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Temperature-dependent energy levels and size-independent 

thermodynamics  

Rodrigo de Miguel
a

We show that, by properly adopting the notion of temperature-dependent 

energy levels,
1,2

 the standard tools of differential thermodynamics can be 

used for a consistent thermostatistical description irrespective of system 

size. In this framework the paradigmatic (yet not always descriptive) large-

system limit is no longer a necessary assumption for differential 

thermodynamics. We present a generalized relation between temperature 

and internal energy which extends thermodynamics all the way to isolated 

quantum systems. 

The notion of temperature dependent energy levels in statistical 

mechanics was introduced by Rushbrooke in 1940
1
 and later refined 

by Elcock and Landsberg in 1956.
2
 More recently, Shental and 

Kanter have proposed temperature dependent energy levels to 

model information processing systems as thermal systems.
3
 

While energy levels corresponding to the eigenvalues of a 

quantum mechanical Hamiltonian are intrinsically temperature-

independent, the energy levels that dictate the average internal 

energy of any physical system must in general be temperature-

dependent.
1,2

 In this work it is shown that, when this temperature-

dependence is carefully considered, the standard tools of statistical 

thermodynamics can be used to provide a consistent 

thermostatistical description of physical systems irrespective of 

their size. 

The key to the connection between the atomistic, microscopic 

theory of matter, and macroscopic thermodynamics is the entropy 

� and its unique relation to the number � of microstates:
4
 

� � �� ln �.  (1) 

When a physical system is in macrostate 	, it can be in different 

microstates, each characterized by an eigenvalue 
� of a 

temperature-independent Hamiltonian. The mean energy � of the 

system, however, is a temperature-dependent ensemble average: 

� � 〈
�〉	 , (2) 

where 〈∙〉	 denotes an average over all microstates compatible 

with a temperature-determined macrostate 	 (this subscript will 

in the remainder be dropped for convenience). For a system at 

equilibrium, this mean energy is the same as the internal energy, 

and the temperature � given by 

��� � d�
d�.  (3) 

Temperature dependent energy levels.―Following [1, 2], the 

permissible energy levels ��	of a physical system are in general 

temperature-dependent as 

�� � 
� � � d��
d� , (4) 

where the 
�’s form a discrete set of temperature-independent 

energy levels. The ensemble average � of the levels 
� may be 

given in terms of the ensemble average � of the �� as follows (see 

(2.13) in [2]): 

� � � � � 〈d��
d� 〉. (5) 

Size-independent thermodynamics.―In the following, we show 

how the notion of temperature-dependent energy levels enables 

statistical thermodynamics to describe physical systems irrespective 

of their size. We begin with the example of a monoatomic ideal gas 

of � particles in � dimensions, whose density of states �� depends 

on the internal energy � as follows: 

�� �! ∝ �#$% ��. 
Following (1) and (3) the entropy � and temperature � are given by 

� � �� ln &�#$% ��' � constant, 
��� � #$�%

%
()
� . (6) 

In the limit where �≫1 expression (6) yields the expected 

thermodynamic result that assigns energy ���/2  to each kinetic 

degree of freedom. However, in the trivial case where �=�=1, a 

negative temperature results, rendering the thermodynamic 

analysis unphysical. This problem, however, can be circumvented by 

substituting (5) into (6): 
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� � #$�%
% ��� � � 〈d��

d� 〉. (7) 

We can now think of 〈d��/d�〉 as a parameter given by the single 

particle boundary condition that �=.��/2	when �=�=1. This 

results in 〈d��/d�〉 � �� and 

� � #$
% ���, (8) 

which is physically descriptive irrespective of system size. The 

monoatomic ideal gas is a generalization of the particle in a box, 

and, not surprisingly, analysis of a single particle in a box 

/where	�� �! ∝ 1/√�1 also yields �=.��/2 by setting 〈d��/
d�〉=��. 

The next example we consider is a single quantum harmonic 

oscillator in one dimension with fundamental frequency 2. The 

internal energy � 2!= 3 � 1/2!ℏ2 and density of states 

�� 2!=1/ℏ2  yield the following inverse temperature: 

	��� � �� 5d�
d67

�� 	 d

d6 ln �� � �()
� 	.		 (9) 

As anticipated, this result is unphysical, for standard statistical 

thermodynamics is a macroscopic theory applicable only to very 

large systems. However, substituting (5) into (9), we obtain 

� � ���� � � 〈d��
d� 〉. (10) 

As before, we can think of 〈d��/d�〉 as a parameter given by a 

single particle boundary condition, namely �=���	when �=1. This 

results in 〈d��/d�〉=2��  and (10) becomes 

� � ���. (11) 

Analysis of a single rigid rotor with moment of inertia 8, where 

� 8! � 9 9 � 1!ℏ%/28, and � 8!= 2: � 1!28/ℏ%, yields results 

exactly similar to those of the single harmonic oscillator, namely 

expressions (9) to (11) with 〈d��/d�〉=2��. This is consistent 

considering that both the rigid rotor and harmonic oscillator have 

two equipartitioned degrees of freedom. 

We consider next a system of � two-level non-interacting 

particles with levels 0 and ;. At any given moment there are 3 ≤ � 

particles in the upper energy state. It follows that the total internal 

energy of the system is given by � 3!=3;. The number of 

microstates for a given configuration is given by 

� 3! � �!
 � � 3!! 3!. 

Following (1) and (3), the inverse temperature results in the 

following expression: 

��� � �� >d�
d3?�� 	 d

d3 ln� � ��;  ΗA� � 3B � ΗA3B!, 
where ΗACB is the CDE harmonic number. In terms of internal 

energy �, this expression may be written as 

� � 3	���	 ΗA� � 3B � ΗA3B!. (12) 

Substituting (5) into (12), we obtain 

� � 3	���	 ΗA� � 3B � ΗA3B! � � 〈d��
d� 〉. 

In the single particle limit, when  �=3=1, we obtain  �=���	with 

〈d��/d�〉=2�� . We may then write the final expression 

� � 3	/ ΗA� � 3B � ΗA3B! � 2/31	���. (13) 

This expression shall be valid for all values of � and 3. As � 

becomes large it reduces to the usual large-system result by taking 

Stirling's approximation (ΗAFB≈lnAFB when F>>1). It is also worth 

noting that, as expected, the expression above gives positive 

temperatures when 	3<�/2, and negative temperatures when 

3>�/2. The positive and the negative temperatures become 

increasingly symmetric as � grows larger. 

As a last example we consider an Einstein solid with � 

oscillators and G energy units of size ;. The number of microstates 

is given by 

� G! �  HI#��!!
H! #��!! , 

and the internal energy by � G!=G;. Applying (1) and (3) we obtain 

for the inverse temperature 

��� � �� >d�
dG?�� 	 d

dG ln� � ��	;  ΗAG � � � 1B	– 	ΗAGB!, 
which may be written as 

� � G���/ΗAG � � � 1B– 	ΗAGB1. (14) 

Substituting (5) into (14) we obtain 

� � G���	 ΗAG � � � 1B– 	ΗAGB! � � 〈d��
d� 〉. 

In the limit when	�=1, the energy simply reduces to �〈d��/d�〉. As 

� gets larger, this term becomes increasingly insignificant, and the 

usual large system result is recovered by taking Stirling's 

approximation. 

Generalized absolute temperature.―Inserting (5) into (3), yields 

a simple relation that connects the standard thermodynamic 

temperature  d�/d�  with the generalized temperature  d�/d�. 

d�
d� � d�

d� K1 � 〈d��
dL 〉

d�/d�M
��

. (15) 

When the system is large, the heat capacity d�/d� is much larger 

than	〈d��/d�〉 (which is of order ��) and both temperatures are 

equal. However, when systems are small, the standard 

thermodynamic temperature N�/N� needs to be corrected. The 

examples above show that the correction yields a proper 

thermostatistical description of small systems. 

Expression (15) is reminiscent of expression (14) in [5], which is 

generally incorrect, as it only captures the special cases where 

〈d��/d�〉=��. For a more comprehensive critique of [5], where 

Dunkel and Hilbert challenge the well-established
6-9

 notion of 

negative absolute temperatures, the reader is referred to [10—12]. 

A generalized second law of thermodynamics.―For closed 

systems at constant volume, d� � dG (where G is the heat added to 

the system), and (15) results in the generalized second law of 

thermodynamics proposed by Shental and Kanter
3
 for the analysis 

of information processing systems: 

d� � dG
� � 1

� 〈d��
d� 〉d�. 
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This modified second law has been successfully used to model 

communication channels as thermal systems.
3,13

 

Conclusions 

In this work we show that, by adopting the notion of temperature-

dependent energy levels,
1,2

 the standard tools of differential 

thermodynamics can be used for a consistent thermostatistical 

description irrespective of system size. In this framework, the 

paradigmatic (yet not always descriptive) large-system limit is no 

longer a necessary assumption for differential thermodynamics. We 

present a generalized relation between the temperature and the 

internal energy of a system which extends thermodynamics all the 

way to isolated quantum systems. 
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