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We apply real-time path-integral dynamics simulations to characterize the role of electronic coherence in inter-complex excita-

tion energy transfer (EET) processes. The analysis is performed using a system-bath model that exhibits the essential features

of light-harvesting networks, including strong intra-complex electronic coupling and weak inter-complex coupling. Strong intra-

complex coupling is known to generate both static and dynamic electron coherences, which delocalize the exciton over multiple

chromophores and potentially influence the inter-complex EET dynamics. With numerical results from partial linearized density

matrix (PLDM) real-time path-integral calculations, it is found that both static and dynamic coherence are correlated with the

rate of inter-complex EET. To distinguish the impact of these two types of intra-complex coherence on the rate of inter-complex

EET, we use Multi-Chromophore Förster Resonance Energy Transfer (MC-FRET) theory to map the original parameterization of

the system-bath model to an alternative parameterization for which the effects of static coherence are preserved while the effects

of dynamic coherence are largely eliminated. It is then shown that both parameterizations of the model (i.e., the original that

supports dynamic coherence and the alternative that eliminates it), exhibit nearly identical EET kinetics and population dynamics

over a wide range of parameters. These observations are found to hold for cases in which either the EET donor or acceptor is

a dimeric complex and for cases in which the dimeric complex is either symmetric or asymmetric. The results from this study

suggest that dynamic coherence plays only a minor role in the actual kinetics of inter-complex EET, whereas static coherence

largely governs the kinetics of incoherent inter-complex EET in light-harvesting networks.

1 Introduction

The extraordinary efficiency of excitation energy transfer

(EET) in natural light-harvesting systems is generally at-

tributed to rapid timescales of incoherent exciton-transfer

(∼ 50 ps) in comparison to the nanosecond-timescale ex-

citation lifetime.1 Nonetheless, recent 2D-spectroscopy ex-

periments have observed transient intra-complex electronic

coherence in natural2–6 and artificial light harvesting sys-

tems,7–9 which raises questions about the role of intra-

complex electronic coherence in facilitating EET across multi-

meric complexes.10–12 In this work, we combine real-time

path-integral dynamics simulations13,14 and analysis from

Multi-Chromophore Förster Resonance Energy Transfer (MC-

FRET) theory15–17 to examine the role of electronic coherence

on the kinetics of EET in light-harvesting systems.

Light-harvesting systems are typically comprised of multi-

ple complexes, which are in turn comprised of multiple light-

absorbing chromophores. For example, Photosystem II is

comprised of the CP43, CP47, and reaction center complexes,

each of which includes multiple chromophores.18–20 In most
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b E-mail: tfm@caltech.edu

light-harvesting systems, chromophores within a complex ex-

hibit strong electronic coupling due to their close-packed con-

figurations.11,12,18,19 The electronic coupling between chro-

mophores in different complexes, however, is typically much

weaker due to the larger distances of separation, leading to in-

coherent dynamics for EET between complexes. The manifes-

tation of electronic coherences in EET has been the subject of

significant experimental2,3 and theoretical11,12,21–32 attention.

In the current work, we specifically focus on the way in which

intra-complex electronic coherence affects inter-complex EET

kinetics, which is crucial to the efficiency of light-harvesting

systems. We address this issue by distinguishing between

static and dynamic types of electronic coherence and by exam-

ining the relative impact of these two types of intra-complex

coherence on the kinetics of inter-complex EET.

Fig. 1 introduces the simple model for inter-complex en-

ergy transfer that is employed in this study.11,12,22 The model

exhibits an EET donor complex that consists of a pair of chro-

mophores and an acceptor complex that consists of a single

chromophore (Fig. 1a). Inter-complex electronic coupling is

described via the parameter δ and intra-complex electronic

coupling is given by ∆, where the latter is a function of the

tilt angle, θ , between the two chromophores of the dimer

(Fig. 1b). The intra-complex coupling can be varied via the
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are thus

ĤD
s = ∑

j

εD j
|D j〉〈D j|+ ∑

j 6= j′
∆D jD j′ |D j〉〈D j′ |

ĤA
s = ∑

k

εAk
|Ak〉〈Ak|+ ∑

k 6=k′
∆AkAk′ |Ak〉〈Ak′ |, (5)

where the coefficients for the diagonal terms correspond to

the chromophore site energies and the coefficients for the off-

diagonal terms correspond to intra-complex electronic cou-

plings. Coupling between the donor and acceptor complexes

in the system Hamiltonian is given by

ĤC
s = ∑

jk

δD jAk
|D j〉〈Ak|, (6)

where the coefficients are the inter-complex electronic cou-

plings.

Within the dipole approximation, the inter-complex elec-

tronic coupling can be related to the relative orientation of the

transition dipole associated with individual chromophores us-

ing

∆D jD j′ =
1

4πε0r3
D jD j′

[~µD j
~µD j′ −3(~µD j

r̂D jD j′ )(~µD j′ r̂D jD j′ )],

(7)

where ~µ j is the transition dipole associated with the ground

to excited transition on chromophore D j, rD jD
′
j

and r̂D jD
′
j

are

the vector and unit vector pointed from chromophore D j to

D j′ . As illustrated in Fig. 1C, ∆ j j′ can be modulated by vary-

ing the tilt angle θ of the dipoles. For tilt angles associated

with positive value of intra-complex electronic coupling, the

donor complex corresponds to an H-type aggregate; for neg-

ative values of the coupling, the donor complex is a J-type

aggregate.34,40 While the inter-complex electronic couplings

can also be modeled in terms of the tilt angle, this dependence

is much weaker and is thus assumed here to be independent of

the tilt angle.

The model incorporates the effect of a dissipative environ-

ment via linear coupling of each chromophore site to a corre-

sponding harmonic bath, using

Ĥint = ĤD
int + ĤA

int (8)

ĤD
int = ∑

D j ,i

cD j ,iRD j ,i|D j〉〈D j|

ĤA
int = ∑

Ak,i

cAk,iRAk,i|Ak〉〈Ak|.

The bath terms of the Hamiltonian are

Ĥb = ĤD
b + ĤA

b (9)

ĤD
b = ∑

D j ,i

1

2
[P2

D j ,i
+ω2

D j ,i
R2

D j ,i
]1̂

ĤA
b = ∑

Ak,i

1

2
[P2

Ak,i
+ω2

Ak,i
R2

Ak,i
]1̂, (10)

where 1̂= ∑
Ak
n=D j

|n〉〈n|.
The system-bath coupling constants cD j ,i and cAk,i are sam-

pled from the Debye-Drude form of the spectral density,21,41

Jn(ω) =
π

2
∑

i

c2
n,i

ωn,i
δ (ω −ωn,i) =

2λnωτ

ω2τ2 +1
, (11)

where n = D j...Ak. The solvent reorganization energy asso-

ciated with each chromophore state |n〉 is λn = ∑i cn,i/ω2
n,i =

1/π
∫ ∞

0 Jn(ω)/ω , and the bath relaxation time is τ . We assume

that an independent and identical bath is coupled to each chro-

mophore state.

For use in the following sections, we introduce notation for

the Hamiltonian operators associated with the donor and ac-

ceptor complexes,

ĤD = ĤD
s + ĤD

int + ĤD
b ∑

D j

|D j〉〈D j|

ĤA = ĤA
s + ĤA

int + ĤA
b ∑

Ak

|Ak〉〈Ak|. (12)

3 Partial Linearized Density Matrix Dynamics

EET rate constants and time-dependent reduced density ma-

trix elements are obtained from thermal time correlation func-

tions. In this study, we use the PLDM path-integral dynamics

method to compute the necessary correlation functions.13,14 In

this section, we review expressions for the EET rate constant

and reduced density matrix in terms of time correlation func-

tions, we briefly outline the PLDM method for describing EET

dynamics, and we present benchmark results for EET between

a single donor and single acceptor model.

The general expression for the time-dependent reduced den-

sity matrix is13,42

ρi j(t) = Tr
[

ρ̂(0)eiĤt/h̄|i〉〈 j|e−iĤt/h̄
]

, (13)

where ρ̂(0) is the initial density operator. Unless otherwise

specified, EET rate constants are obtained from the flux-side

correlation function42,43 using

k = Q−1
r lim

t→tp

Cfs(t), (14)

where Cfs(t) = Tr[ρ̂F̂eiĤt/h̄ĥe−iĤt/h̄], tp is the “plateau time”

for flux-side correlation function,42,43 ρ̂ = e−β Ĥ , Ĥ is the to-

tal Hamiltonian operator, and Qr = Tr [ρ̂(1̂− ĥ)] is the re-

actant partition function. The side operator ĥ = ∑Ak
|Ak〉〈Ak|

distinguishes between the reactant and product regions, and

F̂ = i
h̄
[Ĥ, ĥ] is the associated flux operator. The rate constant

can be equivalently expressed as k = Q−1
r

∫ tp

0 Cff(t)dt, where

Cff(t) = Tr[ρ̂F̂eiĤt/h̄F̂e−iĤt/h̄], or it can be computed directly

from the population dynamics.44–46
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The time correlation functions in Eqns. 13-14 are computed

using the PLDM method.13,14 Expressing the total Hamilto-

nian in terms of its nuclear kinetic and total potential en-

ergy contributions, Ĥ = T̂ +Vnm(R̂)|n〉〈m|, where |n〉, |m〉 ∈
{{|D j〉},{|Ak〉}} are the site basis functions, we use the map-

ping representation of Meyer-Miller-Stock-Thoss47 to trans-

form the discrete electronic states into continuous variables

|n〉〈m| → â†
nâm, where â†

n = 1√
2h̄
(q̂n − ip̂n). Applying a lin-

earization approximation42 to the nuclear degrees of freedom

and keeping the explicit propagation of the electronic degrees

of freedom, we arrive at the general PLDM expression13,14

CAB(t) = 〈ÂB̂(t)〉= Tr
[

ρ̂Âe
i
h̄

Ĥt B̂e−
i
h̄

Ĥt
]

≈
n′0n′t

∑
nt ,n0

∫

dR̄
dP̄

2π h̄
dqd pdq′d p′G0G′

0 (15)

× (ρ̂Â)
n0,n

′
0

W (0)B̂
n′t nt

W (t)∗T[n0,nt ]T
′
[n′t ,n′0]

,

where T[n0,nt ] = 1
4
(qnt + ipnt )(qn0

− ipn0
) are the elec-

tronic transition amplitudes, and (ρ̂Â)
n0,n

′
0

W =
∫

dZ0〈R̄0 +
Z0
2

n0|ρ̂Â|R̄0 − Z0
2

n′0〉e−
i
h̄

P̄0Z0 and B̂
n′t ,nt

W (t)∗ =
∫

dZt〈R̄t −
Zt
2

n′t |B̂|R̄t +
Zt
2

nt〉e
i
h̄

P̄N Zt are partial Wigner transformations of

operators ρ̂Â and B̂. G0 = e
− 1

2 ∑β (q
2
β0

+p2
β0

)
provides the initial

distributions of electronic degrees of freedom. The terms G′
0

and T ′
[n′0,n

′
t ]

are similarly defined with respect to time propaga-

tion in the reversed direction.

Classical trajectories are used to evaluate the approximate

quantum time correlation function in Eqn. 15. These trajecto-

ries are propagated using the equations of motion13

q̇nt = ∂Hcl
m (R̄t)/∂ pnt ; ṗnt =−∂Hcl

m (R̄t)/∂qnt (16)

F =−1

2
∇R̄k

[

Hcl
m(R̄t , pnt ,qnt )+Hcl

m (R̄t , p′n′t ,q
′
n′t
)
]

,

where Hcl
m(R̄, p,q) = 1

2 ∑nm Vnm(R̄)(pn pm +qnqm) is the clas-

sical mapping Hamiltonian,13 and F is the force that acts on

the nuclear degrees of freedom.

In recent work, we have demonstrated the accuracy of the

PLDM method for non-adiabatic reaction dynamics associ-

ated with electron transfer.14 To further benchmark the accu-

racy of the method for EET processes, Fig. 2 presents a com-

parison of PLDM with numerically exact results for the EET

rate associated with excitation transfer from a single donor

chromophore to a single acceptor chromophore. These results

provide a clear picture of how different quantities control the

EET rate, as well as the accuracy of the PLDM method in var-

ious regimes. Unless otherwise specified, the excitation en-

ergy gap between the donor and acceptor is ε = εD − εA=100

cm−1, the inter-complex electronic coupling is δ=5 cm−1, the

solvent reorganization energy is λ = λD = λA=100 cm−1, and

the solvent response time is τ=0.1 ps. The solvent bath are

discretized following the description in Section 4.

The rate constant in Fig. 2a is calculated from an exponen-

tial fit of the population decay of an excitation on the donor.

The initial condition for the excitation is ρ̂0 = |D〉〈D|(ρ̂b)w.

The exciton transfer rate constants in Fig. 2b-d are calculated

as the long-time plateau value of the flux-side correlation func-

tion, as described in Eqn. 14. To evaluate the partial-Wigner

transformation of the thermal flux operator (e−β Ĥ F̂)W , we use

the approximation14,42,45

(

e−β Ĥ F̂
)

w
≈
(

e−β (ĤD
sb+ĤA

b )
)

w
F̂ = (e−β ĤD

sb)w(e
−β ĤA

b )wF̂ ,

(17)

where ĤD
sb = ĤD

int + ĤD
b , and the Wigner distribution for ĤD

sb is

(e−β ĤD
sb)w = Πi tanh(

βωD,i

2
) (18)

× exp

[

− tanh(
βωD,i

2
)

ωD,i
(P2

D,i +ω2
D,i(RD,i +

cD,i

ω2
D,i

)2)

]

,

and the Wigner density for acceptor bath ĤA
b is

(e−β ĤA
b )w = Πi tanh(

βωA,i

2
) (19)

× exp

[

− tanh(
βωA,i

2
)

ωA,i
(P2

A,i +ω2
A,iR

2
A,i)

]

.

Fig. 2a presents the numerical results of EET rate over a

range of solvent reorganization energies, λ , using an inter-

complex coupling of δ = 20 cm−1. The EET rate is com-

puted using the PLDM method, as well as with classical Mar-

cus Theory (MT)45 and a Fermi Golden Rule (FGR) expres-

sion41,45 that accounts for nuclear quantization (see Appendix

A for details). Also included are numerical exact results

obtained from the hierarchy equation of motion (HEOM).41

Whereas the FGR and MT descriptions only agree with the

exact results for large reorganization energies, PLDM works

well over the entire range of λ . Note that a maximal transfer

rate is obtained with changing λ ; this behavior has been pre-

viously discussed in terms of “environment-assisted quantum

transport”.12,25,48,49

Fig. 2b presents the numerical results for the EET rate upon

varying the inter-complex electronic coupling, δ , and with

εD = εA. For small couplings (βδ ≪ 1), the system exhibits

non-adiabatic EET dynamics and PLDM agrees with the FGR

result. For larger couplings (βδ > 1), PLDM correctly devi-

ates from FGR,14,45 which assumes weak coupling.

Fig. 2c presents PLDM results for the EET rate over a range

of values of the energy gap between donor and acceptor states,

ε = εD − εA. Here, inter-complex coupling is small (βδ ≪ 1)

such that FGR provides an accurate description. The FGR re-

sults predict a turnover with maximal rate at ε = λ . Classical

4 | 1–11
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which employs Förster Resonance Energy Transfer (FRET)

theory for monomeric donor and acceptor chromophores in a

weak-coupling regime. Here, δ is the inter-complex electronic

coupling, and the emission spectrum for the donor and the ab-

sorption spectrum for the acceptor are respectively given by

ED(ω) =
∫ +∞

−∞
dte−iωtTrDb

[

eiĤD
sbt/h̄e−iĤD

b t/h̄
]

IA(ω) =
∫ +∞

−∞
dteiωtTrAb

[

eiĤA
b t/h̄e−iĤA

sbt/h̄
]

. (29)

For a linearly coupled harmonic bath, these spectra can be an-

alytically evaluated as

ED(ω) =
∫ ∞

−∞
dte−iωte−i(εD−λ )−g∗(t)

IA(ω) =
∫ ∞

−∞
dteiωte−i(εA+λ )−g(t), (30)

where the harmonic bath correlation function is given by

g(t) =
∫ ∞

0
dω

J(ω)

πω2
coth(

βω

2
) [(1− cos(ωt)+ isin(ωt)] ,

(31)

such that nuclear quantum effects are included at this level.

8 Appendix B: General SCP parameterization

Here, we provide expressions for the SCP parametrization for

the general case of multimeric donors and acceptor complexes.

These relations are summarized in Table 2. For the notation in

the table, j and j′ index the chromophores in the donor com-

plex, k and k′ index the chromophores in the acceptor com-

plex. As shown in Eqs. 24 and 25, the sets {εα} and {εγ}
corresponds to the intra-complex energy eigenvalues for the

donor and acceptor, respectively, and {cα j} and {cγk} are the

associated expansion coefficients for the energy eigenvectors.

Table 2 General expressions for the SCP parameterization.

Original SCP

∆D jD j′ ∆̃D jD j′ = 0

∆AkAk′ ∆̃AkAk′ = 0

{εD j
} {ε̃D j

} = {εα}
{εAk

} {ε̃Ak
} = {εγ}

{δD jAk
} {δ̃D jAk

} = {∑ j′k′ c j′α δD j′Ak′ c
∗
k′γ}

9 Acknowledgement

This work was supported by the National Science Foundation

(NSF) CAREER Award under Grant No. CHE-1057112. Ad-

ditionally, T.F.M. acknowledges support from a Camille and

Henry Dreyfus Foundation New Faculty Award and an Al-

fred P. Sloan Foundation Research Fellowship. Computing

resources were provided by NERSC (DE-AC02-05CH11231)

and XSEDE (TG-CHE130108).

References

1 R. E. Blankenship, Molecular Mechanism of Photosynthesis, Wiley-

Blackwell 2014.

2 G. Panitchayangkoon, D. V. Voronine, D. Abramavicius, J. R. Carama,

N. H. C. Lewis, S. Mukamel and G. S. Engel, Proc. Natl. Acad. Sci. USA.

108, 20908 (2011); G. Panitchayangkoona, D. Hayes, K. A. Fransted, J.

R. Caram, E. Harel, J. Wen, R. E. Blankenship and G. S. Engel, Proc.

Natl. Acad. Sci. 107, 12766 (2010); G. S. Engel, T. R. Calhoun, E. L.

Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R.E. Blankenship, and G. R.

Fleming, Nature. 446, 782 (2007).

3 E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer and G. D.

Scholes, Nature. 463, 644 (2010).

4 E. Harel and G. S. Engel, Proc. Natl. Acad. Sci. 109, 706 (2012); A. F.

Fidler, V. P. Singh, P. D. Long, P. D. Dahlberg and G. S. Engel, J. Phys.

Chem. Lett. 4, 1404 (2013); ibid, Nature. Comm. 5, 3286 (2014).

5 G. S. Schlau-Cohen, A. Ishizaki, T. R. Calhoun, N. S. Ginsberg, M. Bal-

lottari, R. Bassi and G. R. Fleming, Nature. Chem. 4, 389 (2012); G.

S. Schlau-Cohen, T. R. Calhoun, N. S. Ginsberg, M. Ballottari, R. Bassi

and G. R. Fleming, Proc. Natl. Acad. Sci. USA. 107, 13276 (2012).

6 E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D.

Zigmantas and R. van Grondelle, Nature. Phys. 10, 676 (2014).

7 E. Cassette, R. D. Pensack, B. Mahler and G. D. Scholes, Nature. Comm.

6, 6086 (2015).

8 D. Hayes, G. B. Griffin and G. S. Engel, Science. 340, 1431 (2013).

9 G. B. Griffin, P. M. Lundin, B. S. Rolczynski, A. Linkin, R. D.

McGillicuddy, Z. Bao and G. S. Engel, J. Chem. Phys. 140, 034903

(2014).

10 T. Manc̆al, J. Phys. Chem. B. 117, 11282 (2013).
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