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Graphical abstract and text
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The blue line shows the enhancement in the energy transfer 
rate due to quantum coherence between donor molecules 
relative to the rate when there is no coherence (red line). 
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look for the signatures of coherence in the energy transfer rate
between the donors and the acceptor as well as for signs that
under specific conditions the effect of the environment is to influ-
ence the energy transfer process positively by enhancing its effi-
ciency and rate. We derive the expression for the rate of energy
transfer between independent donors which are coherently ex-
cited into the single excitation section and an acceptor. In the
present case the number of localised excitations in the donor and
acceptor molecules provide a natural basis relative to which the
quantum coherences refers to the existence and persistence of su-
perposition states of one or more molecules.

Systems with two energy donors and a single acceptor fur-
nish one of the simplest possible extensions of FRET. Similar
systems have been previously synthesised and studied in labo-
ratories. Rapid energy transfer in Perylene Bisimide based two
donor-single acceptor systems have been reported33. Bithiophene
perylenediimide based two donor-single acceptor systems34 are
also reported to be good candidates for efficient organic photo-
voltaic devices. These systems serve as the immediate examples
to which our model would be applicable. In addition we also dis-
cuss a plausible experimental setup in Section 2.2 for potentially
observing the effects we predict based on our theoretical analysis.

Multiple donors being coherently and simultaneously excited
is a very plausible scenario in the context of photosynthetic pro-
cesses in light of the fact that a single photon is typically ’bigger’
than the photosynthetic complex itself. To put the length scales
involved in context, the distance between the Magnesium cen-
ters of chromophores in the B850 ring of the antenna complex of
the photosynthetic bacterium Rhodopseudomonas acidophila is
around 4-10 Å35. The radius of the eighteen member ring of chro-
mophores in antenna complexes of Rhodobacter sphaeroides36 is
around 30 Å. The absorption peak of the chromophores is at 850
nm, indicating a single chromophore or a single antenna com-
plex is absorbing photons or wave packets with typical deBroglie
wavelengths of around 700 to 900 nm37. Taking the deBroglie
wavelength as the typical size of a photon we see that a photon
can instantaneously span across several chromophores and an-
tenna complexes and it is eventually absorbed. Hence it is quite
possible that each photon can induce coherences - however short
lived they may be - between the chromophores that, in turn, pass
on the absorbed excitation to other units of the energy transfer
pathway leading to a reaction centre.

The donors are not typically independent of each other in the
photosynthetic complex since they are closely packed together.
However in what follows we assume for simplicity that the energy
donors are not coupled to each other. Note that the development
in the following can be extended to a system of strongly coupled
donors by considering the normal modes of the coupled system
rather than the individual levels of the independent constituents.
A comparison of the analytical rate expressions for a mesoscopic

environment indicate that the enhancement of the rate due to the
coherent donors may be measurable at short times. The initial
enhancement to the energy transfer rate is expressed as a mea-
surable spectral overlap integral which would be detectable at
high frequencies in a pump probe experiment.

This paper is organised as follows: In the next section we briefly
recap FRET and its extensions to the multiple donor case with ref-
erence to the model we are considering. In Section 3, we look at
the mesoscopic environment and its effects on the energy transfer
rate. We also show a way of computing the effect of the environ-
ment utilising Wigner functions. Our conclusions are in Section 4.

2 FRET with multiple donors and coherence

The incoherent energy hopping mechanisms for energy transfer
proposed by Förster1,2,38 and Dexter39 was generalised to ac-
count for short time non-equilibrium kinetics as well as for mul-
tiple donor and acceptor case by Jang et. al21,40. Förster’s ap-
proach, as outlined in41,42 applies to two chromophores, one
being the donor and the other the energy acceptor. Each chro-
mophore has two valance electrons with spins denoted by ↑ and
↓. Let φh↑(ψh↑) and φh↓(ψh↓) denote the spin orbitals in the High-
est Occupied Molecular Orbitals (HOMO) of the donor(acceptor)
chromophore respectively. The corresponding Lowest Unoccu-
pied Molecular Orbitals (LUMO) are labelled as φl↓(l↑)(ψl↓(l↑)).
It is further assumed that the orbitals localized on the same
chromophore are orthonormal, though inter chromophore orbital
overlaps are allowed. The states with complete localization of ex-
citation in the donor (denoted by |D〉) and the acceptor (denoted
by |A〉) are

|D〉 = γ1(|φl↑ψh↑φh↓ψh↓|+ |φh↑ψh↑φl↓ψh↓|)

|A〉 = γ2(|φh↑ψl↑φh↓ψh↓|+ |φh↑ψh↑φh↓ψl↓|),

where γ1 and γ2 are the normalization factors. The states are
Slater determinants since there can be orbital overlap between
the chromophores making all the electrons indistinguishable from
one another. The rate of energy transfer is obtained starting from
the matrix element describing the transition from the |D〉 state in
which the excitation is localized in the donor chromophore to the
|A〉 state in which it is localized in the acceptor. We can write this
matrix element as

VDA = 〈D|Ĥ|A〉 ≃ 2(φlφh|ψhψl)−2(φlψl |ψhφh)

+O(〈ψ|φ〉2)+O(〈ψ|φ〉3)+ . . . , (1)

where
(ab|cd)≡ 〈Ψa(i)Ψc( j)|r−1

i j |Ψb(i)Ψd( j)〉.

2 | 1–14
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The relative strengths of the various terms in Eq. (1) depends on
the separation ri j between the chromophores. At short range (3-6
Å), both orbital overlap effects and Coulomb effects are relevant.
In the intermediate range (6-20 Å), the orbital overlaps can be
ignored and only the electromagnetic interaction, which is typi-
cally dipole-dipole, is relevant. At long range one has to include
the modifications to the dipole-dipole interaction adding retarda-
tion effects etc that arise from real photons being emitted and
re-absorbed43. Förster’s theory was originally developed for the
intermediate regime where the orbital overlaps are small and so
only the first term in Eq. (1) contributes. This term is a two elec-
tron integral that describes the de-excitation of the donor and the
excitation of the acceptor that happens simultaneously. The in-
tegral can be thought of as the Coulomb interaction between the
two transition densities. These transition densities, in turn, can
be approximated - through a multipole expansion - by dipoles and
the interaction reduces to a dipole-dipole coupling with a charac-
teristic 1/r6 dependence for the transition rate as a function of the
distance between the chromophores. For completeness, it may be
noted that Dexter’s theory39 holds good for the transition rate
when the distances between the chromophores is very short.

In this paper we focus on the case where there is a single ex-
citation present in a system with multiple energy donors and a
single acceptor. The separation between the donors is assumed to
be small so that orbital overlap effects are relevant and in partic-
ular there can be quantum coherences between the donor chro-
mophores. In the discussions that follow, the energy acceptor is
well separated from the donor chromophores so that orbital over-
lap effects between the donors and the acceptor are not relevant.
To keep the focus on the effects of coherence and on the influence
of the structured environment we resist the temptation to give
the donors and acceptors realistic and complicated level struc-
tures44,45 and treat them as two level quantum systems (qubits)
as is done in much of the existing literature8,19–21,23,27,40,41.

2.1 The model and energy transfer rates

We are looking only at the single excitation sector of the system
with two energy donors and one acceptor. Let |g〉 denote the
ground state of all three chromophores. The states of interest
to us are |D1〉 = a

†
1
|g〉, |D2〉 = a

†
2
|g〉, and |A〉 = a

†
A|g〉. The chro-

mophores are assumed to be sitting in a noisy environment or
bath. The Hamiltonian for the system is40

H = H0 +V,

where
H0 = εAa

†
AaA + ε1a

†
1
a

1
+ ε2a

†
2
a

2
+Heb +Hb. (2)

Here ε1(2) and εA are the energies of the excited states of donor(s)
and the acceptor respectively, while Heb is the excitation bath cou-

pling of the form

Heb = B1a
†
1
a

1
+B2a

†
2
a

2
+BAa

†
AaA, (3)

Where B1, B2 and BA are bath operators that will be specified later
on. Hb denotes the Hamiltonian for the bath. We assume that
there are no bath modes that are coupled to more than one of
the three chromophores at a time. This means that energy trans-
fer from the donors to the acceptor cannot be mediated by the
bath. Typically, the excitation energies of the donors are different
from that of the acceptor35 and hence the resonant frequencies
of the bath oscillators they couple to are also different. Under
these conditions our assumption that the donors do not couple to
the same bath mode as the acceptor can be justified. However
we consider the case where the donors are identical and they can
potentially couple to a common bath mode. The effect of such
coupling would be to create coherences and quantum correlations
between the two donors46–48. In the present case, right from the
outset, we assume the presence of quantum coherences and cor-
relations between the donors and so coupling to a common mode
can serve only to quantitatively modify these coherences and the
exciton transfer rates without leading to any new or qualitatively
different effect23. We choose therefore to avoid this additional
technicality in the interest of keeping our discussion simple. The
model developed here can be extended to a situation when there
are common bath modes to which the donors and acceptor couple
to by closely following the discussion in40.

This assumption of having no common bath modes implies that
we can view the bath as made of three disconnected pieces so that

Hb = Hb1 +Hb2 +HbA,

with the three terms in the sum representing the Hamiltonians
for the parts of the bath coupled to D1, D2 and A respectively. We
also have

[Hb j,Hbk] = [Hb j,Bk] = [B j,Bk] = 0 for j 6= k, j,k = 1,2,A,

(4)
in addition to the standard commutation relations, [Hb j,Hb j] =

[B j,B j] = 0.

The resonant interaction between the donors and the acceptor
is the perturbation V ,

V = J1a
†
1
aA + J2a

†
2
aA +H. C. (5)

In treating the interaction as a perturbation we are assuming that
the interaction strengths Ji between the donors and the acceptor
is small owing to the assumption of relatively large separation
between the two. The transition probability for the excitation in
the donors to move to the acceptor is given by

PA(t) = trb〈AI |ρI(t)|AI〉,

1–14 | 3
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with the index I indicating that the above expression is in the
interaction picture. We consider an initial state for the system
and the bath of the form

ρ0 =
1

Zb

e−βHb |ψ〉〈ψ|, (6)

where Zb = tr{e−βHb} is the partition function for the bath and
β = 1/T , where T is the temperature of the bath. Initially the

single excitation is delocalized between the two donors with the
donors in a superposed state,

|ψ〉=√
η |D1〉+ e−iφ

√

1−η |D2〉. (7)

Following closely the discussions in21,40, we obtain the follow-
ing expression for the transition probability (See Appendix A for
more details),

PA(t) = η
J2

1

Zb

∫ t

0
dt ′
∫ t

0
dt ′′ eiεA(t

′−t ′′)e−iε1(t
′−t ′′) trb

[

ei(BA+Hb)(t
′−t ′′)e−i(B1+Hb)t

′
e−βHb ei(B1+Hb)t

′′]

+(1−η)
J2

2

Zb

∫ t

0
dt ′
∫ t

0
dt ′′ eiεA(t

′−t ′′)e−iε2(t
′−t ′′) trb

[

ei(BA+Hb)(t
′−t ′′)e−i(B2+Hb)t

′
e−βHb ei(B2+Hb)t

′′]

+eiφ√η
√

1−η
J1J2

Zb

∫ t

0
dt ′
∫ t

0
dt ′′ eiεA(t

′−t ′′)e−iε1t ′eiε2t ′′ trb

[

ei(BA+Hb)(t
′−t ′′)e−i(B1+Hb)t

′
e−βHb ei(B2+Hb)t

′′]

+e−iφ√η
√

1−η
J2J1

Zb

∫ t

0
dt ′
∫ t

0
dt ′′ eiεA(t

′−t ′′)e−iε2t ′eiε1t ′′ trb

[

ei(BA+Hb)(t
′−t ′′)e−i(B2+Hb)t

′
e−βHb ei(B1+Hb)t

′′]
. (8)

The energy transfer rate is the derivative of the transition probability:

k(t) =
d

dt
PA(t)

= 2 Re

{

η
J2

1

Zb1ZbA

∫ t

0
dt ′ei(εA−ε1)(t−t ′)trb1

[

ei(B1+Hb1)t
′
eiHb1(t−t ′)e−i(B1+Hb1)te−βHb1

]

trbA

[

ei(BA+HbA)(t−t ′)e−iHbA(t−t ′)e−βHbA
]

+(1−η)
J2

2

Zb2ZbA

∫ t

0
dt ′ei(εA−ε2)(t−t ′)trb2

[

ei(B2+Hb2)t
′eiHb2(t−t′)e−i(B2+Hb2)t e−βHb2

]

trbA

[

ei(BA+HbA)(t−t ′)e−iHbA(t−t ′)e−βHbA
]

+eiφ√η
√

1−η
J1J2

Zb1Zb2ZbA

∫ t

0
dt ′ei(εA−ε1)te−i(εA−ε2)t

′
trb1

[

eiHb1te−i(B1+Hb1)te−βHb1
]

×trb2

[

ei(B2+Hb2)t
′
e−iHb2t ′e−βHb2

]

trbA

[

ei(BA+HbA)(t−t ′)e−iHbA(t−t ′)e−βHbA
]

+e−iφ√η
√

1−η
J2J1

Zb2Zb1ZbA

∫ t

0
dt ′ei(εA−ε2)te−i(εA−ε1)t

′
trb2

[

eiHb2te−i(B2+Hb2)te−βHb2
]

×trb1

[

ei(B1+Hb1)t
′
e−iHb1t ′e−βHb1

]

trbA

[

ei(BA+HbA)(t−t ′)e−iHbA(t−t ′)e−βHbA
]

}

(9)

For separating out the traces over the three sets of bath modes, we have used the commutation relations in Eq. (4).
Since there is only one acceptor, we are able to factorize out the contribution to the rate expression from the acceptor within the

integral as
1

ZbA

eiεA(t−t ′)trbA

[

ei(BA+HbA)(t−t ′)e−iHbA(t−t ′)e−βHbA
]

=
1√

2π|~µA · ê|2
∫ ∞

−∞
dω eiω(t−t ′)IA(ω), (10)

where ~µA is the transition dipole moment of the acceptor, ê is a reference axis taken the polarization vector of the incident radiation if
the acceptor is irradiated to find its absorption profile, and

IA(ω)≡ |~µA · ê|2
1

ZbA

√
2π

∫ ∞

−∞
due−iωueiεAutrbA

[

ei(BA+HbA)ue−iHbAue−βHbA
]

,

4 | 1–14
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is the absorption profile of A. In terms of the absorption profile, we can re-write the expression for the energy transfer rate as

k(t) =
2√

2π|~µA · ê|2
∫ ∞

−∞
dω IA(ω)Re

∫ t

0
dt ′ eiω(t−t ′)

{

η
J2

1

Zb1

e−iε1(t−t ′)trb1

[

eiHb1(t−t ′)e−i(B1+Hb1)te−βHb1 ei(B1+Hb1)t
′]

+ (1−η)
J2

2

Zb2

e−iε2(t−t ′)trb2

[

eiHb2(t−t ′)e−i(B2+Hb2)te−βHb2 ei(B2+Hb2)t
′]

+ eiφ√η
√

1−η
J1J2

Zb1Zb2

e−iε1t+iε2t ′ trb1

[

eiHb1te−i(B1+Hb1)te−βHb1
]

trb2

[

ei(B2+Hb2)t
′
e−iHb2t ′e−βHb2

]

+ e−iφ√η
√

1−η
J1J2

Zb1Zb2

e−iε2t+iε1t ′ trb2

[

eiHb2te−i(B2+Hb2)te−βHb2
]

trb1

[

ei(B1+Hb1)t
′
e−iHb1t ′e−βHb1

]

}

. (11)

Our objective is to connect the expression for the energy trans-
fer rate in Eq. (11) to the time dependent emission profile for a
coherently excited initial state of the two donors within the sin-
gle excitation manifold. With this in mind, we start with the ini-
tial state for the donors and their environment given in Eqs (6)
and (7) and the environment Hamiltonian redefined in a reduced
manner excluding the environment of the acceptor as

HbD ≡ Hb1 +Hb2.

The stimulated emission profile is obtained by placing the coher-
ently excited pair of donors in an electromagnetic field of fre-
quency ν and polarization ê. Assuming unit field strength and
using the rotating wave approximation, the Hamiltonian govern-
ing the dynamics of the stimulated emission process is

H(t) = HD +V (t),

where

HD = ε1a
†
1
a

1
+ ε2a

†
2
a

2
+B1a

†
1
a

1
+B2a

†
2
a

2
+HbD,

and

V (t) = |~µ1 · ê|(e−iνta
†
1
+ eiνta1)+ |~µ2 · ê|(e−iνta

†
2
+ eiνta2).

Using the interaction picture we can write down the probability
that a stimulated emission of a photon occurs and the two donors
come to their respective ground state, |0〉 as

Pν (t) = trbD

[

〈0I |e−i
∫ t

0 VI(t
′)dt ′ρDb

0I ei
∫ t

0 VI(t
′′)dt ′′ |0I〉

]

,

with ~µ j, j = 1,2 denoting the induced molecular dipole moments
of each of the two donors. Proceeding along the same lines as de-
scribed in Appendix A, in the weak field limit, where we expand
the exponential above to first order in |~µ j · ê|, we obtain the time
dependent stimulated emission profile which is the time deriva-
tive of the emission probability as:

Eψ (ν , t) =
d

dt
Pν (t)

= 2 Re

{

η
|~µ1 · ê|2

Zb1

∫ t

0
dt ′eiν(t−t ′)e−iε1(t−t ′)trb1

[

eiHb1(t−t ′)e−i(B1+Hb1)te−βHb1 ei(B1+Hb1)t
′]

+(1−η)
|~µ2 · ê|2

Zb2

∫ t

0
dt ′eiν(t−t ′)e−iε2(t−t ′)trb2

[

eiHb2(t−t ′)e−i(B2+Hb2)te−βHb2 ei(B2+Hb2)t
′]

+eiφ
√

η(1−η)
|~µ1 · ê||~µ2 · ê|

Zb1Zb2

∫ t

0
dt ′eiν(t−t ′)e−iε1teiε2t ′ trb1

[

eiHb1te−i(B1+Hb1)te−βHb1
]

trb2

[

ei(B2+Hb2)t
′
e−iHb2t ′e−βHb2

]

+e−iφ
√

η(1−η)
|~µ2 · ê||~µ1 · ê|

ZbD

∫ t

0
dt ′eiν(t−t ′)e−iε2teiε1t ′ trb2

[

eiHb2te−i(B2+Hb2)te−βHb2
]

trb1

[

ei(B1+Hb1)t
′
e−iHb1t ′e−βHb1

]

}

. (12)

1–14 | 5
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2.2 Identical donors

Let us now specialize to the case where we have identical donors
with ε1 = ε2 = εD having identical couplings J1 = J2 = J to the
acceptor chromophore and symmetrically placed with respect to
the acceptor so that |~µ1 · ê| = |~µ2 · ê| = |~µD · ê|. Such a system can
potentially be realised in the lab by arranging suitable donor and
acceptor chromophores on a molecular scaffold like a DNA strand.
This will allow for a bottom up approach to the larger problem
of understanding the role of quantum coherence in biologically
relevant processes by starting with simpler non-biological systems
with fewer chromophores involved. For the identical donors we
can write the rate equation (11) as

k(t) =
2J2

√
2π|~µA · ê|2|~µD · ê|2

∫ ∞

−∞
dω IA(ω)Eψ (ω, t). (13)

The emission profile Eψ for identical donors can be written as

Eψ (ν , t) = ED(ν , t)+Ecoh(ν , t),

where

ED(ν , t) = 2|~µD · ê|2Re

∫ t

0
dt ′ ei(ν−εD)(t−t ′)

{

× η

Zb1

trb1

[

eiHb1(t−t ′)e−i(B1+Hb1)te−βHb1 ei(B1+Hb1)t
′]

+
1−η

Zb2

trb2

[

eiHb2(t−t ′)e−i(B2+Hb2)te−βHb2 ei(B2+Hb2)t
′]
}

,(14)

and

Ecoh(ν , t) = 2
√

η
√

1−η
|~µD · ê|2
Zb1Zb2

Re

∫ t

0
dt ′ ei(ν−εD)(t−t ′)

{

×eiφ trb1

[

eiHb1te−i(B1+Hb1)te−βHb1
]

× trb2

[

ei(B2+Hb2)t
′
e−iHb2t ′e−βHb2

]

+ e−iφ trb2

[

eiHb2te−i(B2+Hb2)te−βHb2
]

× trb1

[

ei(B1+Hb1)t
′
e−iHb1t ′e−βHb1

]

}

. (15)

Notice that if we set η = 1 (or η = 0), or assume that the
baths associated with each of the donors are identical in all re-
spects, ED(ν , t) reduces to the emission profile of a single donor
as in Förster’s original theory40. For η = 1 (or η = 0) we have
Ecoh(ν , t) = 0, and for identical baths and η = 1/2 we have,

Ecoh(ν , t) = 2cosφ
|~µD · ê|2

Zb

Re

∫ t

0
dt ′ ei(ν−εD)(t−t ′)×

trb′
[

eiHb′ te−i(B+Hb′ )te−βHb′
]

trb′
[

ei(B+Hb′ )t
′
e−iHb′ t

′
e−βHb′

]

,

where the subscript b′ denotes the bath attached to one of the
donors and the subscript b denotes the entire bath with B1 = B2 =

B. The form of Ecoh suggests that in Eq. (13), it acts as an inter-
ference term modulating the energy transfer rate depending on
the relative phase φ of the initial superposition in Eq. (7). We see
that the electronic coherence upon photon absorption between
the donors can either enhance or suppress the energy transfer
rate relative to that of a single donor within the single excitation
manifold.

3 Mesoscopic environment models

We consider two types of low dimensional quantum systems as
the bath modes coupled to each of the two donors and the ac-
ceptor in the following. In the first case we assume that the bath
attached to each is a single Harmonic oscillator and in the second
case we assume that the bath is a collection of N qubits where N is
relatively small. As mentioned earlier, a mesoscopic environment
allows us to numerically integrate the Schrödinger equation for
the entire system including the bath and compare with the an-
alytic results in the previous section. More importantly relative
simplicity of the bath lets us clearly see and separate out the bath
effects in the dynamics from the effect of the coherence between
the donors.

The numerical computations are done in arbitrary units assum-
ing ~ = 1. However to put the results we obtain in context it
is necessary to make the connection with the energy, time and
distance scales relevant to some of the systems that have been
studied in detail previously. Following up on21, in18, the rate
predicted by the Multi-chromophoric generalisation of FRET for
energy transfer between the B800 unit to the B850 unit in the
light harvesting complex 2 of purple bacteria is computed. As a
prototype for providing the context for our results which are ori-
ented towards qualitative understanding of the role of coherence
(and hence in arbitrary units) we use the system in18. The ex-
citation energy of the B850 unit, which has the role of acceptor
in the system studied in18, is around 2× 10−19 Joules. In the
numerical computations that follow we have taken the excitation
energies ε1 = ε2 = εA = 0.1 in arbitrary units. Inverse of our exci-
tation energy (in units of ~= 1) is then equal to 10/2π time units.
Therefore, in relation to the system considered in18, one unit of
time in the numerical examples below corresponds to around 2
femto-seconds. An analogous scaling for the basic time unit can
be constructed for other realistic systems as well like the one dis-
cussed previously with chromophores attached to DNA structures
knowing the excitation energies of the chromophores. The cou-
pling between the chromophores in18 is characterised by an in-
teraction energy of approximately 2×10−20 Joules computed as-
suming a dipole moment of 10 Debyes and an intra-chromophore
separation in vacuum of around 20 Å. Accordingly we have taken
the perturbative coupling between the donors and the acceptor
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with a characteristic interaction energy of 0.01 in our arbitrary
units.

3.1 Harmonic oscillator bath

Attached to each of the chromophores is single harmonic oscilla-
tor taken to be the bath. The bath Hamiltonian is:

Hb = ∑
s

ws

(

b†
s bs +

1

2

)

, s = 1,2,A, (16)

where bs (b
†
s ) is the annihilation (creation) operator for the har-

monic oscillator of frequency ws coupled to chromophore s. The
system bath coupling is assumed to be linear and of the form,

Heb = ∑
s

gs(b
†
s +bs)a

†
s as. (17)

The system-bath coupling chosen along the lines of the dispersive
coupling in cavity opto-mechanics49–52 is such that the number
of excitations shared between the donors and acceptors is con-
served. Time evolution of the entire system consisting of the chro-
mophores and their respective baths is done numerically taking
only the first few levels of each harmonic oscillator into consid-
eration. Starting from the initial state in Eq. (6) we numerically
integrate the Schrödinger equation for the system and compute
the population in |A〉 as a function of time. Time derivative of the
population gives us the energy transfer rate.

To evaluate the analytic expression we have for the energy
transfer rate in Eq. (9) we have to find expectation values of
products of exponentials of the form e±i(B+Hb)τ and e±iHbτ with
respect to the canonical state e−βHb/Zb of the bath. We can com-
pute these expectation values as follows. As an example con-
sider the term of the form trb[e

i(B+Hb)t
′
eiHb(t−t ′)e−i(B+Hb)te−βHb ],

appearing in Eq. (9). For short times t, we can apply the Baker-
Campbell-Hausdroff formula53 for Q = eU eV eW as lnQ =U +V +

W +([U,W ] + [U,V ] + [V,W ])/2+ . . ., and write the following ex-
pression correct to second order in t, t ′ and t − t ′:

ei(B+Hb)t
′
eiHb(t−t ′)e−i(B+Hb)t ≃ e

− ig√
2w

(t−t ′)[2wx̂+w(t+t ′) p̂]≡ Ô2(x̂, p̂|t, t ′),

where x̂ and p̂ are the position and momentum operators of the
harmonic oscillators. Here we have used the canonical commu-
tation relations of the bath operators and also assumed that the
mass of the harmonic oscillators are all equal to unity. The ex-
pectation value 〈Ô2(x̂, p̂|t, t ′)〉 can be computed using the Wigner
function W (x, p) of the state ρ of the bath oscillator as54,

tr[Ô2(x̂, p̂|t, t ′)ρ] =
∫

dx

∫

d pO2(x, p|t, t ′)W (x, p). (18)

The Wigner function for a single mode thermal state is

W (x, p) =
e−

1
2

ηT V−1η

2π
√

det(V )
, η = (x, p)T ,

where V is the variance matrix and the superscript T denotes the
transpose operation. Using

V =

(

1
2

coth
βw
2

0

0 1
2

coth
βw
2

)

, β =
1

T
,

for a normalised thermal state, e−βHb/Zb, we get

W (x, p) =
1

π
tanh

βw

2
e− tanh

βw

2
(x2+p2).

Using Eq. (18) we obtain,

〈Ô2(t, t
′)〉= e−

gw

8
(t−t ′)2[(t+t ′)2+4]coth

βw

2 . (19)

In a similar manner we find

1

Zb

trb

[

ei(B+Hb)(t−t ′)e−iHb(t−t ′)e−βHb
]

≃ 〈Ô1(t, t
′)〉= e−

gw

8
(t−t ′)2[(t−t ′)2+4]coth

βw

2 (20)

and

1

Zb

trb

[

ei(B+Hb)te−iHbte−βHb
]

=
1

Zb

trb

[

e−iHbtei(B+Hb)te−βHb
]

≃ 〈Ô3(t)〉= e−
gw

8
t2(t2+4)coth

βw

2 . (21)

It follows that the expression for the rate of energy transfer in
Eq. (9) for the case of Harmonic oscillator baths coupled to the
chromophores can be approximated as

k(t) ≃ 2 Re

{

ηJ2
1

∫ t

0
dt ′ei(εA−εD1

)(t−t ′)〈O2(t, t
′)〉〈O1(t, t

′)〉

+(1−η)J2
2

∫ t

0
dt ′ei(εA−εD2

)(t−t ′)〈O2(t, t
′)〉〈O1(t, t

′)〉

+eiφ√η
√

1−ηJ1J2

∫ t

0
dt ′ei(εA−εD1

)te−i(εA−εD2
)t ′

×〈O3(t
′)〉〈O3(t)〉〈O1(t, t

′)〉

+e−iφ√η
√

1−ηJ2J1

∫ t

0
dt ′ei(εA−εD2

)te−i(εA−εD1
)t ′

〈O3(t
′)〉〈O3(t)〉〈O1(t, t

′)〉
}

. (22)

3.1.1 Numerical Investigations

For numerical integration of the exact evolution equations for the
system along with the harmonic oscillator baths attached to each
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out the remaining terms gives us Eq. (8). The energy transfer
rate is obtained by differentiating the expression for PA(t) under
the integral sign. For taking the time derivative of PA(t) we have
to evaluate expressions of the form

G(t) =
d

dt

∫ t

0
dt ′
∫ t

0
dt ′′ f (t ′, t ′′)

Now, this integral can be re-written as

G(t) =
d

dt

∫ t

0
dt ′F(t ′, t), (28)

where

F(t ′, t) =
∫ t

0
dt ′′ f (t ′, t ′′),

The Leibniz formula for differentiating under the integral sign is,

d

dx

∫ y2(x)

y1(x)
dx′ f (x,x′) = f (x,y2)

dy2(x)

dx
− f (x,y1)

dy1(x)

dx

+
∫ y2(x)

y1(x)
dx′

δ

δx
f (x,x′).

Applying the Leibniz formula to Eq. (28) we get

G(t) = F(t, t)+
∫ t

0
dt ′

d

dt
F(t ′, t)

=
∫ t

0
dt ′′ f (t, t ′′)+

∫ t

0
dt ′

d

dt

∫ t

0
dt ′′ f (t ′, t ′′).

Using the Leibniz formula once again to evaluate the derivative
in the second term we get,

G(t) =
∫ t

0
dt ′′ f (t, t ′′)+

∫ t

0
dt ′ f (t ′, t) =

∫ t

0
dt ′ f (t, t ′)+

∫ t

0
dt ′ f (t ′, t)

(29)
where we have relabelled the dummy variable t ′′ to t ′

in one of the terms. Using Eq. (29) to take the time
derivative of the transition probability (8), we obtain,

k(t) =
d

dt
PA(t)

= η
J2

1

Zb

∫ t

0
dt ′ eiεA(t−t ′)e−iε1(t−t ′) trb

[

ei(BA+Hb)(t−t ′)e−i(B1+Hb)te−βHb ei(B1+Hb)t
′]

+η
J2

1

Zb

∫ t

0
dt ′ eiεA(t

′−t)e−iε1(t
′−t) trb

[

ei(BA+Hb)(t
′−t)e−i(B1+Hb)t

′
e−βHb ei(B1+Hb)t

]

+(1−η)
J2

2

Zb

∫ t

0
dt ′ eiεA(t−t ′)e−iε2(t−t ′) trb

[

ei(BA+Hb)(t−t ′)e−i(B2+Hb)te−βHb ei(B2+Hb)t
′]

+(1−η)
J2

2

Zb

∫ t

0
dt ′ eiεA(t

′−t)e−iε2(t
′−t) trb

[

ei(BA+Hb)(t
′−t)e−i(B2+Hb)t

′
e−βHb ei(B2+Hb)t

]

+eiφ√η
√

1−η
J1J2

Zb

∫ t

0
dt ′ eiεA(t−t ′)e−iε1teiε2t ′ trb

[

ei(BA+Hb)(t−t ′)e−i(B1+Hb)te−βHb ei(B2+Hb)t
′]

+eiφ√η
√

1−η
J1J2

Zb

∫ t

0
dt ′ eiεA(t

′−t)e−iε1t ′eiε2t trb

[

ei(BA+Hb)(t
′−t)e−i(B1+Hb)t

′
e−βHb ei(B2+Hb)t

]

+e−iφ√η
√

1−η
J2J1

Zb

∫ t

0
dt ′ eiεA(t−t ′)e−iε2teiε1t ′ trb

[

ei(BA+Hb)(t−t ′)e−i(B2+Hb)te−βHb ei(B1+Hb)t
′]

+e−iφ√η
√

1−η
J2J1

Zb

∫ t

0
dt ′ eiεA(t

′−t)e−iε2t ′eiε1t trb

[

ei(BA+Hb)(t
′−t)e−i(B2+Hb)t

′
e−βHb ei(B1+Hb)t

]

.

(30)
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We notice that the first two terms in the above expression are
complex conjugates of each other. Similarly, third and fourth, fifth
and eighth and sixth and seventh terms are also complex conju-
gate pairs, leading to Eq. (9). Note that in Eq. (9) the traces over
the three sets of mutually decoupled bath modes associated with
the two donors and the acceptor respectively have been further
separated out.
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