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Abstract 

 The viscosities and normal stress differences of various liquid crystal model systems 

based on the Gay-Berne potential have been obtained as functions of the shear rate in the non-

Newtonian regime. Various molecular shapes such as regular convex calamitic and discotic 

ellipsoids and non-convex shapes such as bent core molecules and soft ellipsoid strings have 

been examined. The isotropic phases were found to be shear thinning with the shear rate de-

pendence of the viscosity following a power law in the same way as alkanes and other non-

spherical molecules. The nematic phases turned out to be shear thinning but the logarithm of 

the viscosity proved to be an approximately linear function of the square root of the shear rate. 

The normal stress differences were found to display a more or less parabolic dependence on 

the shear rate in the isotropic phase whereas this dependence was linear at low to intermediate 

shear rates in the nematic phase. 
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1. Introduction 

 Shear flow simulations of molecular model systems in the non-Newtonian regime 

have been undertaken since the 1970’s when the Lees-Edwards sliding brick boundary condi-

tions were introduced [1].Then a velocity gradient and a shear stress are built up in the system 

so that the viscosity can be obtained as the ratio of these two quantities. Later on this method 

was improved by devising the SLLOD equations of motion [2] where the molecular velocity 

is divided into the streaming velocity and the velocity relative to the streaming velocity or the 

molecular thermal velocity where the sum of the squares of the last-mentioned velocities is 

proportional to the temperature. At first simple liquids such as Lennard-Jones liquids were 

studied, but since the mid 1980’s it has been possible to study shear flow of molecular liquids, 

such as, for example, alkanes [3]. They are of technological interest since they, among other 

things, are constituents of lubricants. At first united atom models were applied where the me-

thyl or methylene groups were represented by a Lennard-Jones interaction site and where the 

bond lengths and bond angles were kept constant by application of Lagrangian constraints [4, 

5]. Later on more detailed models with bond stretching and bond bending potentials and with 

explicit representation of the hydrogen atoms were introduced [6]. An interesting result of 

these simulations is the finding that simple liquids and linear alkanes are shear thinning. In the 

non-Newtonian regime the viscosity of the simple liquid is a linear function of the square root 

of the shear rate whereas the viscosity of the alkanes and other non-spherical molecules fol-

lows a power law at high shear rates. The reason why the alkanes are shear thinning is that the 

shear field is a sum of two velocity fields, namely one purely rotational field and one irrota-

tional elongational field, where the latter field stretches out the molecules and pulls them to-

wards the 45 degree orientation relative to the stream lines [7]. Thereby the molecules become 

more streamlined and they are able to pass each other more readily, so that the friction de-

creases. In fact a nonequililbrium nematic liquid crystal is formed. The rotational part of the 

velocity field exerts a torque on the molecules twisting them towards the streamlines so that 

the alignment angle becomes less than 45 degrees at high shear rates. 

 Another class of systems the flow properties of which have been studied is various 

liquid crystals. Most of these studies deal with simplified model systems such as the Gay-

Berne fluid [8, 9], which can be regarded as Lennard-Jones fluid generalized to ellipsoidal 

molecular cores, even though some studies of atomistic models of 4-cyano-4'-n-pentyl-

biphenyl (5CB) are available [10]. However, with few exceptions [11] these studies deal ei-

ther with the evaluation of the Green-Kubo relations for the viscosities [12, 13] or with shear 

flow in the Newtonian regime [14-16]. On the experimental side, most of the studies of the 
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rheology of liquid crystals have been focused on the viscosities in the linear regime [17, 18] 

but recently there has been some works published on the viscosity in the non-Newtonian re-

gime of nematic liquid crystals [19, 20]. 

 Therefore, the purpose of this work is to study shear flow of molecular model systems 

in the nematic phase in the non-Newtonian regime. Since many lubricants form liquid crystals 

at high shear rates and some liquid crystals are used as lubricants or additives to lubricants 

[21, 22], this is also of technological interest. Various types of molecular shapes will be tested 

such has convex calamitic and discotic molecules, bent core molecules and soft ellipsoid 

strings.  

 The article is organized as follows: in section 2 the necessary theory is reviewed, in 

section 3 the model systems are described, in section 4 the technical details are given, in sec-

tion 5 the results are presented and discussed and in section 6 there is a conclusion. 

 

2. Basic theory 

2.1 Order parameter 

 Since we are dealing with liquid crystals it is useful to introduce a scalar order pa-

rameter and a director, which is a measure of the average orientation of the molecules, since 

many properties of liquid crystals become simpler when they are expressed relative to a direc-

tor based coordinate system. The order parameter and the director are obtained by from the 

order tensor,  

 
1

3 1 1
ˆ ˆ

2 3

N

i i

iN =

 
= − 

 
∑u uQ 1 , (2.1) 

where N is the number of molecules in the system, 1 is the unit second rank tensor and

ˆ{ ; 1 }i i N≤ ≤u  is some characteristic unit vector of the molecules. For bodies of revolution, ˆ
iu

can be parallel to the axis of revolution and for less regular rigid calamitic molecules it can be 

parallel to the axis corresponding to the smallest eigenvalue of the inertia tensor. The largest 

eigenvalue of the order tensor is defined as the order parameter S. When the molecules are 

perfectly aligned in the same direction the order parameter is equal to unity and when the ori-

entation is completely random it is equal to zero. The director n is the eigenvector corre-

sponding to the order parameter. In terms of the director and the order parameter the order 

tensor may also be expressed as 

 






 −= 1Q
3

1

2

3
nnS . (2.2) 

Page 4 of 35Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



Usually the director is not fixed in space but it diffuses on the unit sphere with an angular 

velocity given by 

 nnΩ &×= . (2.3) 

The order parameter and the director are functions of the position in space in a macroscopic 

system, but in this work we will be interested simulations cells which are small systems where 

these quantities are the same over the whole system 

 

2.2 Equations of motion 

 In order to study shear flow and to calculate the viscosity in the non-Newtonian re-

gime, the SLLOD equations of motion are applied [2]. In the case of rigid molecules they take 

the following form in linear space: 

 i
i zi xr

m
γ= +

p
r e&  (2.4a) 

and 

 i i zi x ipγ ξ= − −p F e p& , (2.4b) 

where ir and ip are the position and peculiar momentum, i.e. the momentum relative to the 

streaming velocity, of molecule i, m is the molecular mass, /xu zγ = ∂ ∂  is the shear rate, i. e. 

there is a streaming velocity xu  in the x-direction varying linearly in the z-direction, xe  is the 

unit vector in the x-direction, iF is the force exerted on molecule i by the other molecules and 

ξ  is a Gaussian thermostatting multiplier given by the constraint that the linear peculiar kinet-

ic energy should be a constant of motion,  

 

[ ]
1

2

1

N

i i ix iz

i
N

i

i

p pγ
ξ =

=

⋅ −
=
∑

∑

F p

p

. (2.5) 

Note that when this thermostat is applied it is assumed that there is a linear velocity profile. 

This is a reasonable assumption if the shear rate is not too high, which is the case in most ex-

perimentally relevant situations, where the equipartitions principle is still valid, and in the 

simulations in the present work. However, if state points far from equilibrium, where the flow 

is turbulent, are studied other kinds of thermostats must be used, where there are no assump-

tions about the shape of the velocity profile [23, 24]. In the following discussion the xz-plane 

will be denoted the vorticity plane and the xy-plane the shear plane, whereas the xz-plane 

sometimes in the literature is denoted the shear plane.  
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 In angular space the Euler equations are applied, 

 
p pi pi p pi pi⋅ = − × ⋅ +ω ω ω Γ&I I , (2.6) 

where 
pI is the inertia tensor, 

piω is the angular velocity of molecule i and 
piΓ is the torque 

exerted on molecule i by the other molecules and the subscript 'p' denotes the principal frame. 

The relation between the rate of change of the axis vectors of the molecules and the angular 

velocity is expressed in terms of quaternions [25]. 

 When these equations of motion (2.4)-(2.6) are applied the shear rate dependent vis-

cosity is given by 

 ( ) lim ( ) /zx
t

p t γη γ γ
→∞

= 〈 〉  (2.7) 

where ( )zxp t γ〈 〉  is the zx-element of the pressure tensor given by the Irving and Kirkwood 

expression [26],  

 
1

1 1 1

N N N
i i

ij ij

i i j im
γ

−

= = = +

= −∑ ∑ ∑
p p

r FP , (2.8) 

where ij j i= −r r r and ijF is the force exerted on molecule i by molecule j. The subscript γ de-

notes that the averages are evaluated in nonequilibrium ensemble at a finite shear rate. In the 

Newtonian regime there are seven independent components of the viscosity of a nematic liq-

uid crystal. They can be measured by fixing the director in various angles relative to the 

stream lines by application of a magnetic or electric field. In this work, however, we will only 

consider the viscosity that is obtained when no external fields are applied and the director is 

free to orient relative to the stream lines.Other quantities of interest to characterize the rheo-

logical properties are the normal stress differences zz xxp p γ〈 − 〉 and yy zzp p γ〈 − 〉 , which are 

equal to the difference between the pressure in the direction of the velocity gradient and the 

streaming direction and the difference between the pressure in the rotation direction and direc-

tion of the velocity gradient, respectively. 

 

2.3 The alignment angle between the director and the stream lines 

 A planar Couette velocity field xzγ=u e  is actually a superposition of one rotational 

velocity field, (1/ 2) ( )r x zz xγ= −u e e , corresponding to the symmetric part of the shear rate, 

( ) (1/ 2) ( )s

z x x zγ∇ = +u e e e e  and one irrotational elongational velocity field, 
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(1/ 2) ( )e x zz xγ= +u e e , corresponding to the antisymmetric part of the shear rate, 

( ) (1/ 2) ( )a

z x x zγ∇ = −u e e e e , see fig. 1. When an isotropic liquid consisting of non-spherical 

molecules such as, for example, alkanes, is sheared, there is a linear coupling between the 

symmetric part of the shear rate and the order tensor [12], since they both are symmetric 

traceless second rank tensors. Thus there will be a small but finite order parameter even at low 

shear rates with a corresponding director oriented at 45-degrees relative to the streamlines. It 

is also possible to think that the elongational part of the velocity field pulls the molecules to-

wards the 45-degree orientation. Since the order parameter is finite the system is in fact a 

noneequilibrium nematic liquid crystal. Then there will also be a torque exerted by the anti-

symmetric shear rate on the molecules twisting them towards the streamlines. This torque is 

very low at low shear rates but it increases with the order parameter, so that the alignment 

angle decreases with the shear rate. On the other hand, when a nematic liquid crystal is 

sheared the symmetric traceless part of the shear rate pulls the molecules towards the 45-

degree direction. Meanwhile the high order parameter of the liquid crystal means that the 

torque exerted by the antisymmetric part of the shear rate is very high already at low shear 

rates, resulting in a compromise where the alignment angle usually falls in an interval be-

tween 5 and 30 degrees. The alignment angle is independent of the shear rate in the Newtoni-

an regime and does not change very much in the non-Newtonian regime.  

 

3. Model systems 

 The model systems in this work are based on the Gay-Berne potential [8, 9], 

12 6

0 0
12 1 2 12 1 2

12 12 1 2 0 12 12 1 2 0

ˆˆ ˆ ˆ ˆ( , , ) 4 ( , , )
ˆ ˆˆ ˆ ˆ ˆ( , , ) ( , , )

U
r r

σ σ
ε

σ σ σ σ

    
 = −   − + − +     

r u u r u u
r u u r u u

, (3.1) 

where 12 2 1= −r r r  is the distance vector from the centre of mass of molecule 1 to the centre of 

mass of molecule 2, 12r̂ is the unit vector in the direction of 12r  and 12r  is the length of 12r . 

The parameter 0σ  is the length of the axis perpendicular to the axis revolution, i.e. the minor 

axis of a calamitic ellipsoid of revolution and the major axis of a discotic ellipsoid. The 

strength and range parameters are given by 

2
2 2

1/2
2 2 12 1 12 2 12 1 12 2

12 1 2 0 1 2

1 2 1 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( )
ˆ ˆ ˆ ˆ ˆ( , , ) 1 ( ) 1

ˆ ˆ ˆ ˆ2 1 1

χ
ε ε χ

χ χ
−   ′ ⋅ + ⋅ ⋅ − ⋅  = − ⋅ − +    ′ ′+ ⋅ − ⋅   

r u r u r u r u
r u u u u

u u u u
 (3.2a) 
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and 

 

2/1

21

2

212112

21

2

212112
02112

ˆˆ1

)ˆˆˆˆ(

ˆˆ1

)ˆˆˆˆ(

2
1)ˆ,ˆ,ˆ(

−


















⋅−
⋅−⋅

+
⋅+
⋅+⋅

−=
uu

urur

uu

urur
uur

χχ
χ

σσ , (3.2b) 

in which the parameter χ  is equal to 
2 2( 1) / ( 1)κ κ− + , where κ  is the ratio between the axis 

of revolution and the axis perpendicular to the axis revolution, χ ′ is equal to 

1/2 1/2( 1) / ( 1)κ κ′ ′− + , where κ ′ is the ratio of the potential energy minima of the side-by-side 

and end-to-end configurations, and 0ε  denotes the depth of the potential minimum in the cross 

configuration, where 12r̂ , 1û  and 2û  are mutually perpendicular. We have also used a purely 

repulsive version of the Gay-Berne potential [27], 

 

18

0

12 1 2 12 1 2

12 12 1 2 0

ˆˆ ˆ ˆ ˆ( , , ) 4 ( , , )
ˆ ˆ ˆ( , , )

U
r

σ
ε

σ σ
 

=  
− + 

r u u r u u
r u u

, (3.3) 

where ε and σ are given by equation (3.2) . Since this potential is purely repulsive, there are 

no potential minima but the value of κ ′  that has been optimised for the attractive Gay-Berne 

potential has been retained. This potential is more short-ranged than the ordinary Gay-Berne 

potential, so that the number of interactions is decreased and the calculations are accelerated. 

This means that some transport coefficient requiring very long simulations to converge can be 

evaluated. Since this system to a large extent displays the same phase behaviour as the ordi-

nary Gay-Berne liquid it is still relevant to study it. 

 More specifically, four model systems (I-IV) have been studied, see table 1. System I 

is composed of a soft ellipsoid fluid consisting of calamitic ellipsoids interacting according to 

equation (3.3) with κ equal to 3 and κ ′ equal to 5 and with the mass m and moment of inertia 

around the axes perpendicular to the axes of revolution of 2

0I mσ= . System II is made up by a 

soft ellipsoid fluid consisting of discotic ellipsoids interacting according to equation (3.3) with 

κ equal to 1/3 and κ ′ equal to 1/5, and with the mass m and moment of inertia around the 

axes perpendicular to the axes of revolution of 2

0I mσ= . System IIIa is the Memmer model 

[28] of bent core molecules consisting of two ellipsoids interacting according to equation 

(3.3) with κ equal to 3 and κ ′ equal to 5 and with the axes of revolution of the two ellipsoids 

in the same plane at an angle φ of 140° and a distance of 02 sin / 2σ ϕ ≈  1.88 0σ  between the 

centres of symmetry of the ellipsoids, see fig. 2. The mass is equal to m and the moment of 

inertia around the axis in the plane of the axes of revolution bisecting the angle φ between 
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these axes, zzI , has been set equal to 2 2

023 /18sin ( / 2)σ ϕ , the moment of inertia around the 

axis perpendicular to the axes of revolution, yyI , has been given the value of 

2 2

0 [sin ( / 2) 5 /18]mσ ϕ +  and the moment of inertia around the axis in the plane of the axes of 

revolution intersecting these axes, xxI , is equal to 2 2

05 cos ( / 2) /18σ ϕ . These expressions for 

the moment of inertia have been obtained by assuming that the mass in either ellipsoid is con-

centrated to four equidistant points along the axis of revolution with the mass / 8m  and 

spaced apart with a distance of 02 / 3σ . System IIIb is the same as system IIIa but the repul-

sive potential (3.3) has been replaced by the attractive potential (3.1). Finally, system IV is a 

soft ellipsoid-string fluid [29] composed of strings of 10 soft discotic ellipsoids of revolution 

interacting according to equation (3.3) with κ equal to 0.4 and κ ′ equal to 1/5. The axes of 

revolution of the ellipsoids are parallel to each other and perpendicular to the line joining their 

centres of symmetry, see fig. 3. The distance between the centres of symmetry of two adjacent 

ellipsoids is equal to 0.5 0σ . In this way a non-convex biaxial body is obtained with a length-

to-breadth-to-width ratio of 5.5:1:0.4. The mass is equal to m and moment of inertia around 

the axes joining the centres of mass of the ellipsoids, zzI , has been set equal to 2

0 / 4mσ and 

the moments of inertia around the other two axes, xxI and 
yyI , have been set equal to 

2

033 /16mσ . 

 

4. Technical details 

 The quantities in this work are expressed in length, energy, mass and time units of 0σ , 

0ε , m, the molecular mass, and 2/1

00 )/( εστ m= . Then the units of the pressure, temperature, 

density, shear rate and viscosity become 3

0 0/ε σ , 0 / Bkε , 3

0σ − , 
1τ −
 and 3

0 0/ε τ σ , respectively. 

The equations of motion were integrated by employing a fourth order Gear predictor-corrector 

method with a timestep of 0.001τ  for all the systems except system II, the discotic ellipsoids, 

where a timestep of 0.0005τ  was used. The cut-off radii beyond which the forces and torques 

were set equal to zero was 4.5 0σ  for the calamitic ellipsoids of systems I and III and to 2.0 0σ  

for the discotic ellipsoids of systems II and IV. When system I and II, the calamitic and 

discotic soft ellipsoids, were simulated 8192 particles were used, when system III, the bent 

core molecules, were simulated 4096 particles were used and 2025 particles were used to 

simulate system IV, the soft ellipsoid strings. In order to obtain the viscosity with a relative 
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error of less than one percent for shear rates equal to or greater than 0.10
1τ −
 it is sufficient to 

perform simulations with a run length of four million timesteps or less for all the above sys-

tems. In order to facilitate the formation of the neighbour list a cell code was used. The ex-

pressions for the forces and toques which are rather complicated are given in ref. [30]. 

 

5. Calculations, results and discussion 

 The main topic of this work is to study the shear viscosity and the normal stress differ-

ences as functions of the shear rate in the non-Newtonian regime of liquid crystals displaying 

a nematic phase at equilibrium and to determine whether there is a general form for these 

functions for a class of systems consisting of rigid calamitic or discotic molecules. In order to 

find these functions we start by calamitic and discotic soft ellipsoids of revolution since they 

are the simplest and most regular systems in this class and then we proceed to examine less 

regular systems such as bent core molecules and finally soft ellipsoid strings that form both 

uniaxial and biaxial nematic phases.  

 

5.1 Calamitic soft ellipsoids of revolution 

 At first it is appropriate to illustrate the difference between the functional dependen-

cies of the shear viscosity on the shear rate for liquids that are isotropic at equilibrium and for 

liquids that are nematic liquid crystals at equilibrium. Therefore, we begin by studying the 

viscosity of the isotropic phase of the calamitic soft ellipsopids of revolution, system Ia, at a 

density of 0.20 3

0σ − , a temperature of 1.00 0 / Bkε  and at shear rates between 0.01 and 1.00
1τ −
. 

The results are shown in fig. 4, where the order parameter S and the logarithm of the viscosity 

η are shown as functions of the logarithm of the shear rate γ. At low shear rates in the Newto-

nian regime the viscosity is constant and then it decreases at the higher shear rates. In the high 

shear rate limit there is a linear relation between logη and logγ , so that there is a power law 

dependence of the viscosity on the shear rate. This functional dependence is well-known and 

displayed by alkanes and other non-spherical molecules [3-6]. The reason why the viscosity 

decreases with the shear rate is that the elongational part of the velocity field, see fig. 1, 

stretches out the molecules and pulls them towards the 45 degree orientation relative to the 

stream lines. However, the alignment angle becomes less than 45 degrees at higher shear rates 

because the rotational part of the velocity field exerts a torque twisting the molecules towards 

the streamlines, so that the result is compromise leading to an alignment angle of less than 45 

degrees. At the highest shear rate it has decreased to 23 degrees, see table I. When the calami-
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tic molecules are aligned in this way, there will be fewer side-by-side collisions in the direc-

tion of the streamlines so that the friction and thereby the viscosity decreases. This decrease is 

directly reflected by the dependence of the order parameter on the shear rate. It is zero in the 

Newtonian regime and then it increases more or less linearly with the logarithm of the shear 

rate at high shear rates. Thus the shear field transforms the isotropic system to a nonequilibri-

um nematic liquid crystal.  

If we increase the density to 0.30 3

0σ − we enter the nematic equilibrium phase. The vis-

cosity as a function of the shear rate is shown in fig. 5a, where it can be seen that the viscosity 

dependence on the shear rate has changed – it turns out the liquid still is shear thinning and 

that the logarithm of the viscosity to a good approximation is a linear function of the square 

root of the shear rate or that the viscosity itself is proportional to an exponential function of 

the square root of the shear rate in the non-Newtonian regime. This functional dependence 

starts at lower shear rates than the asymptotic power law in the isotropic phase and it is valid 

up to the highest shear rates. This is similar to the behaviour of Lennard-Jones liquids and 

WCA-liquids [2] even though it is the viscosity itself that is a linear function of the square 

root of the shear rate in those systems. The decrease of the viscosity with the shear rate in the 

nematic phase can be attributed to the increasing order parameter even though this parameter 

is rather high, i.e. 0.75, already at equilibrium. However, the order parameter still increases 

with the shear rate due to the coupling between the symmetric traceless part of the shear rate 

and the order tensor, and it is a linear function of the square root of shear rate at low and in-

termediate shear rates. It could also be thought that the decrease of the viscosity is due to a 

decreasing alignment angle, so that the molecules would become closer to the streamlines. 

However, this is not the case, since it is almost constant and independent of the shear rate and 

it even increases slightly with the shear rate, i.e. from 20 degrees at equilibrium to 22 degrees 

at the highest shear rates, see table 1.  

Finally, it should be acknowledged that it was found that the original Gay-Berne liquid 

was shear thinning in ref. 11, however, the actual functional dependence of the viscosity on 

the shear rate was not discussed there. 

 

5.2 Discotic soft ellipsoids of revolution 

 In order to determine whether the above shear rate dependence of the viscosity in the 

nematic phase is a peculiarity of liquids consisting of calamitic soft ellipsoids of revolution, 

we continue to examine a liquid composed of the discotic soft ellipsoids of revolution at a 
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density of 2.4 3

0σ −  and a temperature of 1.00 0 / Bkε , where the equilibrium phase is nematic, 

system II. In this case it is found that the logarithm of the viscosity is an approximately linear 

function of the square root of the shear rate too and the order parameter itself is a linear func-

tion of the square root of the shear rate at low to intermediate shear rates and then levels off at 

the higher shear rates, see fig. 5b. Thus the viscosities of calamitic and discotic soft ellipsoids 

display a similar functional dependence on the shear rate in the nematic phase.  

 

5.3 Bent core molecules 

 Both of the two above systems consist of very regular and convex symmetric ellip-

soids of revolution so that it could still be argued that the approximately linear dependence of 

the logarithm of the viscosity on the square root of the shear rate is a special feature limited to 

these systems. Therefore we continued to investigate systems consisting of bent core mole-

cules. In fig. 5c we show the viscosity and the order parameter of a nematic phase of such 

molecules consisting of two repulsive soft ellipsoids, system IIIa, at a density of 0.17 3

0σ − , 

where the equilibrium phase is nematic. Also here logη  is a linear function of 
1/2γ . Note that 

the viscosity continues decreasing at the high shear rates when the order parameter has lev-

elled off and is independent of the shear rate. The Newtonian behaviour at low shear rates is 

hard to observe because the signal-to-noise ratio becomes very low in this shear rates regime.  

 In the systems studied so far, the intermolecular interaction potentials are purely repul-

sive, which means that they can be regarded as a high temperature limit. Therefore, the effect 

of attraction was tested by including a study of the viscosity of a system consisting of bent 

core molecules interacting according to the original attractive Gay-Berne potential at a density 

of 0.18 3

0σ −  and a temperature of 1.5 0 / Bkε , system IIIb, where a nematic phase is found at 

equilibrium. Also here logη  is a linear function of 
1/2γ , see fig. 5d, and the viscosity contin-

ues decreasing at high shear rates even though the order parameter is constant.  

 We can consequently draw the conclusion that the viscosity is an approximately expo-

nential function of the square root of the shear rate for a large class of nematic equilibrium 

phases consisting of rigid calamitic or discotic molecules and that this functional dependence 

is not limited to convex molecules with axial symmetry. 
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5.4 Biaxial nematic liquid crystals 

 We finish with a study of a system consisting of soft ellipsoid strings composed of ten 

discotic ellipsoids the axes of revolution of which are parallel to each other and perpendicular 

to the line joining their centres of symmetry, see fig. 3. Thus a non-convex biaxial body is 

obtained. The phase diagram of this system has been comprehensively studied in ref. [29] and 

it displays isotropic, uniaxial nematic and biaxial nematic phases. At a density of 0.16 3

0σ −  and 

a temperature of 1.00 0 / Bkε , a uniaxial nematic phase is present at equilibrium and if the den-

sity is raised to 0.20 3

0σ −  while the temperature still is equal to 1.00 0 / Bkε , a biaxial nematic 

equilibrium phase is formed. The viscosity and the uniaxial order parameter as functions of 

the shear rate are displayed in figs. 5e and 5f. It is obvious that even in these cases the loga-

rithm of the viscosity is a linear function of the square root of the shear rate to a good approx-

imation and thus behaves in the same way as the corresponding functions of the liquids con-

sisting of the calamitic and discotic ellipsoids and of the bent core molecules. The order pa-

rameter increases with the shear rate over the whole shear rate interval studied. 

 Thus this shear rate dependence of the viscosity in the nematic phase is very distinct 

for all the systems studied. It is also interesting that it starts at lower shear rates than the pow-

er law dependence found for the liquids that are isotropic at equilibrium, where it is an asymp-

totic dependence at high shear rates. This should make it easier to observe the former depend-

ence experimentally. Substances likely to display this behaviour are p-quinquephenyl and p-

azoxyanisole, which are composed of rather rigid calamitic cores.  

 

5.5 Normal stress differences 

 Two other quantities that are useful for the characterisation of rheological properties 

are the two normal stress differences zz xxp p γ〈 − 〉  and yy zzp p γ〈 − 〉  as functions of the shear 

rate, where the first quantity is the difference between the normal pressures in the direction of 

the velocity gradient and in the direction of the streamlines, and the second quantity is the 

difference between the normal pressure in the direction perpendicular to the vorticity plane 

and in the direction of the velocity gradient. The normal stress differences behave differently 

in phases that are isotropic and nematic at equilibrium, respectively. Therefore, we begin by 

examining them for the calamitic soft ellipsopids of revolution at a density of 0.20 3

0σ − , a tem-

perature of 1.00 0 / Bkε , system Ia. The results are shown in fig. 6, where it can be seen that 

there is an approximately parabolic dependence of the normal stress difference on shear rate 
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and that their derivative s with respect to the shear rate goes to zero as the shear rate goes to 

zero and. In fig. 7 they are shown for the calamitic soft ellipsopids of revolution, at a density 

of 0.30 3

0σ − , a temperature of 1.00 0 / Bkε , system Ib, in the nematic phase. Here the normal 

stress differences are linear functions of the shear rate at low to intermediate shear rates and 

then they level off slightly at the highest shear rates.  

 This difference of the functional dependence of the normal stress differences on the 

shear rate is related to the symmetry of the systems. In the isotropic phase in the Newtonian 

regime the shear rate is the zx-element of the strain rate tensor and it can couple only with the 

shear stress which is the zx-element of the stress tensor. It cannot couple with the normal 

stress differences which are diagonal elements of the stress tensor, so that the normal stress 

differences must remain zero there. When the shear rate increases the order parameter in-

creases from zero, so that the system becomes a non-equilibrium nematic liquid crystal where 

the shear rate is allowed couple to normal stress differences, so that the normal stress differ-

ences will gradually increase from zero. On the other hand, in system Ib being nematic at 

equilibrium, there is a linear relationship between the normal stress differences and the shear 

rate already in the Newtonian regime [17, 18, 31, 32], so that the normal stress differences are 

proportional to the shear rate even at low shear rates and this linear relation apparently per-

sists up to intermediate shear rates. At the highest shear rates the normal stress differences 

level off. As a consequence of the symmetry the functional relationship between the normal 

stress differences and the shear rate is similar for all the nematic systems studied. The rela-

tionship can be represented by a parabolic curve fit given in table 2. Note that zz xxp p γ〈 − 〉  is 

positive and that the quadratic term of the parabolic curve fit is negative for all the systems 

studied, so that this component levels off at high shear rates. On the other hand, yy zzp p γ〈 − 〉  

is negative and the quadratic term of the parabolic curve fit is positive for all the systems stud-

ied, so that the absolute magnitude of this component also levels off at high shear rates. This 

means that the pressure in the z-direction or in the direction of the velocity gradient is larger 

than the pressure in the directions of the streamlines and in the direction perpendicular to the 

vorticity plane when the liquid is sheared. 

 

6. Conclusion 

 We have calculated the viscosity and the normal stress differences as functions of the 

shear rate of molecular models systems consisting of rigid calamitic or discotic molecules 
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interacting according to various versions of the Gay-Berne potential in order to determine 

whether these functions attain a general form for these systems. More specifically, four differ-

ent systems were studied: calamitic soft purely repulsive ellipsoids (I), discotic soft purely 

repulsive ellipsoids (II), bent core molecules consisting of two soft purely repulsive ellipsoids 

arranged at an angle relative to each other (IIIa) and of two soft ellipsoids arranged at an angle 

relative to each other interacting via the original attractive Gay-Berne potential (IIIb) and fi-

nally a system consisting of the soft ellipsoid strings, i.e. a string of ten purely repulsive soft 

discotic ellipsoids of revolution, the axes of which are parallel to each other and perpendicular 

to the line joining their centres of symmetry (IV). This last system forms uniaxial and biaxial 

nematic phases at equilibrium. 

 It was found that the viscosity of the isotropic equilibrium phases behaves like the 

viscosity of other non-spherical molecules under shear, namely that there is a Newtonian re-

gime at low shear rates where the viscosity is constant and independent of the shear rate fol-

lowed by an asymptotic shear thinning regime at high shear rates where the viscosity follows 

a power law, i. e. the viscosity is proportional to the shear rate raised to a power. The shear 

thinning is due to the shear induced alignment of the molecules whereby a non-equilibrium 

liquid crystal is formed with a director close to the stream lines. Thereby the molecule can 

pass each other more readily, so that the friction decreases. 

 When the nematic equilibrium phases were sheared, it was found, for of all the above 

systems, that they are shear thinning and that the logarithm of the viscosity is an approximate-

ly linear function of the square root of the shear rate. This shear thinning, which is somewhat 

unexpected since the molecular alignment is very high already at equilibrium, can be attribut-

ed to the increasing order parameter, which continues increasing with the shear rate up to very 

high shear rates. It could be imagined that the alignment angle between the director and the 

stream lines should decrease with the shear rate and that this would contribute to the decrease 

of the viscosity but this is not the case - the alignment angle is rather constant in the non-

Newtonian regime and there is even a slight increase. 

 The normal stress differences are equal to zero in Newtonian regime in the isotropic 

phases due to symmetry restrictions and increase in a parabolic fashion at higher shear rates 

where the isotropic liquid has been transformed to a non-equilibrium liquid crystal. In the 

nematic phase on the other hand, there is a linear relation between the shear rate and the nor-

mal stress differences given by symmetry in the Newtonian regime. It was found that this lin-

ear relation persists for all of the above systems up to intermediate shear rates and that it lev-

els. 
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TABLES 

Table 1 

System Interaction potential Equilibrium phase 3

0nσ  0/Bk T ε  θ 

Ia calamitic soft ellipsoid isotropic 0.20 1.00 45-23 

Ib calamitic soft ellipsoid uniaxial nematic 0.30 1.00 20-22 

II discotic soft ellipsoid uniaxial nematic 2.40 1.00 111-112 

IIIa bent core soft ellipsoid uniaxial nematic 0.17 1.00 8-11 

IIIb bent core attractive ellipsoid uniaxial nematic 0.18 1.50 3-10 

IVa soft ellipsoid string uniaxial nematic 0.16 1.00 7-6 

IVb soft ellipsoid string biaxial nematic 0.20 1.00 1-5 

 

Table 2 

System 
1a  1b  1c  2a  2b  2c  

Ib 0.009 1.886 -0.540 0.000 -1,031 0.130 

II 0.018 8.207 -1.752 -0.010 -3.225 0.200 

IIIa 0.016 3.010 -1.760 -0.003 -1.152 0.527 

IIIb -0.024 1.661 -0.373 0.009 -0.681 0.113 

IVa 0.000 0.310 -0.048 0.000 -0.082 0.007 

IVb -0.004 0.498 -0.064 0.000 -0.010 0.007 
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FIGURE CAPTIONS 

 

Fig. 1 

 The shear velocity field xzγ=u e  is a sum of a rotational velocity field, 

(1/ 2) ( )r x zz xγ= −u e e , and an irrotational elongational velocity field,  

(1/ 2) ( )e x zz xγ= +u e e . 

 

Fig. 2 

 The bent core molecule is composed of two ellipsoids, the axes of revolution of which 

lie in the same plane. The angle between these axes is denoted by φ. In the principal coordi-

nate system the 
px  -axis passes through the centre of symmetry of either ellipsoid, the 

py -

axis is perpendicular to the plane of the axes of revolution and the 
pz -axis lies in the same 

plane as these two axes and bisects the angle between them. 

 

Fig. 3 

 The molecules of the soft ellipsoid-strings consist of a linear string of discotic soft 

ellipsoids of revolution, the symmetry axes of which are parallel to each other and perpendic-

ular to the line joining their centres of mass. The principal axes are denoted by px parallel to 

the line through the centres of mass, pz parallel to the symmetry axes of the ellipsoids and 

p p p= ×y z x  (a) Projection perpendicular to the pz -axis (b) Projection perpendicular to the 

py -axis 

 

Fig. 4 

 The viscosity η (left hand axis, filled squares) and the order parameter S (right hand 

axis, open diamonds) of the fluid consisting of calamitic soft ellipsoids as a function of the 

shear rate γ, in the phase that is isotropic at equilibrium at a density of 0.20 3

0σ −  and a tem-

perature of 1.00 0/Bk T ε , system Ia. The error bars are of the size of the symbols. 

 

Fig. 5a 

 The viscosity η (left hand axis, filled squares) and the order parameter S (right hand 

axis, open diamonds) of the fluid consisting of calamitic soft ellipsoids as a function of the 
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shear rate γ, in a phase that is nematic at equilibrium at a density of 0.30 3

0σ −  and a tempera-

ture of 1.00 0/Bk T ε , system Ib. The error bars are of the size of the symbols. 

 

Fig. 5b 

 The viscosity η (left hand axis, filled squares) and the order parameter S (right hand 

axis, open diamonds) of the fluid consisting of discotic soft ellipsoids as a function of the 

shear rate γ, in a phase that is nematic at equilibrium at a density of 2.40 3

0σ −  and a tempera-

ture of 1.00 0/Bk T ε , system II. The error bars are of the size of the symbols. 

 

Fig. 5c 

 The viscosity η (left hand axis, filled squares) and the order parameter S (right hand 

axis, open diamonds) of the fluid consisting of bent core molecules composed of two calami-

tic soft ellipsoids, as a function of the shear rate γ in the nematic phase at a density of 0.17 3

0σ −

and a temperature of 1.00 0/Bk T ε , system IIIa. The error bars are of the size of the symbols. 

 

Fig. 5d 

 The viscosity η (left hand axis, filled squares) and the order parameter S (right hand 

axis, open diamonds) of the fluid consisting of bent core molecules composed of two calami-

tic attractive Gay-Berne ellipsoids as a function of the shear rate γ in the nematic phase at a 

density of 0.18 3

0σ −  and a temperature of 1.50, 0/Bk T ε , system IIIb. The error bars are of the 

size of the symbols. 

 

Fig. 5e 

 The viscosity η (left hand axis, filled squares) and the order parameter S (right hand 

axis, open diamonds) of the soft ellipsoid strings, system IVa as a function of the shear rate γ 

in the uniaxial nematic phase at a density of 0.16 3

0σ −  and a temperature of 1.00 0/Bk T ε . The 

error bars are of the size of the symbols. 

 

Fig. 5f 

 As in fig. 11 but the density is equal to of 0.20 3

0σ −  and the equilibrium phase is a biax-

ial nematic phase, system IVb.  
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Fig. 6 

 The normal stress differences 
zz xxp p γ〈 − 〉  (filled squares) and 

zz yyp p γ〈 − 〉  (diamonds) 

of the fluid consisting of calamitic soft ellipsoids as a function of the shear rate γ  a density of 

0.20 3

0σ −  and a temperature of 1.00 0/Bk T ε , system Ia. The error bars are of the size of the 

symbols. 

 

Fig. 7 

 As in fig. 2 but the density is equal to 0.30 3

0σ −  and the phase is nematic at equilibrium 

system Ib. 
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Table captions 

 

Table 1 

 The various systems and state point studied. The last column is the interval of the 

alignment angle θ over the studied shear rate ranges. 

 

Table 2 

 Curve fits of the normal stress differences of the nematic phase as functions of the 

shear rate to second degree polynomials, 2

1 1 1zz xxp p a b cγ γ γ〈 − 〉 = + +  and 

2

2 2 2yy zzp p a b cγ γ γ〈 − 〉 = + + . In all the cases the correlation coefficient is equal to 1.00. 
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S
 

lo
g
 η

 

γ
1/2
 

(a) 

Page 28 of 35Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 

 

  

 

 

Fig. 5b 

lo
g
 η

 

γ
1/2
 

S
 

(b) 

Page 29 of 35 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t
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Fig. 6 
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Fig. 7 
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