treat them as two level quantum systems (qubits)
as is done in much of the existing literature 819-21,23,27,40,41

2.1 The model and energy transfer rates

We are looking only at the single excitation sector of the system
with two energy donors and one acceptor. Let |g) denote the
ground state of all three chromophores. The states of interest
to us are |D;) = a“g), |D;y) = a£|g), and |A) = a;|g>. The chro-
mophores are assumed to be sitting in a noisy environment or

bath. The Hamiltonian for the system is4°
H=Hy+V,
where
Hy = 8Aa;aA +8]a7;a1 +82a;a2+Heb + Hp. 2)

Here €1(2) and g4 are the energies of the excited states of donor(s)
and the acceptor respectively, while H,,, is the excitation bath cou-

This journal is © The Royal Society of Chemistry [year]

pling of the form
H,, :Bla§a1 +Bga;a2 +BAal;aA, 3

Where By, B, and By are bath operators that will be specified later
on. H, denotes the Hamiltonian for the bath. We assume that
there are no bath modes that are coupled to more than one of
the three chromophores at a time. This means that energy trans-
fer from the donors to the acceptor cannot be mediated by the
bath. Typically, the excitation energies of the donors are differer..
from that of the acceptor3® and hence the resonant frequencies
of the bath oscillators they couple to are also different. Under
these conditions our assumption that the donors do not couple to
the same bath mode as the acceptor can be justified. However
we consider the case where the donors are identical and they can
potentially couple to a common bath mode. The effect of such
coupling would be to create coherences and quantum correlations
between the two donors*©~*8, In the present case, right from the
outset, we assume the presence of quantum coherences and cor-
relations between the donors and so coupling to a common mode
can serve only to quantitatively modify these coherences and the
exciton transfer rates without leading to any new or qualitatively
different effect?3. We choose therefore to avoid this additional
technicality in the interest of keeping our discussion simple. The
model developed here can be extended to a situation when there
are common bath modes to which the donors and acceptor couplc

to by closely following the discussion in“0.

This assumption of having no common bath modes implies that
we can view the bath as made of three disconnected pieces so that

Hjy = Hp1 +Hpr + Hpa,

with the three terms in the sum representing the Hamiltonians
for the parts of the bath coupled to Dy, D, and A respectively. Wo
also have

[Hijku}:[HijBk}:[BjaBk}ZO for ]#k7 jak:1a27A7
4

in addition to the standard commutation relations, [Hj;,H);] =
[Bj,Bj] =0.

The resonant interaction between the donors and the acceptor
is the perturbation V,

V =Jiala, +haa, +H. C. &

In treating the interaction as a perturbation we are assuming that
the interaction strengths J; between the donors and the acceptor
is small owing to the assumption of relatively large separation
between the two. The transition probability for the excitation in
the donors to move to the acceptor is given by

Py(t) = trp(Aslpi(t) AL,

Journal Name, [year], [vol.], 1-14 |3
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with the index 7 indicating that the above expression is in the single excitation is delocalized between the two donors with the
interaction picture. We consider an initial state for the system donors in a superposed state,
and the bath of the form

H ly) = vAID1) +e\/T—n|Dy). )
po= e Py (yl, ©®)
b Following closely the discussions in2140, we obtain the follow-

ing expression for the transition probability (See Appendix A for

where Z, = tr{e P} is the partition function for the bath and :
more details),

B =1/T, where T is the temperature of the bath. Initially the

Py(t) = / dt’ / dt" o'l t—t" ) i€ (t'—1") try [ei(BA+H;,)(z’—t”)e—i(Bl+H1,)z’e—BHbei(B,+Hb)t”]

2
+(1 . n)%/ dr' / dt' e i€q (' —1" )e—iez(t’—r”) try [ei(BA-o—Hb)(z’—z”)e—i(Bz+Hb)r’e—ﬁHbei(32+Hb)t”]
b

+€l¢f /7]1-72/ dr’ / dt" e =t") p—iErt igrt” trb[ei(BA+Hl,)(r’—z”)e—i(31+Hb)t’e—BH,]ei(Bz-o—lLI,,)z”]

te ,¢f\/7 J l/dt / dt' e ie (' —1" e—i8zt’ei81t” try [ei(BA-»-H,,)(z’—t”)e—i(Bz+H,,)z’e—BHbei(Bl+Hb)t”]. (8)

The energy transfer rate is the derivative of the transition probability:

d
k(t) = —Pu(t
(1) R0
- 2Re{nz ! /dt’ i(ea—e)(t— ’>trb] [ei(31+Hb|)t’eiHbl(t—t’)e—i(Bl+Hb1)te—ﬁHbl}trbA [ei(BA+HbA)(t_tl)e_iHbA(t—t’)e—ﬁHbA}
b14bA
ot . N
7 _ i i(By+Hy, 1 oiHpy (1=1") p—i(By+Hyp )t ,~BHp i(Bo—+H,, —t") —iH, ¢y H,
+(l_n)ZbZZbA/ dr el(SA &)t t)trbz [el( )t e e e }trbA [ez( a+Hpa ) ( t)e iHpa (1 t)e B ,A}

Lo T2 Jih /tdt/ei(sA—sl)tefi(EAfsz)z’trb] [eitint g=i(B1+H )t g =BHi |

Zbl ZinZpa

xtry, [ei(Berth)f’e*iﬂbzt'e*ﬁﬂbz]trbA [ei(BAvLHhA)(l*l')e*iHbA(l*f/)e*BHhA]

tem zq)\/» /7 L /‘fdl/ei(grsz)zefi(erg,);/trbz [eiH,,ztefi(BzwLH;,z)tefﬁth}
Zb2ZbIZbA

xtry, [ei(Bl+Hbl)f/e*iHblt’e*ﬁHm]trb [ei(BA+HhA)(tft’)e7iH;,A(tft’)efﬂHM] } )
1 A

For separating out the traces over the three sets of bath modes, we have used the commutation relations in Eq. (4).

Since there is only one acceptor, we are able to factorize out the contribution to the rate expression from the acceptor within the
integral as
LeiaA (t—t’)trbA [ei(BAJerA)(t—t’)efiHbA (tft’)efﬁHbA] _

7 / do "1 (o), (10)

V27T|#A V2afiy - o2

where [i, is the transition dipole moment of the acceptor, ¢ is a reference axis taken the polarization vector of the incident radiation if
the acceptor is irradiated to find its absorption profile, and

1 00
Li(o)=|liy-é 7/ due™
A( ) |”A | ZbA\/E .

iou zsAutr [ i(BA+HbA)uefiHbAuefﬁHbA}
b

4| Journal Name, [year], [vol.],1-14 This journal is © The Royal Society of Chemistry [year]
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is the absorption profile of A. In terms of the absorption profile, we can re-write the expression for the energy transfer rate as

k() = /dcol Re/dt”“”’{
0 = o L don

2
n"flefiﬁl (tftl)trb] [eiHh] (t*t/)eff(Bl+Hh]>tefﬁHb1 ei<B]+Hbl)t’]
Zp

. [ei<BZ+Hb2)l/e_iHbe,e_ﬁHbZ]
2

2
4 (1 _ n)i€7i£2<Z7t/)trb2 [eifII?z(tft,)e*i(Bg#*fIbz)tefﬁHbzei(Bz+Hbg)tl]
Ziy
+ io ‘Il 2 —igittied iHyit ,—i(Bi+Hpi )t ,—BHpy
e?my/1— n,——e try, [¢e e Jtr
b14b2
_i N
te 0 ymy/T-n—2c
Zp1Ziy

Our objective is to connect the expression for the energy trans-
fer rate in Eq. (11) to the time dependent emission profile for a
coherently excited initial state of the two donors within the sin-
gle excitation manifold. With this in mind, we start with the ini-
tial state for the donors and their environment given in Eqs (6)
and (7) and the environment Hamiltonian redefined in a reduced
manner excluding the environment of the acceptor as

Hpp = Hpy + Hp.

The stimulated emission profile is obtained by placing the coher-
ently excited pair of donors in an electromagnetic field of fre-
quency v and polarization é. Assuming unit field strength and
using the rotating wave approximation, the Hamiltonian govern-
ing the dynamics of the stimulated emission process is

H(t)=Hp+V(t),

Ey(v,t) = Epv(f)

—i82[+i811/trb2 [eiHbzle—i(Bz-‘erz)le—BH[,z] trbl [ei(B]+Hb1)I/e—iHblt,e—ﬁHbl} } (1 1)

(

where
Hp = 81“;“1 + eza;az + BlaIal + BZaZa2 + Hpp,
and
V() =\t - é\(eiiwaf +eVay) + |y -é|(efma; +eVay).

Using the interaction picture we can write down the probability
that a stimulated emission of a photon occurs and the two donors
come to their respective ground state, |0) as

Py(t) =tryp [<()[ ‘e—ifé Vl(f')dl’poDIbei.fi; Vi("dr" |01>] 7

with fi;, j = 1,2 denoting the induced molecular dipole moments
of each of the two donors. Proceeding along the same lines as de-
scribed in Appendix A, in the weak field limit, where we expand
the exponential above to first order in |fi; - €|, we obtain the time
dependent stimulated emission profile which is the time deriva-
tive of the emission probability as:

= A2
— 2Re {n ‘/41 -e| /t dt/eiv(tft’)e—iel (tft’)trb [eith(t*t/)e*i(Bl+Hh|)tefﬁHb1ei(BHrH},])t’]
Z 1

- |N2 | /dt’ iv(t—t") —igs (1~ r)trbz [eiH,,z(z—z’)e—i(Bz+H,,2)re—BH,,2ei(Bg+H1,2)t’]

Zy,

o0 /7“11 é||H - €|/ i M) e gt [t (B ) = BH gy [ Bt ) o= itiad = Bic]

Zp1Zpy

+e l¢\/7|l‘l2 eHlJ’l e‘ / dt/ LVI t e —i&t l£|t tr [lezt (Bz+Hb2) [3sz] bl [ei<B|+f]bl)t’efiHblt’e,ﬂHm]}‘ (12)

This journal is © The Royal Society of Chemistry [year]
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2.2 Identical donors

Let us now specialize to the case where we have identical donors
with & = & = &p having identical couplings J; = J, = J to the
acceptor chromophore and symmetrically placed with respect to
the acceptor so that |fi; -é| = |y - €| = |fp - é|. Such a system can
potentially be realised in the lab by arranging suitable donor and
acceptor chromophores on a molecular scaffold like a DNA strand.
This will allow for a bottom up approach to the larger problem
of understanding the role of quantum coherence in biologically
relevant processes by starting with simpler non-biological systems
with fewer chromophores involved. For the identical donors we
can write the rate equation (11) as

22
V27|fia - é[?|p - |

The emission profile Ey, for identical donors can be written as

k() = / dol(0)Ey(0,0).  (13)

Ell/(vat) = ED(VJ) +Ecoh(val‘)a

where
Ep(v.t) = 2|fip- e|2Re/ dr' V= SDW—”){

X ltrbl [eiHb] (Z‘*ﬂ)efi(B]JrH],])Tefﬁth ei(BrFH},])t,]

Zpy

4 1; n tfhz I:eiHbz(tft ) 71(324»1‘1;72)[ 7ﬁH},2e (Bz+H1,2 ] } (14)
b2

and

NN

E(:oh(v [ =

Re/d/ itv=e)tt={

x &' try [eiHblle*i(BHer])fe*ﬁHbl}

Xty [ef(Bz-‘erz)l/e—iHbzf'e—BHbz]

+ e e tryo [eiH/;zte*i(Berth)te*ﬁth]

X trp [gi(BHer])I/e*iﬂblf/e*ﬁth] } (15)
Notice that if we set n =1 (or n = 0), or assume that the
baths associated with each of the donors are identical in all re-
spects, Ep(v,t) reduces to the emission profile of a single donor
as in Forster’s original theory%?. For n =1 (or n = 0) we have
Econ(v,r) =0, and for identical baths and 1 = 1/2 we have,

Bun(21) = 20058 e [t etv-eone=r)

iH,,,te—i(BJrH,,/)te—ﬁH,,/} try [ei<B+H"’)”e*iH””’e*ﬁH”’} ,

try [e

6| Journal Name, [year], [vol.],1-14
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where the subscript b’ denotes the bath attached to one of the
donors and the subscript » denotes the entire bath with B =B, =
B. The form of E_o, suggests that in Eq. (13), it acts as an inter-
ference term modulating the energy transfer rate depending on
the relative phase ¢ of the initial superposition in Eq. (7). We see
that the electronic coherence upon photon absorption between
the donors can either enhance or suppress the energy transfer
rate relative to that of a single donor within the single excitation
manifold.

3 Mesoscopic environment models

We consider two types of low dimensional quantum systems as
the bath modes coupled to each of the two donors and the ac-
ceptor in the following. In the first case we assume that the bath
attached to each is a single Harmonic oscillator and in the second
case we assume that the bath is a collection of N qubits where N is
relatively small. As mentioned earlier, a mesoscopic environment
allows us to numerically integrate the Schrodinger equation for
the entire system including the bath and compare with the an-
alytic results in the previous section. More importantly relative
simplicity of the bath lets us clearly see and separate out the bath
effects in the dynamics from the effect of the coherence between
the donors.

The numerical computations are done in arbitrary units assum-
ing h = 1. However to put the results we obtain in context it
is necessary to make the connection with the energy, time and
distance scales relevant to some of the systems that have been
studied in detail previously. Following up on?!, in18, the rate
predicted by the Multi-chromophoric generalisation of FRET for
energy transfer between the B800 unit to the B850 unit in the
light harvesting complex 2 of purple bacteria is computed. As a
prototype for providing the context for our results which are ori-
ented towards qualitative understanding of the role of coherence
(and hence in arbitrary units) we use the system in18. The ex-
citation energy of the B850 unit, which has the role of acceptor
in the system studied in18, is around 2 x 107! Joules. In the
numerical computations that follow we have taken the excitation
energies €, = & = €4 = 0.1 in arbitrary units. Inverse of our exci-
tation energy (in units of & = 1) is then equal to 10/27 time units.
Therefore, in relation to the system considered in18
time in the numerical examples below corresponds to around 2
femto-seconds. An analogous scaling for the basic time unit can
be constructed for other realistic systems as well like the one dis-
cussed previously with chromophores attached to DNA structures
knowing the excitation energies of the chromophores. The cou-
pling between the chromophores in18 is characterised by an in-
teraction energy of approximately 2 x 10~20 Joules computed as-
suming a dipole moment of 10 Debyes and an intra-chromophore
separation in vacuum of around 20 A Accordingly we have taken
the perturbative coupling between the donors and the acceptor

, one unit of

This journal is © The Royal Society of Chemistry [year]
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with a characteristic interaction energy of 0.01 in our arbitrary
units.

3.1 Harmonic oscillator bath

Attached to each of the chromophores is single harmonic oscilla-
tor taken to be the bath. The bath Hamiltonian is:

1
Hb:ZWS (bjb?+§)7 §= 1727A7 (16)
S

where by (bI) is the annihilation (creation) operator for the har-
monic oscillator of frequency wy coupled to chromophore s. The
system bath coupling is assumed to be linear and of the form,

Hyp =Y go(b] +by)alay. (17)
s

The system-bath coupling chosen along the lines of the dispersive
coupling in cavity opto-mechanics*9->2
of excitations shared between the donors and acceptors is con-
served. Time evolution of the entire system consisting of the chro-
mophores and their respective baths is done numerically taking
only the first few levels of each harmonic oscillator into consid-
eration. Starting from the initial state in Eq. (6) we numerically
integrate the Schrodinger equation for the system and compute
the population in |A) as a function of time. Time derivative of the
population gives us the energy transfer rate.

is such that the number

To evaluate the analytic expression we have for the energy
transfer rate in Eq. (9) we have to find expectation values of
products of exponentials of the form ¢=!(B+H)T and ¢+ with
respect to the canonical state e ## /7, of the bath. We can com-
pute these expectation values as follows. As an example con-
sider the term of the form try[e/(B+He)!' gitly(1—t") o —i(B+H)t o~ BHp]
appearing in Eq. (9). For short times ¢, we can apply the Baker-
Campbell-Hausdroff formula®3 for 9 = eVe"eW as nQ=U+V +
W+ ([U,W]+[U,V]+[V,W])/2+ ..., and write the following ex-
pression correct to second order in ¢, t' and t — ¢/

GABHH) fiHy(1—1") —i(B+Hy)l r, ,~ J (=) 2wt w(e+)p] _

=0y (%, plr,1"),
where £ and p are the position and momentum operators of the
harmonic oscillators. Here we have used the canonical commu-
tation relations of the bath operators and also assumed that the
mass of the harmonic oscillators are all equal to unity. The ex-
pectation value (O, (%, p|t,#')) can be computed using the Wigner
function W (x, p) of the state p of the bath oscillator as>,

w(Os(k.plr. ] = [ dx [ dpOs(pletWirp).  (8)
The Wigner function for a single mode thermal state is

This journal is © The Royal Society of Chemistry [year]
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e~V
21y /det(V)’

where V is the variance matrix and the superscript 7 denotes the
transpose operation. Using

Ve %coth% 0 ﬁ—l
0 %coth% ’ T’

W(x,p): n:(X7P)T7

for a normalised thermal state, e B /7, we get

ftanh Bw o tanh ﬁ” (P+p )
2

W(x,p) =
Using Eq. (18) we obtain,

<02(l7t,)> — e*%(tft/)z[(t+t/>2+4]00th%. (19)

In a similar manner we find

itrb [ei<B+Hb)(f*fl)efiHb Oft,)g*ﬁHb]

Zp
~ (0, (t,)) = o= S =2 [(1—1")>+4]coth B (20)
and
itrb [Gi(BHH): gt B itrb [t i B+t 5]
Zy Zy

~ <Oz(l)> :ef%tz(t2+4)coth%. 21)

It follows that the expression for the rate of energy transfer in
Eq. (9) for the case of Harmonic oscillator baths coupled to the
chromophores can be approximated as

k(t) ~ 2Re{n]1 / dr' &)= (0, (1.1))(01 (1,1))

(1=m33 [ areiesen)010y.1)) (011

+e'¢fF1112/dt i(ea—ep, )t ,~i(€a—Ep, )’
x(03(t"))(03(t)) {01 (2,1'))
+e l¢f\/1* Jz]l/dt (ea—epy )t p—ilea—en, )1’
OO0 010, | 22)
3.1.1 Numerical Investigations
For numerical integration of the exact evolution equations for thz

system along with the harmonic oscillator baths attached to each

Journal Name, [year], [vol.], 1-14 |7
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Fig. 1 Comparison between the energy transfer rates obtained through
direct numerical integration of the evolution equation for the system of
three chromophores - two donors and one acceptor - with each
chromophore coupled to independent harmonic oscillators (with Hilbert
space dimension truncated to 4 for each harmonic oscillator). The
dashed lines show the transfer rates computed using the numerical
integration of the Schrédinger equation for the energy donors, acceptor
and their respective low dimensional environments, when the initial state
of the donors is as given in Eq. (7) with n = 1/2 and ¢ = 0 (blue),

¢ =m/2 (green) and ¢ =z (red). The solid lines of the same colors are
the corresponding transfer rates in arbitrary units as given in Eq. (9). We
have assumed J; = J; =J =0.01 as mentioned earlier in the text. Note
that when ¢ = n/2 with J; = J2, Eq. (9) is equivalent to the energy
transfer rate equation for two donors independently interacting with the
acceptor with no coherences between them. The comparison between
the predictions of Eq. (9) and the results from direct numerical
integration gives serves as a test for the domain of validity of Eq. (9),
which in turn can be extended to non-mesoscopic environments.

chromophore, we had to restrict the Hilbert space of the oscilla-
tors to a few dimensions. First we did a comparison of the energy
transfer rate obtained through direct integration of the whole sys-
tem with the rate obtained from the expression in Eq. (9) for dif-
ferent values of ¢ with n = 1/2 as shown in Fig. 1. Numerical
evaluation of the integrals in Eq. (9) for each value of r was done
using the standard trapezoidal integration routines available in
MATLAB. We find that the approximate expression for the rate in
Eq. (9) over estimates the energy transfer rate in comparison to
the results of the direct numerical integration for larger values of
t. This can be understood by noting that the next higher order
correction to Eq. (9) is a fourth order term in the couplings J;,
which comes with an overall minus sign. The deviation between
the exact values and the theoretical values at large r shows the
breakdown of the second order perturbation theory that we have
used to obtain Eq. (9). Including more terms in the perturbative
expansion would make the solid lines in Figs. 1 and 5 follow the
values obtained from exact evolution (dashed lines) more closely.

The comparison between the numerically computed rate and
Eq. (9) for different values of ¢ corresponding to a particular
value of r is shown in Fig. 2. From Figs. 1, 2 and 5 we see that
there is good agreement between the rate expression we obtained

8| Journal Name, [year], [vol.],1—14
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Fig. 2 Comparison between the energy transfer rates obtained through
direct numerical integration of the evolution equation for the system of
three chromophores - two donors and one acceptor - with each
chromophore coupled to independent harmonic oscillators (with Hilbert
space dimension truncated to 4 for each harmonic osscilator). The blue
dashed line shows the dependence of the energy transfer rate at time

t =5.6 (in arbitrary units) on the relative phase ¢ of the initial
superposition state of the two donors given in Eq. (7) as computed using
exact numerical unitary evolution. The red line shows the same
dependence as computed using Eq. (9). Note that for the system
considered in '8, r — 5.6 in the units used here correspond roughly to 10
femtoseconds.

and the exact rates. This gives us further confidence in using
these expression even in those cases where the environment is
not mesoscopic and exact numerical integration is not possible.

In Fig. 3 we compare the energy transfer rate between two co-
herent donors in an initial state with  =1/2 and ¢ = 0 in the
single excitation sector with the transfer rate from a single donor
also carrying a single initial excitation. We see that the coher-
ence between the donors does indeed modulate the transfer rates
at short times. For the B850-B800 system in'® the increased en-
ergy transfer rates is found at time scales of a few femtoseconds.
This modulation can, in principle, be detected through the corre-
sponding changes in the observed spectra at high frequencies as
described earlier. In Fig. 3 the energy transfer rate is computed
assuming zero temperature for the harmonic oscillator bath. In
Fig. 4 we plot the energy transfer rate for different temperatures
using the same system parameters as in Fig. 3. As expected the
higher temperature of the bath is seen to reduce the overall en-
ergy transfer date. More significantly we see that the initial en-
hancement in the rate due to the coherence between the donors
vanishes more rapidly as the temperature increases and the dura-
tion for which the enhancement exists is also reduced to a fraction
of a femtosecond for the example system in '5.

3.2 Qubits as bath modes

A group of N qubits where N = 1,2,3,... is taken as the environ-
ment attached to each of the three chromophores in this section.

This journal is © The Royal Society of Chemistry [year]
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Fig. 3 Comparison of the two donor case with the single donor one:
The blue (solid) line shows the energy transfer rate between two donors
and an acceptor when the donors are in a coherent superposition state
in the single excitation sector. The red (dashed) line shows the transfer
rate between a single donor and acceptor. For both cases the donor(s)
and the acceptor are coupled to Harmonic oscillator baths. The initial
state of the two donors has n = 1/2 and ¢ = 0 such that the transfer
rates are given by Eq. (22)

k (x1075)
6

5

TP O

Fig. 4 The energy transfer rate between two donors and one acceptor
corresponding to different temperatures of their respective single
harmonic oscillator environment. The temperatures (in Kelvin)
corresponding the labeled curves are are respectively A: 100, B: 250, C:
500, D: 750 and E:1000. The dotted line shows a portion of the transfer
rate at 7 = 0 that is plotted in Fig. 3 for comparison. The initial state of
the two donors has n = 1/2 and ¢ = 0 such that the transfer rates are
given by Eq. (22)

The interaction between the chromophore and its N qubit envi-
ronment is for the form

Hopp =Y g0t [s)s],  s=1,2,4 and j=1,...N,

s.J

where /) are Pauli matrices acting on the j® qubit. The free

evolution of the bath qubits attached to each chromophore is gov-

This journal is © The Royal Society of Chemistry [year]

erned by the Hamiltonian,
1&
Hp, = 5 Z Ssz(]).
j=1

In Fig. 5 we plot the energy transfer rate between two donors
in the initial state characterised by n = 1/2 and ¢ = 0 and the
acceptor for three cases corresponding to N = 1, 2 and 3 respec-
tively. The rate as obtained using exact unitary evolution of the
entire system including the bath qubits is compared with the ratc
obtained using Eq. (9). We again find that there is good agree-
ment between the numerically computed transition rates and the
predictions of Eq. (9).

In Fig. 6 we compare the energy transfer rates as computed
using Eq. (9) for two donors in the single excitation sector with
that for a single donor. The comparison is done for four differ-
ent choices of the baths corresponding to 1, 2, 3 and 4 qubits
respectively coupled to each of the chromophores. Irrespective of
the number of qubits forming the environment we see that the
signature of the initial coherence between the donors in the en-
ergy transfer rate is quickly erased and the rate falls to the levels
expected for a single donor. However when the dimensionality.
of the environment is very small (a single qubit) as in Fig. 6-A,
the Poincaré recurrence times of the systems consisting of each
of a donors and its environment qubit are very short and we se~
that the initial coherence returns to the energy donors leading
to other local maxima in the energy transfer graph. Typically in
systems of interest the environment size is not too small%8-32 and
such effects are not significant®. As the environment size increas=
the recurrences disappear and the duration for which the effect
of the initial coherence is observed becomes shorter. It is worth
noting that the modification of the energy transfer rate at short
times that is attributable to the coherences between the donor-
persists independent of the nature and dimensionality of the en-
vironments affecting each of the chromophores.

4 Discussion

In many excitonic energy transfer processes, especially biologi-
cally relevant ones, the energy donors are located in close proxim-
ity to each other so that a single exciton being delocalised across
many chromophores is a very realistic possibility 11:12. The donors
themselves are excited typically by absorbing a photon. Whil:
the “size” of a photon itself may not be a well posed question,
by most estimates the extent of the photon that is absorbed can
span several of these donor chromophores. So it is reasonable
in many scenarios to assume that more than one of the doncr
chromophores may be excited into a joint superposition state in
the single exciton sector by the incoming radiation. Our inves-
tigations are aimed at capturing the essential features of the on-
ward transfer of the energy absorbed by the donors to an acceptc:
through FRET-like mechanisms. In particular we are interested in

Journal Name, [year], [vol.], 1-14 |9
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Fig. 5 Comparison of the energy transfer rates between two donors and an acceptor with their respective environments modelled by a collection of ¥
qubits. In each of the three plots, the blue (dashed) line corresponds to the energy transfer raie computed from the exact unitary evolution of the whole
system including the qubit baths while the red (solid) line corresponds to the transfer rate predicted by Eq. (9). In Plot A, the environment of each of
the three chromophores is a single qubit while in B each chromophore is attached to a bath made of two qubits. Plot C corresponds to baths made of

three qubits each.

the modifications to the energy transfer rate when there is quan-
tum coherence between the donors. We also studied the effect of
mesoscopic environments on the transfer rate.

We find that the coherence between the donors can lead to both
enhanced or reduced energy transfer rates at short times relative
to the rate when there is only one donor. In the arbitrary units we
have used, ‘short times’ refers to intervals that are short relative
to the time scale set by the inverse of the coupling strengths J;
between the donors and acceptors. Meanwhile for the prototype
system discussed in'® this means a few femtoseconds. The type
of modulation of the rate depends on the amplitudes and relative
phase of the initial superposition state of the two donors. We are
able connect the modification in the transfer rate to observable
spectral features in the stimulated emission profile of the donors.
It must however be noted that the stimulated emission profile
also assumes an initial superposition state which means that the
spectrum must be measured in the presence of a radiation field
that is identical to the one that is used in the energy transfer
process.

In our investigations the environment of each of the chro-
mophores had relatively passive roles to play. They were primarily
responsible for removing the coherences between the donors and
making the energy transfer rate in the two donor case identical to
the one donor case at long times. Through numerical computa-
tion we find that for both harmonic oscillator and qubit baths, the
behaviour of the energy transfer rate as a function of time qual-
itatively shows the same features. In photosynthesis and related
energy transfer processes, it is suspected that the environment of
the chromophores may play a more active role in both facilitating
and enhancing efficient energy flow from the donors to the accep-
tors>55%, Addressing this possibility in the context of our analytic
and numerical results remains to be done.

10| Journal Name, [year], [vol.], 1-14

A Rate expression for two coherently ex-
cited donors

In the interaction picture, the probability that and initial state of
two donors, an acceptor and their respective environments of the
form

p(0) = Zib|w>e*ﬁHb<w|, W) = VBID1) +e 0 /T plDs),

with the single excitation localized in the donor chromophores
transitions to the state |A) is given by

Pu(t) = tr [(Af|Us (£,0)pr (0)U] (1,0)|A7)], (23)

with p;(0) = p(0). The unitary time evolution operator in the
interaction picture is

Ur(1,0) = TRV 1y (1) = oty it (24)
where Hy and V are given in Eqs. (2) and (5) respectively and

|A[(Z‘)> _ eiH0t|A> _ ei(£A+BA+Hb)t|A>.

Treating V as a perturbation for small values of the couplings J;
and J,, we can do a series expansion for the unitary operator and
consider the first few terms:

3 3 3
Ur(t,0) =T i / Vi) — / ar' / A"V (W)t ... (25)
0 0 0

Inserting (25) into (23, we find that the leading order non-
vanishing term is of order two in the coupling constants J; and
J» and is given by

This journal is © The Royal Society of Chemistry [year]
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Fig. 6 Comparison of the energy transfer rates between two donors and an acceptor in the single excitation sector with that between one donor and
and an acceptor. The rates are computed using Eq. (9) and the respective environments of each chromophore is modelled by a collection of N qubits
In each of the three plots, the red line corresponds to the energy transfer rate for the two donor case with the donors in an initial state with n = 1/2 and
¢ = 0. The blue line corresponds to the singe donor case. In Plot A, the environment of each of the three chromophores is a single qubit while in B
each chromophore is attached to a bath made of two qubits. Plot C corresponds to baths made of three qubits each and plot D is for four qubit baths.

and
1 g VID1) =n|A),  VI|D:)=hlA),
Py(t) =~ —/ dt’/ dr”
Zy Jo 0 we obtain
xtry [ (A]e™ 0t oty T |y o B (| v it it | 4] p oy L[ /’dtntrb{e—i(eA+BA+Hb>rei(eA+BA+Hb>r'
Zp Jo 0

(26) % [Jl\/ﬁe—i(el +B1+Hy )t +J /1 7nefi¢efi(£z+Bz+Hb)t’]

Using % e*ﬁHb []1 ﬁei(el +By+Hj )t i = n ei¢ei(£z+Bz+Hb)r”J

eiH0t|A> _ ei(SAJrBAJer)t|A>7

% e*i(EA+BA+Hb)tﬂei(£A+BA+Hb)t} (2/}

The cyclic property of the trace lets us cancel the first and last
efiHotW/) _ \/ﬁ[i(el +Bl+Hb)t| D) +/1-7 it efi(£2+Bz+Hb)t| D) terms inside curly braces in the above expression and expanding

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol.],1-14 | 11
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out the remaining terms gives us Eq. (8). The energy transfer Applying the Leibniz formula to Eq. (28) we get
rate is obtained by differentiating the expression for P4(z) under ¢ g
the integral sign. For taking the time derivative of P4(¢) we have G(1) F(t,1)+ / dt’aF 't
Jo
/ ar" f(t,t") +/ dr' — /dt”f 1"

to evaluate expressions of the form

G(1) = /dz / a" £ ")

Now, this integral can be re-written as

" Using the Leibniz formula once again to evaluate the derivative
!/ / .
=u /0 drF(t,1), (28) in the second term we get,

! 13 g3 rt
where G(z):/ dt”f(t,t”)+/ dz’f(z’,t):/ dt’f(z,t’)+/ ar'f(t' 1)
t t dt”f / //) 0 0 0 0
(29)
where we have relabelled the dummy variable ¢’ to ¢
in one of the terms. Using Eq. (29) to take the time
dyl (x) derivative of the transition probability (8), we obtain,

The Leibniz formula for dlfferentlatmg under the integral sign is,

d k) / N dYZ()
S = )

_ ”% /’ e NI i 1=1) g B HH) =) (B4 Hy) =Bl By )
/ dt’ 0¥ ~1) =01 (1=1) yr, [pi(BatH) (=) p=i(BrtHy ) o= BHy i(Bi+Hy)i]
/ dt’ A=) giea1=1") g, [ BatH ) (1—1") g=i(BatHi )t =By i (Bt Ho)Y |
+(1- n)g /t dt o€t =) p—iea(t' 1) try [ei(BA+H,,)(r’fz)e—i(BﬁH,,)z’efﬁH,,ei(BerH;,)t]
+ei¢\/ﬁm% /Otdz/eiEA(tft’)efie]teiszt’ r, [ei(BAJrH;,)(tft’)efi(B]+H;,)tefﬁH;,ei(Bz+H,,)t’]
+ei¢\/ﬁm% /Otd[/eiEA(t’ft)efie]t’eiezttrb [ei(BAJrH;,)(t’ft)efi(B]+H;,)t’efﬁthi(Bz+Hb)t]
+e#¢\/ﬁﬂ% /Otdt/eieA(tft’)e—i&‘zteialt’ try [ B HHO) (1) i(BHo)t B i By + 1)

+e—i¢\/ﬁﬂ‘gjl /t dt/eisA(t’fz)e—iszt’eislttrb [ei(BAJrH,,)(r’—z)e—i(BerH,,)t’efﬁH;,ei(Bl+H;,)r].
b JO

(30)
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We notice that the first two terms in the above expression are
complex conjugates of each other. Similarly, third and fourth, fifth
and eighth and sixth and seventh terms are also complex conju-
gate pairs, leading to Eq. (9). Note that in Eq. (9) the traces over
the three sets of mutually decoupled bath modes associated with
the two donors and the acceptor respectively have been further
separated out.

acknowledgments

Sreenath K M acknowledges the support of the Department of Sci-
ence and Technology, Government of India, through the INSPIRE
fellowship scheme (No. DST/INSPIRE-SHE/IISER-T/2008). Anil
Shaji acknowledges the support of the Department of Science and
Technology, Government of India, through the Ramanujan Fel-
lowship program (No. SR/S2/RJN- 01/2009).

References

T. Forster, Annalen der Physik, 1948, 437, 55-75.
2 T. Forster, Discuss. Faraday Soc., 1959, 27, 7-17.
3 I. Medintz and N. Hildebrandt, FRET - Forster Resonance En-
ergy Transfer: From Theory to Applications, Wiley, 2013.
4 V.I. Vavilov and M. D. Galanin, Dokl. Akad. Nauk USSR, 1949,
67,811-818.
5 M. D. Galanin, Zhur. Eksptl. i Teoret. Fiz, 1955, 28, 485.
6 M. D. Galanin, Akad. Nauk S. S. S. R., 1960, 12, 3.
7 J. Franck and R. Livingston, Rev. Mod. Phys., 1949, 21, 505-
509.
8 B. Masters, The European Physical Journal H, 2014, 39, 87—
139.
9 V. May and O. Kiihn, Charge and Energy Transfer Dynamics in
Molecular Systems, Wiley, 2011.
10 R. Blankenship, Molecular Mechanisms of Photosynthesis, Wi-
ley, 2014.
11 N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen and
F. Nori, Nature Physics, 2013, 9, 10-18.
12 F. Fassioli, R. Dinshaw, P. C. Arpin and G. D. Scholes, Journal
of The Royal Society Interface, 2014, 11, 20130901.
13 J.Ye, K. Sun, Y. Zhao, Y. Yu, C. K. Lee and J. Cao, J Chem Phys,
2012, 136, 245104.
14 T. Renger and F. Miih, Phys. Chem. Chem. Phys., 2013, 15,
3348-3371.
15 A. Olaya-Castro and G. D. Scholes, International Reviews in
Physical Chemistry, 2011, 30, 49-77.
16 M. Mohseni, A. Shabani, S. Lloyd and H. Rabitz, J. Chem.
Phys., 2014, 140, 035102.
17 S. Jang, S. Hoyer, G. Fleming and K. B. Whaley, Phys. Rev.
Lett., 2014, 113, 188102.
18 S. Jang, M. D. Newton and R. J. Silbey, J Phys Chem B, 2007,
111, 6807-6814.

—

This journal is © The Royal Society of Chemistry [year]

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Page 14 of 15

S. Jang, J Chem Phys, 2011, 135, 034105.

S. Jang, J Chem Phys, 2009, 131, 164101.

S. Jang, M. D. Newton and R. J. Silbey, Phys. Rev. Lett., 2004,
92, 218301.

S. Jang and Y.-C. Cheng, WIREs Comput Mol Sci, 2012, 3, 84—
104.

M. Sarovar, A. Ishizaki, G. R. Fleming and K. B. Whaley, Na-
ture Physics, 2010, 6, 462—-467.

D. M. Jonas, Annual Review of Physical Chemistry, 2003, 54,
425-463.

M. L. Cowan, J. P. Ogilvie and R. J. D. Miller, Chemical Physics
Letters, 2004, 386, 184-189.

T. Brixner, T. Mancal, I. V. Stiopkin and G. R. Fleming, The
Journal of Chemical Physics, 2004, 121, 4221-4236.

G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal,
Y.-C. Cheng, R. E. Blankenship and G. R. Fleming, Nature,
2007, 446, 782-786.

M. d. Rey, A. W. Chin, S. F. Huelga and M. B. Plenio, The
Journal of Physical Chemistry Letters, 2013, 4, 903-907.

M. Mohseni, P. Rebentrost, S. Lloyd and A. Aspuru-Guzik, The
Journal of Chemical Physics, 2008, 129, 174106.

A. Ishizaki, T. R. Calhoun, G. S. Schlau-Cohen and G. R. Flem-
ing, Phys. Chem. Chem. Phys., 2010, 12, 7319-7337.

A. Kolli, E. J. O'Reilly, G. D. Scholes and A. Olaya-Castro, Th>
Journal of Chemical Physics, 2012, 137, 174109.

B. Mennucci and C. Curutchet, Phys. Chem. Chem. Phys.,
2011, 13, 11538-11550.

C. Menelaou, J. ter Schiphorst, A. M. Kendhale, P. Parkinson,
M. G. Debije, A. P. H. J. Schenning and L. M. Herz, The Journal
of Physical Chemistry Letters, 2015, 6, 1170-1176.

J. Wenzel, A. Dreuw and I. Burghardt, Physical Chemistr,
Chemical Physics, 2013, 15, 11704-11716.

A. Freer, S. Prince, K. Sauer, M. Papiz, A. H. Lawless, G. Mc-
Dermott, R. Cogdell and N. W. Isaacs, Structure, 1996, 4, 449—
462.

V. Nagarajan and W. W. Parson, Biochemistry, 1997, 3€,
2300-2306.

E. J. S. Fonseca, C. H. Monken and S. Padua, Physical Review
Letters, 1999, 82, 2868-2871.

O. Sinanoglu, O. del Tractat de I'Atlantic Nord. Pure Sci
ence Bureau and T. Orta Dofgu Teknik Universitesi (Ankara,
Modern Quantum Chemistry: Istanbul Lectures. Part. 3, Action
of light and organic crystals, Academic Press, 1965.

D. L. Dexter, The Journal of Chemical Physics, 1953, 21, 836-
850.

S. Jang, Y. Jung and R. J. Silbey, Chemical Physics, 2002, 275,
319-332.

A. Castro and G. D. Scholes, International Reviews in Physica:

Journal Name, [year], [vol.],1-14 | 13



Page 15 of 15

42

43

44

45

46

47

48
49

Chemistry, 2011, 30, 49-77.

G. D. Scholes and K. P. Ghiggino, The Journal of Physical
Chemistry, 1994, 98, 4580-4590.

D. L. Andrews and G. Juzeliunas, J. Chem. Phys., 1992, 96,
6606.

A. Freer, S. Prince, K. Sauer, M. Papiz, A. H. Lawless, G. Mc-
Dermott, R. Cogdell and N. W. Isaacs, Structure, 1996, 4, 449—
462.

M. G. Cory, M. C. Zerner, X. Hu and K. Schulten, The Journal
of Physical Chemistry B, 1998, 102, 7640-7650.

J.-Q. Li, J. Liu and J.-Q. Liang, Physica Scripta, 2012, 85,
065008.

R. Tanas, Physica Scripta, 2013, 2013, 014059.

L. Xin and W. Wei, Chinese Physics B, 2014, 23, 070303.

T. J. Kippenberg and K. J. Vahala, Science, 2008, 321, 1172—

14| Journal Name, [year], [vol.], 1-14

50

51

52

53

54

55

56

Physical Chemistry Chemical Physics

1176.

T. J. Kippenberg and K. J. Vahala, Optics Express, 2007, 15,
17172.

K. Jacobs, P. Tombesi, M. J. Collett and D. F. Walls, Physical
Review A, 1994, 49, 1961-1966.

K. Jacobs, I. Tittonen, H. M. Wiseman and S. Schiller, Physical
Review A, 1999, 60, 538-548.

M. de Gosson, Symplectic Geometry and Quantum Mechanics,
Springer London, Limited, 2006.

M. Hillery, R. O’Connell, M. Scully and E. Wigner, Physics Re-
ports, 1984, 106, 121 - 167.

M. Sarovar, A. Ishizaki, G. R. Fleming and K. B. Whaley, Na-
ture Physics, 2010, 6, 462—-467.

S. Huelga and M. Plenio, Contemporary Physics, 2013, 54,
181-207.

This journal is © The Royal Society of Chemistry [year]



