PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

www.rsc.org/xxxxx

ARTICLE TYPE

Bond angle variations in XH₃ [X=N,P,As,Sb,Bi]: the critical role of Rydberg orbitals exposed using a diabatic state model

Jeffrey R. Reimers^{ab}*, Laura K. McKemmish,^{cd} Ross H. McKenzie,^e and Noel S. Hush^{df}

Received (in XXX, XXX) Xth XXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

Ammonia adopts sp^3 hybridization (HNH bond angle 108°) whereas the other members of the XH₃ series PH₃, AsH₃, SbH₃, and BiH₃ instead prefer octahedral bond angles of 90-93°. We use a recently developed general diabatic description for closed-shell chemical reactions, expanded to include Rydberg states, to understand the geometry, spectroscopy and inversion reaction profile of these molecules, fitting

- ¹⁰ its parameters to results from Equation of Motion Coupled-Cluster Singles and Doubles (EOM-CCSD) calculations using large basis sets. Bands observed in the one-photon absorption spectrum of NH_3 at 18.3 eV, 30 eV, and 33 eV are reassigned from Rydberg (formally forbidden) double excitations to valence single-excitation resonances. Critical to the analysis is the inclusion of *all three* electronic states in which two electrons are placed in the lone-pair orbital *n* and/or the symmetric valence σ^* antibonding
- ¹⁵ orbital. An illustrative effective two-state diabatic model is also developed containing just three parameters: the resonance energy driving the high-symmetry planar structure, the reorganization energy opposing it, and HXH bond angle in the absence of resonance. The diabatic orbitals are identified as *sp* hybrids on X; for the radical cations XH_3^+ for which only 2 electronic states and one conical intersection are involved, the principle of *orbital following* dictates that the bond angle in the absence of resonance is
- $_{20} \operatorname{acos}(-1/5) = 101.5^{\circ}$. The multiple states and associated multiple conical intersection seams controlling the ground-state structure of XH₃ renormalize this to $\operatorname{acos}[3\sin^2(2^{1/2}\operatorname{atan}(1/2))/2-1/2] = 86.7^{\circ}$. Depending on the ratio of the resonance energy to the reorganization energy, equilibrium angles can vary from these limiting values up to 120°, and the anomalously large bond angle in NH₃ arises because the resonance energy is unexpectedly large. This occurs as the ordering of the lowest Rydberg orbital and the
- σ^{25} or orbital swap, allowing Rydbergization to compresses σ^* to significantly increase the resonance energy. Failure of both the traditional and revised versions of the valence-shell electron-pair repulsion (VSEPR) theory to explain the ground-state structures in simple terms is attributed to exclusion of this key physical interaction.

1. Introduction

- ³⁰ In the 1930's, following very quickly after the introduction of quantum mechanics, came what are now known as "diabatic" models for chemical reactions.¹⁻⁶ Diabatic surfaces provide mathematical representations of simple chemical ideas like ions and radicals, describing real molecules as mixtures of these basic
- ³⁵ concepts: e.g., mixing purely ionic and purely covalent diabatic surfaces of water makes the polar bonds of the ground-state and simultaneously determines associated excited-state properties. Similarly, independent diabatic potential-energy surfaces are used to represent reactants and products of chemical reactions, and the
- ⁴⁰ mixing of these surfaces produces transition states and also controls non-adiabatic processes.⁷⁻⁹ These ideas proved extremely valuable in the 1950's, leading to the modern theory of electron transfer processes.¹⁰⁻¹⁹ A critical feature of the diabatic approach has been its ability to unify a large range of ground-
- ⁴⁵ state chemical properties and excited-state spectroscopic properties,²⁰ leading to the field of charge-transfer spectroscopy²⁰, ²¹ and the subsequent understanding of how primary charge separation happens during photosynthesis and in its artificial

mimics.²² In recent times, diabatic models have been applied to a ⁵⁰ very wide range of chemical processes^{23, 24} including aromaticity²⁵⁻²⁹ and general chemical reactions,^{23, 24, 30-32} being in particular very successfully applied to proton transfer processes.³³⁻⁴⁴ Indeed, it is usual to describe all forms of pseudo Jahn-Teller^{24, 45-47} and Herzberg-Teller⁴⁸ effects in this form.

⁵⁵ However, general diabatic treatments have traditionally only shown partial success compared to the achievements of electron-transfer theory. Models have been shown to provide an excellent description of some significant chemical or spectroscopic property²⁴⁻²⁹ but have failed to address the full range of treatable ⁶⁰ properties using a single set of parameters. For example, diabatic models are extremely successfully used in looking at multidimensional reactions involving conical intersections including the *photodissociation* of NH₃ after excitation to its first electronically excited state.^{49, 50} Such approaches explicitly ⁶⁵ consider only the two states of immediate interest, however, excluding the manifold of inter-related states, and they are either not represented analytically or else involve a large number of parameters. Two-state diabatic approaches have also been described for the *inversion* reaction of ammonia and the XH₃

This journal is © The Royal Society of Chemistry [year]

series, capturing the key physical insight but not leading to comprehensive analyses. 51

Recently, we overcame the fundamental limitation concerning simple diabatic descriptions by demonstrating that electrons transfer reactions differ fundamentally from typical chemical

- processes as they involve radical species rather than closed-shell ones.⁵² For radical reactions, only two states, the ground state and one excited state, can be produced from the frontier orbitals that control the chemical process. These two states are connected
- ¹⁰ via a single conical intersection seam. While most chemical reactions occur at geometries far away from such seams, the presence of a seam usually dominates the energy landscape, giving rise to the reactant and product geometries and the properties of the transition state. For reactions of closed-shell
- ¹⁵ species, the situation is quite different. The involvement of more than one electron in the reaction generates multiple coupled potential-energy surfaces made simply by specifying different occupations of the frontier orbitals. These surfaces display multiple conical intersection seams, and all seams qualitatively ²⁰ affect the geometric, spectroscopic, and kinetic properties.
- Identifying the critical frontier orbitals giving rise to these states is the initial challenge facing diabatic analyses, with those specified by Valence-Bond theory being a good starting point.⁵³⁻ The available valence orbitals are shown in Fig. 1 using NH₃
- ²⁵ as an example: the NH symmetric bonding orbital σ_A , the degenerate bonding orbitals σ_E , the nonbonding HOMO orbital *n*, the symmetric antibonding orbital σ^*_A , and the degenerate bonding orbital σ_E . For the ammonia *inversion* reaction, the identified orbitals are σ_A , *n*, and σ^*_A . However, we have found
- that σ_A is only weakly involved and so can be ignored in the simplest diabatic approach,⁵² justifying this usual and qualitatively very successful practice.^{51, 56} The *n* to σ^*_A interaction thus generates 3 electronic states (the ground state *G*, the $n \rightarrow \sigma^*_A$ singly excited state *S*, and the $n \rightarrow \sigma^*_A, n \rightarrow \sigma^*_A$ doubly as excited state *D*),

all of which are coupled together by the same strong vibronic coupling. For the Kekulé distortion of benzene, inclusion of the doubly degenerate HOMO and LUMO orbitals is required, ⁴⁰ generating 7 coupled electronic states.⁵²

We have also shown that it is usually possible to introduce effective two-state models involving renormalized parameters that provide much simpler descriptions of molecular properties.⁵² This makes available the wide range of results developed for

- ⁴⁵ electron-transfer theory and widely applied historically to more general problems, but the required parameter renormalization occurs in a property-dependent fashion.⁵² This explains why previous generalized 2-state diabatic approaches have failed to be universal as different parameters are required to describe say the
- ⁵⁰ ground-state structure and the excited-state manifold. Using our modified theory it is possible, for example, to deduce diabatic C-C and C=C bond lengths of 1.53 Å and 1.31 Å, respectively, based on the observed value in benzene (1.41 Å) and excitedstate spectral data only; similarly, we showed that, in crude
- ⁵⁵ calculations ignoring Rydberg states, it is possible to deduce the equilibrium bond angle and well depth for NH₃ inversion from spectroscopic data obtained at the planar geometry only.⁵² Conversely, it is possible to estimate spectroscopic transition energies knowing only the shape of the ground-state potential-⁶⁰ energy surface, and herein we analyze the latest full-dimensional

experimentally derived⁵⁷⁻⁶⁰ and theoretical⁶¹ surfaces as well as those produced from high quality calculations.

75 Fig. 1. HF/STO-3G valence molecular orbitals for NH₃ evaluated at the D_{3h} planar geometry.

Our previous work focused on general principles appropriate to many reactions, interpreting calculated data obtained using minimal basis sets to avoid introducing interfering spectator 175 chemical features;⁵² NH₃ was chosen as one of the example systems. Here we consider the extended XH₃ series of molecules NH₃, PH₃, AsH₃, SbH₃, BiH₃, using high-level computational methods. These methods can quantitatively depict the properties of all states of the molecules of interest, providing comprehensive 180 insight into the molecular chemical and spectroscopic properties. Our original 3-state diabatic model is expanded to a 6-state one, including all transitions associated with the lowest-lying X s Rydberg molecular orbital. While the calculations depict transitions involving many other Rydberg orbitals, inclusion of 185 just this single orbital is found to be sufficient to allow for quantitative analysis. This is a significant result as, for NH₃ for example, the energies of the valence states of interest lie above not only the lowest (vertical) Rydberg transition $n \rightarrow 3$ s, which is

observed at 6.5 eV⁶² and leads to the first ionization potential (IP) ¹⁹⁰ $n \rightarrow \infty$ at 10.9 eV,⁶³ but also the states associated with the IPs observed at 16.4 eV and 27.3 eV for the $\sigma_E \rightarrow \infty$ and $\sigma_A \rightarrow \infty$ ionizations, respectively.⁶⁴

The simplest method for predicting qualitative molecular structure is valence-shell electron-pair repulsion (VSEPR) ¹⁷⁰ theory.⁶⁵⁻⁶⁷ In its original form,⁶⁵ this predicts that XH₃ molecules containing a lone pair have 4 valence-shell electron pairs and thus adopt a basic tetrahedral electron-pair structure. However, lone-pairs occupy more angular area than do bonding electron pairs and hence HXH bond angles are predicted to be ¹⁷⁵ compressed below the tetrahedral value of acos(-1/3) = 109.5°. Ammonia has an angle of 107.5° and is (still) listed as a classic example of this effect.⁶⁷ However, substituted molecules like N(SiH₃)₃ can have no barrier⁶⁷ and be planar with 120⁰ bond angles while PH₃, AsH₃, SbH₃, and BiH₃ have bond angles of ¹⁸⁰ 93°-90°, typical of octahedral coordination. The observation of angles near 90⁰ is interpreted as being accidental and a result of the hydrogen ligands being equivalently (or even slightly excessively) electronegative compared to the central atom. As a

This journal is © The Royal Society of Chemistry [year]

^{2 |} Journal Name, [year], [vol], 00–00

result, electrons are drawn to the ligands and hence the bonds occupy much smaller solid angles than does the lone pair. Also the planar molecule is similarly attributed to a large electronegativity difference pushing electrons onto the central s atom, the problem being that an infinite electronegativity difference should generate 4 equivalent electron pairs and hence the limiting structure is actually tetrahedral.

In later developments of the VSEPR theory, the observed near 90° angle was initially attributed to bonding electron pairs not repelling until nearly this angle was reached,⁶⁶ leading to the modern version of the theory in which inter-ligand repulsions take on a central, semi-quantitative, role.⁶⁷ In this new approach, the bond angles of NH₃ - BiH₃ and N(SiH₃)₃ are determined

- purely by the "ligand radii" of the different XH bonds involved.⁶⁶ ¹⁵ This analysis can be summarized simply in terms of an unstated principle: lone-pairs always expand to cover as much angular domain as possible, subject to the constraints imposed by the ligand radii. The native bonding pattern in this system is therefore octahedral (rather than tetrahedral as per the original
- ²⁰ VSEPR theory), with inter-ligand repulsions pushing the observed HXH angle out from 90° – 93° for BiH₃–PH₃ to 107° for NH₃ and finally to 120° for N(SiH₃)₃. This interpretation also explains the structures⁶⁸ of related molecules like SiH₃⁺ (bond angle 120°, no lone pair electrons so inter-ligand repulsions fully
- ²⁵ control the structure), SiH₃⁻ (bond angle 93°, two lone pair electrons expand to fill octahedral coordination sites until the ligand radii are engrossed upon), and SiH₃⁻ (bond angle 111°, one lone pair electron only partially pushes the ligands back).
- While modern VSEPR theory can account for the ground-state ³⁰ structures of the XH₃ series, this description is complex and involves many specifically set parameters. The theory does not consider spectroscopic properties at all, however. Here, we seek a simpler, diabatic, description of the factors controlling spectroscopy and hybridization. It is based on the assumption
- ³⁵ that diabatic hybrid *sp* orbitals of form $2^{1/2}(\psi_s \pm \psi_p)$ on the central X atom change little in nature as a function of the torsional bending angle. Resonance-driven mixing of these orbitals that changes as a function of the torsional angle then simultaneously generates the well-known adiabatic lone-pair and σ^*_A orbital
- ⁴⁰ properties of the system. For XH₃⁺, only one conical intersection seam controls the ground-state properties, and orbital following⁶⁹ and symmetry then demands that the equilibrium structure of the diabatic states has HXH angles oriented in the same directions as the XH bonding orbitals that form orthogonal to the *sp* hybrids.
- ⁴⁵ For XH₃, the presence of multiple seams renormalizes this angle, making it much smaller, however. Also, moving an electron between the diabatic orbitals in the presence of the hydrogens costs a considerable amount of energy, known as the reorganization energy. At its simplest level, once the effects of
- ⁵⁰ parameter renormalization are taken into account, understanding the properties of the XH₃ molecules and their radical cations in the diabatic description comes down to the determination of two properties: the resonance energy and the reorganization energy. However, the Rydberg states of NH₃ strongly interfere with the
- ⁵⁵ valence states in a process described by Mulliken as "Rydbergization",^{70, 71} and its importance in determining the ground-state structure and well depth is revealed.

2. Methods

Ab initio electronic-structure calculations of potential-energy ⁶⁰ surfaces are performed using the MOLPRO package.⁷² Two types of state energies are reported, those obtained using complete-active space self-consistent field (CASSCF) calculations with *n* electrons distributed amongst *m* orbitals, CAS(n,m),⁷³⁻⁷⁵ and those obtained using equations of motion ⁶⁵ coupled-cluster singles and doubles theory (EOM-CCSD).^{76, 77} The XH bond lengths R_{XH} are optimized for each structure using 2nd-order Møller-Plesset perturbation theory (MP2)⁷⁸ for the

- CASSCF calculations and the native CCSD method for the EOM-CCSD calculations. Some reference single-point calculations are
- ⁷⁰ also performed using perturbative corrections for triples, CCSD(T).⁷⁹ Also, spectroscopic calculations including transition moments are evaluated at equilibrium geometries by the SAC-CI method,⁸⁰ which is very similar to EOM-CCSD,⁸¹ using GAUSSIAN,⁸² as well as by the semi-empirical complete neglect
- ⁷⁵ of differential overlap (CNDO) methods CNDO/S^{83, 84} and CNDO/2,^{88, 89} and the intermediate neglect of differential overlap (INDO) method INDO/S,⁸⁵ all using our own multi-reference configuration-interaction program.^{86, 87}

A wide range of basis sets are used for calculations on NH₃ ⁸⁰ including the minimal basis STO-3G,⁸⁸ 6-31G*,⁸⁹ and the doublezeta to quad-zeta series cc-pVDZ, cc-pVTZ, and cc-pVQZ,90-92 as well as the augmented and doubly augmented sets aug-cc-pVDZ, aug-cc-pVTZ, and d-aug-cc-pVDZ.⁹³ Always a compromise must be made between basis sets that reproduce experimental 85 data to very high accuracy and those for which the results are easily interpretable. Mostly we are concerned with the description afforded of the valence states and of, in particular, the lowest Rydberg state. As the lowest Rydberg state involves considerable mixing with the valence states, it is found to be ⁹⁰ described at a useful level even by the 6-31G* basis. Augmented basis sets lead to the calculation of very many orbitals and states that are spectators to the processes of interest and therefore make analysis difficult. Hence for all molecules except NH₃ we use basis sets without augmented functions. STO-3G is used for P, ⁹⁵ As, and Sb and also cc-pVDZ⁹⁴ and cc-pV(T+d)Z⁹⁵ for P, and cc-pVDZ-PP and cc-pVTZ-PP for As, Sb, and Bi.⁹⁶ Also for, As, Sb, and Bi, the relativistic effective core potentials ECP10MDF, ECP28MDF, and ECP60MDF are used, respectively.97 In addition, for N and As, the STO-3G basis set is augmented by a ¹⁰⁰ single s function with $\zeta = 0.07$ au and 0.045 au, respectively, in a basis we name aSTO3G. This provides a useful description of the nitrogen 3s Rydberg orbital and its associated spectroscopy, for example. High-quality single-point energy calculations on the

ground states of all molecules are performed using the aug-cc-¹⁰⁵ pwCVQZ basis for H, N, and P, and aug-cc-pwCVQZ-PP for As, Sb, and Bi.^{90, 93, 98}

3. Results

a) The basic 3-state diabatic model and its parameters

We have shown that the simplest description of chemical ¹¹⁰ reactions like XH₃ inversion involves a one-vibrationaldimensional model coupling the three diabatic electronic states *G*, *S*, and *D*.⁵² Deduced from this model are then the related uncoupled adiabatic states *g*, *s*, and *d*, respectively. The diabatic states differ from the adiabatic ones in that their form is taken to ¹¹⁵ be the same, independent of molecular geometry. How molecular distortion affects the electronic motions is then included as vibronic couplings. Application of the Born-Oppenheimer approximation to the Hamiltonian matrix expressed in terms of the diabatic states leads to the specification of the adiabatic ones.

However, diabatic states are not unique⁹⁹ and may be transformed into many equivalent forms. While all possible forms lead to the same converged numerical solutions for system properties, different approaches highlight different key physical features and can have quite different convergence properties.¹⁰⁰

description in which G, S, and D are transformed into states named L, C, and R corresponding to different equilibrium geometries: the left-hand side of a double-well potential for L (i.e., one pyramidal XH₃ structure), the central high-symmetry $_{5}$ geometry for C (i.e., a planar structure), and the right-hand side

of a double well R (i.e., the alternate pyramidal XH₃ structure). The adiabatic states, and all calculated molecular properties, are invariant to this transformation.

In detail, calculated molecular properties are sensitive not only to the 3 key diabatic states but also to any state that interacts with them at some geometry. If interactions with other states are profound then they need to be included explicitly, expanding the number of electronic states considered in the calculation. Indeed, we do this for the critical Rydberg states, as described in Section

¹⁵ 3b. However, the influences of all other states are included implicitly by modifying other model parameters slightly. Herein this is done by fitting the model parameters to calculated surfaces, but automated computational methods such as those used in 2-state pseudo-Jahn-Teller theory²⁴ are available and can ²⁰ easily be generalized to treat multiple diabatic states.¹⁰¹

For the three key states, we expand the effects of nuclear motion on the diabatic states using a Taylor series expansion about the high-symmetry planar geometry, keeping all terms of up to fourth order. A total of 11 parameters appear in this

- $_{25}$ expansion of which 5 are required at the most basic level of approximation and 6 depict higher-order corrections such as anharmonicities. For many chemical systems, treatment at the harmonic level is adequate but, for the inversion motion of XH₃ molecules, large amplitude motions are involved and hence
- ³⁰ inclusion of anharmonic contributions is essential. All of the parameters used in the model, and indeed all quantities discussed in this article, are compared and contrasted in detail in the Appendix..

The Hamiltonian is written in terms of the improper torsional ${}_{35}$ angle ${}^{102,\ 103}$ τ that takes on a value of zero at the planar geometry. This is related to the HXH bond angle θ by

$$2\cos\theta = 3\sin^2\tau - 1. \tag{1}$$

The diabatic surfaces for G, S, and D have minima at the planar structure. The energies of these states differ and we represent the

⁴⁰ S-G and D-S differences as $2|J_G|$ and $2|J_D|$, respectively, where as we shall see later J_G and J_D are the associated resonance integrals. The shapes of the diabatic surfaces are

represented by harmonic and quartic force constants k and k_4 , respectively. At the most basic level all diabatic states have the same force constants, it being the vibronic coupling between them that leads to different force constants for the adiabatic states. However, interferences with nearby states can change the force constants, and so a general model must allow variations of the force constants of the *G*, *S*, and *D* states, here specified by the ⁵⁰ parameters $2\beta_G$ and $2\beta_D$.

The key vibronic couplings are odd functions of the nuclear coordinate and so are represented in terms of integrals α_G and α_D specifying the associated *G-S* and *S-D* linear vibronic couplings $\alpha_G = \langle \Psi_G | \partial \mathbf{H} / \partial \tau | \Psi_S \rangle$ and

⁵⁵
$$\alpha_D = \langle \Psi_D | \partial \mathbf{H} / \partial \tau | \Psi_S \rangle$$
, where **H** is the Hamiltonian operator.
Anharmonic corrections are provided by the associated cubic couplings $\gamma_G = \langle \Psi_G | \partial^3 \mathbf{H} / \partial \tau^3 | \Psi_S \rangle$ and

 $\gamma_D = \langle \Psi_D | \hat{\sigma}^3 \mathbf{H} / \hat{\sigma} \tau^3 | \Psi_S \rangle$, respectively. Even though the *G* and *D* states have the same symmetry, they may still couple

⁶⁰ through anharmonic interactions, the leading term of which is the second-order vibronic coupling $\beta = \langle \Psi_G | \partial^2 \mathbf{H} / \partial \tau^2 | \Psi_D \rangle$, and this term is also included.

The total Hamiltonian for this 3-state delocalized-diabatic model is named \mathbf{H}^{3D} and in the $\{G, S, D\}$ basis has matrix 65 elements

$$\begin{aligned} H_{G,G}^{3D} &= T + \frac{k}{2}\tau^{2} + \frac{k_{4}}{24}\tau^{4} \\ H_{S,S}^{3D} &= T + \left(\frac{k}{2} + \beta_{G}\right)\tau^{2} + 2\left|J_{G}\right| + \frac{k_{4}}{24}\tau^{4} \\ H_{D,D}^{3D} &= T + \left(\frac{k}{2} + \beta_{G} + \beta_{D}\right)\tau^{2} + 2\left|J_{G}\right| + 2\left|J_{D}\right| + \frac{k_{4}}{24}\tau^{4} \\ H_{G,S}^{3D} &= \alpha_{G}\tau + \frac{\gamma_{G}}{6}\tau^{3} \end{aligned} \tag{2}$$
$$\begin{aligned} H_{G,D}^{3D} &= \frac{\beta}{2}\tau^{2} \end{aligned}$$

 $H_{S,D}^{3D} = \alpha_D \tau + \frac{\gamma_D}{6} \tau^3$

where in addition T is the kinetic energy operator

$$T = \frac{-\partial^2}{2\mu'\partial\tau^2} \tag{3}$$

with μ ' the associated moment of inertia (which is coordinate 75 dependent).

The most fundamental parameters are J_G , J_D , α_G , α_D , and k, whilst k_4 , β , β_G , β_D , γ_G , and γ_D are higher-order corrections. The same orbitals are involved in the processes that generate the two resonance energies and the two vibronic ⁸⁰ couplings and so the majority of the contributions leading to these integrals are in common and thus similar values are expected. However, at the simplest level, it is possible to approximate⁵² $J_G = J_D$ and $\alpha_G = \alpha_D$, in which case the minimum number of required parameters is just three. Of the 6 higher-order ss corrections, β_G and β_D appear as empirical corrections to the force constant designed to treat implicitly the effects of additional states on the three states of interest. In practice, we find that the high-energy state D is often involved with resonances with other states, making it difficult to always isolate. Given this, we find ⁹⁰ the most practical solution to stable numerical fitting to be to set⁵² (4)

$$\beta = \beta_G = \beta_D = 0 ,$$

leaving just 8 free parameters to be fitted. So as to understand the behaviour of Eq. (2) in the limit where the resonance integrals are small, we introduce the coordinate-⁹⁵ independent transformation⁵² of the $\{G, S, D\}$ delocalized diabatic electronic basis states to produce the localized diabatic basis states $\{L, C, R\}$. In this electronic basis, the original Hamiltonian \mathbf{H}^{3D} is *equivalently* represented as \mathbf{H}^{3L} where

$$H_{L,L}^{3L} = T - \frac{k(\tau_{mG} + \tau_{mD})^2}{4} + \frac{3J_G + J_D}{2} + \frac{k}{2} \left(\tau + \frac{\tau_{mG} + \tau_{mD}}{\sqrt{2}}\right)^2 + \frac{\beta + 3\beta_G + \beta_D}{2} \tau^2 + \frac{(\gamma_G + \gamma_D)}{6\sqrt{2}} \tau^3 + \frac{k_4}{24} \tau^4 H_{C,C}^{3L} = T + J_G + J_D + \frac{k - \beta + \beta_G + \beta_D}{2} \tau^2 + \frac{k_4}{24} \tau^4$$
(5)

100

This journal is © The Royal Society of Chemistry [year]

Physical Chemistry Chemical Physics Accepted Manuscript

^{4 |} Journal Name, [year], [vol], 00-00

50

$$\begin{split} H^{3L}_{R,R} &= T - \frac{k(\tau_{mG} + \tau_{mD})^2}{4} + \frac{3J_G + J_D}{2} + \frac{k_2}{2} \left(\tau - \frac{\tau_{mG} + \tau_{mD}}{\sqrt{2}}\right)^2 \\ &+ \frac{\beta + 3\beta_G + \beta_D}{2} \tau^2 - \frac{(\gamma_G + \gamma_D)}{6\sqrt{2}} \tau^3 + \frac{k_4}{24} \tau^4 \\ H^{3L}_{L,C} &= -\frac{(J_G + J_D)}{\sqrt{2}} + \frac{\alpha_G - \alpha_D}{2} \tau - \frac{\beta_G + \beta_D}{2\sqrt{2}} \tau^2 + \frac{\gamma_G - \gamma_D}{12} \tau^3 \\ H^{3L}_{L,R} &= \frac{J_G - J_D}{2} - \frac{\beta - \beta_G + \beta_D}{4} \tau^2 \\ H^{3L}_{C,R} &= \frac{(J_G + J_D)}{\sqrt{2}} + \frac{\alpha_G - \alpha_D}{2} \tau + \frac{\beta_G + \beta_D}{2\sqrt{2}} \tau^2 + \frac{\gamma_G - \gamma_D}{12} \tau^3 \end{split}$$

5 and

$$nG = \frac{\alpha_G}{k}$$
 and $\tau_{mD} = \frac{\alpha_D}{k}$. (6)

In the 5-parameter model in which all higher order corrections k_4 , β , β_G , β_D , γ_G , and γ_D are ignored, the *L* and *R* localized diabatic surfaces have minima at

$$\tau = \pm \frac{\tau_{mG} + \tau_{mD}}{\sqrt{2}} \quad . \tag{7}$$

τ,

If only two states (e.g., *G* and *S* or *S* and *D*) are involved, as is the case for the radical cations XH_3^+ and for most electron-transfer reactions, then the localized diabatic states would have minima at $\tau = \pm \tau_{mG}$ or $\pm \tau_{mD}$. It is therefore convenient to define 15 harmonic reorganization energies as

$$\lambda_G = 2k\tau_{mG}^2 = \frac{2k\alpha_G^2}{k} \text{ and } \lambda_D = 2k\tau_{mD}^2 = \frac{2k\alpha_D^2}{k}.$$
 (8)

Note that the actual diabatic minima for XH_3 inversion are the renormalized quantities

$$\tau_{dmG} = \sqrt{2}\tau_{mG} \text{ and } \tau_{dmD} = \sqrt{2}\tau_{mD} \tag{9}$$

²⁰ from which related HXH bond angles θ_{dmG} and θ_{dmD} can be defined using Eqn. (1).

Important analytical expressions available for this model include those for the second and fourth derivatives of the adiabatic potential-energy surfaces at the planar D_{3h} geometry, as ²⁵ well as these inverted to give J_G , J_D , α_G , α_D , k, k_4 , β , β_G ,

 β_D , γ_G , and γ_D analytically in terms of the derivatives and associated state energies.⁵² In this way, realistic descriptions of *all* of the complex anharmonic potential-energy surfaces can be obtained performing calculations at a *single geometry* only. This

³⁰ connection is what gives diabatic models their great power. Analytical derivatives are also available at the ground-state equilibrium geometry of double-welled potentials for use in interpreting observed spectroscopic data.⁵²

b. Expansion to a 6-state model including Rydberg transitions

To include the effect of Rydberg transitions, this 3-state model is expanded to include all transitions associated with the lowestlying Rydberg molecular orbital which is, for example, the nitrogen 3s orbital for NH₃:

⁴⁰ where the $n \rightarrow 3s$ Rydberg excitation is named *R*, the $n \rightarrow 3s, n \rightarrow 3s$ double Rydberg excitation is named *DR*, and the $n \rightarrow \sigma^*_{A}, n \rightarrow 3s$ combined Rydberg + valence excitation is named *RV*. Our

This journal is © The Royal Society of Chemistry [year]

diabatic analysis is performed at the level of electronic states rather than at the orbital level, however, and the quantum ⁴⁵ chemical calculations reveal already mixed orbitals, meaning that this notation, and the Hamiltonian functional form that comes with it, is only approximate. Nevertheless, in the expanded $\{G, S, D, R, RV, DR\}$ delocalized diabatic basis, the electronic Hamiltonian H^{6D} is H^{3D} augmented with the matrix elements

$$H_{R,R}^{6D} = H_{G,G}^{6D} + E_R$$

$$H_{RV,RV}^{6D} = H_{V,V}^{6D} + E_R + J_D - J_G$$

$$H_{DR,DR}^{6D} = 2H_{G,G}^{6D} + E_R + \Gamma_R$$

$$H_{R,V}^{6D} = H_{DR,RV}^{6D} = H_{D,RV}^{6D} = V_{RV}$$
(10)

involves three new parameters, the unperturbed Rydberg state energy E_R , the on-site repulsion Γ_R between two electrons occupying the Rydberg orbital, and the Rydberg-valence Note that this functional form interaction energy V_{RV} . 55 represents the electronic interactions for the mixed double excitation as the sum of half of those for the double-valence and double-Rydberg excitations, averaging the on-site repulsion energies. While this is a crude approximation in general, it appear to work very well for the XH₃ series and considerably 60 simplifies identification of the correct assignments of the calculated data. Also, Eqn. (10) implies use of the same harmonic and anharmonic force constants for R, RV, and DR as used for G, S, and D. In principle, these force constants should differ as electrons are being taken from the lone-pair orbital to the 65 Rydberg orbital, but as neither of these orbitals has bonding character, the effects are expected to be small. Hence to have a level of approximation consistent with Eqn. (4), such variations are neglected.

What results is thus a 6-state diabatic model containing 11 free ⁷⁰ parameters. Diagonalization of \mathbf{H}^{6D} parametrically as a function of torsional angle leads to 6 adiabatic Born-Oppenheimer potential-energy surfaces. Using parameters appropriate for XH₃ inversion reactions, this process yields 6 surfaces with properties similar to those of the original {*G*,*S*,*D*,*R*,*RV*,*DR*} diabatic

⁷⁵ basis states and so the adiabatic surfaces are accordingly named *g*, *s*, *d*, *r*, *rv*, and *dr*.

c) Reduction to an effective 2-state model

Most commonly, diabatic models are applied as 2-state approaches^{23-31, 33-44} and it was only recently that we showed that multi-state treatments are essential for the analysis of closed-shell reactions in terms of transferrable parameters.⁵² However, a critical concept is the notion that the ground-state can be considered to have a "twin" state whose properties in an effective 2-state model are intricately linked to those of the ground state. ⁸⁵ This is an old concept²⁵⁻²⁹ but previously the identity of the twin state was incorrectly assigned, and our contribution has been to determine just what it is.⁵² For XH₃ inversion, the twin state is the double valence excitation *D*. While the inclusion of Rydberg states considerably complicates this scenario, the basic qualitative ⁹⁰ ideas remain sound. The simplest approach is to ignore the introduced perturbations and define an effective 2-state Hamiltonian in a localized-diabatic-state basis {*L'*, *R'*} as⁵²

$$\mathbf{H}^{'2\mathbf{L}} = \begin{bmatrix} T_2 + \frac{k}{2} \left(\tau + \sqrt{2}\tau_{m2}\right)^2 & 2J_2 \\ 2J_2 & T_2 + \frac{k}{2} \left(\tau - \sqrt{2}\tau_{m2}\right)^2 \end{bmatrix}$$
(11)

Journal Name, [year], [vol], 00–00 | 5

here
$$T_2 = T - \frac{\lambda_2}{2} + J_G + J_2$$
 and
 $J_2 = \frac{J_G + J_D}{2},$
 $\tau_{m2} = \frac{\tau_{mG} + \tau_{mD}}{2},$ and (12)
 $\lambda_2 = 2k\tau_{m2}^2.$

W

If the ground-state surface is double welled then these parameters may be determined from simple properties of the adiabatic 5 potential-energy surfaces obtained using electronic structure computation methods as

$$J_2 = \frac{\varepsilon_d(0) - \varepsilon_g(0)}{4},$$

$$\lambda_2 = \Delta E^{\ddagger} + |J_2| + \left[(\Delta E^{\ddagger})^2 + 4 |J_2| \Delta E^{\ddagger} \right]^{1/2}, \text{ and}$$
(13)
$$\tau_{m2} = \tau_e \left[1 - \left(\frac{2J_2}{\lambda_2} \right)^2 \right]^{-1/2}$$

¹⁰ where $\varepsilon_g(0)$ and $\varepsilon_d(0)$ are the values of the ground-state and doubly excited state energies at the planar D_{3h} geometry $\tau=0$, respectively, while ΔE^{\ddagger} and τ_e are the well depth and equilibrium geometry of the adiabatic ground-state, respectively.⁵² If the diabatic potentials are harmonic then λ_2 is

¹⁵ also unexpectedly but simply given as half of the vertical excitation energy at the adiabatic equilibrium bond angle, a quantity that can be readily accessible both computationally and spectroscopically.⁵² Formulae revised to include the diagonal correction to the Born-Oppenheimer approximation are
 ²⁰ available¹⁰⁴ but the effects are negligible for the XH₃ series. Alternatively, for single-welled ground states, these parameters may be obtained as

$$J_{2} = \frac{\varepsilon_{d}(0) - \varepsilon_{g}(0)}{4},$$

$$\frac{2J_{2}}{\lambda_{2}} = \frac{\frac{\partial^{2}\varepsilon_{d}}{\partial \tau^{2}} - \frac{\partial^{2}\varepsilon_{g}}{\partial \tau^{2}}}{\frac{\partial^{2}\varepsilon_{d}}{\partial \tau^{2}} + \frac{\partial^{2}\varepsilon_{g}}{\partial \tau^{2}}},$$

$$k_{2} = \frac{1}{2} \left(\frac{\partial^{2}\varepsilon_{d}}{\partial \tau^{2}} + \frac{\partial^{2}\varepsilon_{g}}{\partial \tau^{2}} \right), \text{ and}$$

$$\tau_{m2} = \left(\frac{\lambda_{2}}{2k_{2}} \right)^{1/2}.$$
(14)

What these equations tell is that, whilst the ground-state has a ²⁵ conical intersection seam with the singly excited state that is very important when it comes to understanding non-adiabatic chemical reactions, the global properties of the ground-state surface appear to be determined by a different seam, that between the ground-state and the doubly excited state. This occurs because of the

- state and the doubly excited state. This occurs because of the 30 presence of a real conical intersection seam between the singly excited state and the doubly excited state that also significantly influences the ground-state properties. So if one is studying nonadiabatic dynamics across the *g*-*s* conical intersection, then the physical parameters J_G , λ_G , τ_{mG} , etc. are relevant, but if the 35 ground-state surface shape is being studied, the these quantities
- renormalized to $2J_2$, $2\lambda_2$, $2^{1/2}\tau_{m2}$, etc. are required instead. Only these later parameters allow properties of different chemical

systems to be compared, e.g., electron-transfer reactions to XH₃ inversion to XH₃⁺ inversion to benzene aromaticity to hydrogen ⁴⁰ bonding, etc..^{52, 104-106}

d) Calculated ground-state adiabatic potential-energy surfaces and their relation to experiment.

Table 1 gives the properties of the ground-state adiabatic potential-energy surfaces for the XH₃ series evaluated using the ⁴⁵ CAS(2,2) (at MP2 geometries) and CCSD methods with, for CCSD, basis sets ranging from minimal to quadruple zeta. These are compared therein to available experimental data as well as to CCSD(T)/aug-cc-pwCVQZ values. Results for CCSD at the triple-zeta (TZP) level are accurate to 0.03-0.09 eV (0.7-2.1 kcal ⁵⁰ mol⁻¹) for the well depths ΔE^{\ddagger} for, in order, NH₃ to BiH₃. They are also accurate to within 1° in the HXH equilibrium bond angle θ_e for all molecules. This accuracy is sufficient for our purposes as the diabatic-model fits to the ground-state and excited-state surfaces (given also in the table) can only reproduce the original ⁵⁵ calculated data to about this accuracy. Higher-level calculations do achieve much greater accuracy, ¹⁰⁷⁻¹¹³ however, and indeed in modern times are used in extensive diabatic models to fit entire

ground-state potential-energy surfaces with high accuracy. The deduced model parameters may be twigged slightly to reproduce ⁶⁰ extensive observed spectroscopic data sets to generate "experimental" ground-state surfaces for NH₃,^{57, 58} PH₃,⁵⁹ SbH₃,⁶⁰ and BiH₃.⁶¹ At this level of accuracy, the diagonal correction to the Born-Oppenheimer approximation must be taken into account, but such treatment is not necessary herein.

65 e) Calculated vertical excitation energies including new assignments for the VUV absorption spectrum of NH₃.

In Table 2 are compared calculated and observed spectroscopic properties of NH₃. In total 7 vertical excitations are considered, those to the r ($n \rightarrow 3s$), dr ($n \rightarrow 3s, n \rightarrow 3s$), and s ($n \rightarrow \sigma^*_A$) states 70 used in the diabatic model as well as for the valence excitations $n \rightarrow \sigma^*_{E}, \sigma_E \rightarrow \sigma^*_E$ (which has allowed transitions of both a' and e symmetry), and $\sigma_E \rightarrow \sigma^*_A$. The observed absorption of NH₃ has its first maximum at 6.5 eV corresponding to the Rydberg absorption r, leading to vertical ionization $n \rightarrow \infty$ at 10.9 eV.⁶³ Observed and 75 calculated vertical ionization potentials for all of the XH₃ molecules are given in Table 3 and these, along with the energy of the r band, are reproduced quantitatively by the best calculations. In particular, the cc-pVDZ - cc-pVQZ basis sets are in error by only 1.2 - 0.6 eV for the energy of r, despite the 80 absence of augmented functions in the basis set. This nearquantitative agreement is exploited throughout this work to allow easy description of the effects of the Rydberg transitions on the valence states. Absorption at 16.3 eV and 25.3 eV is also observed to Rydberg

Absolution at 10.5 eV and 25.5 eV is also observed to Kydoerg so bands leading up to the ionization potentials for $\sigma_E \rightarrow \infty$ and $\sigma_A \rightarrow \infty$ at 16.4 and 27.3 eV, respectively.¹¹⁴ Two other broad bands are also observed centred at 18.4 eV and 31.5 eV, although originally only part of the 18.4 eV band was in the observable range and so this band was first assigned at 22 eV whilst the ⁹⁰ higher-energy band was observed partially resolved into components at 30 eV and 33 eV.⁶⁴ Both systems were attributed to double excitations, despite the typically low oscillator strength for such bands in one-photon spectroscopy.^{64, 114}

6 | Journal Name, [year], [vol], 00–00

www.rsc.org/xxxxx

ARTICLE TYPE

Table 1. Observed properties of XH₃ compared to calculated adiabatic potential-energy surface minima and those from various fits of the angular potential to a diabatic form containing # free parameters: R_{XH} - equilibrium XH bond length, τ_e - equilibrium torsion angle, θ_e - corresponding equilibrium HXH bond angle (Eqn. (1)), ΔE^{\ddagger} - activation energy for inversion.

XH ₃	Method	Basis	#	$R_{\rm XH}$	$R_{ m XH}$ / Å		τ_e / °			θ_e / °		Δ.	$\Delta E^{\ddagger} / \mathrm{eV}$			
				Obs ^a [BC] ^f	Calc	Obs ^a	Calc	Fit	Obs ^a [BC] ^f	Calc	Fit	Obs [BC] ^f	Calc	Fit		
NH ₃	CAS(2,2)	STO-3G	8	1.016	1.055	21.4	25	25	107.5	104	104	0.220 ^b	0.54	0.54		
	CAS(2,5)	aSTO-3G	11	[1.010]	1.050	[22.0]	25	23	[106.8]	104	105	[0.231]	0.62	0.65		
	CCSD	STO-3G	8		1.070		28	28		100	100		0.82	0.81		
	CCSD	aSTO-3G	11		1.057		29	27		98	101		1.20	1.24		
	CCSD	6-31G*	11		1.021		23	21		106	108		0.30	0.41		
	CCSD	cc-pVDZ	11		1.026		25	23		104	105		0.37	0.39		
	CCSD	cc-pVTZ	11		1.013		23	22		106	107		0.27	0.30		
	CCSD	cc-pVQZ	11		1.010		22	23		107	106		0.24	0.24		
PH ₃	CCSD	STO-3G	11	1.420	1.412	32.9	34	33	93.3	92	93	1.38 ^{ci}	2.90	2.92		
	CCSD	cc-pVDZ	11	[1.412]	1.43	[32.5]	33	31	[93.9]	94	96	[1.440]	1.59	1.48		
	CCSD	cc-pV(T+d)Z ^g	11		1.414		33	30		94	97		1.50	1.50		
	CCSD	cc-pV(T+d)Z	11		1.414		33	29		94	99		1.50	1.49		
AsH_3	CCSD	STO-3G	11	1.520	1.491	33.8	34	33	92.0	92	93	$\sim \! 1.38^{ij}$	2.42	2.44		
	CCSD	cc-pVDZ-PP	11	[1.518]	1.526	[33.5]	34	33	[92.5]	92	93	[1.760]	1.93	1.88		
	CCSD	cc-pVTZ-PP	11		1.518		34	32		93	95		1.82	1.78		
SbH ₃	CCSD	STO-3G	11	1.709	1.677	34.2	33	32	91.5	93	94	~1.63 ^{di}	2.00	2.03		
	CCSD	cc-pVDZ-PP	11	[1.711]	1.716	[33.7]	34	33	[92.2]	92	93	[1.916]	2.07	1.97		
	CCSD	cc-pVTZ-PP	11		1.716		34	33		92	93		1.99	1.92		
BiH ₃	CCSD	cc-pVDZ-PP	11	1.788	1.804	35.1	35	35	90.3	91	91	~1.67 ^{ei}	2.75	2.86		
	CCSD	cc-pVTZ-PP	11	[1.797]	1.804	[34.8]	35	33	[90.7]	91	93	[2.549]	2.65	2.55		

^a: From Jerzembeck et al.;¹¹⁵ ^b: From. Yurchenko et al.⁵⁷ and Huang et al.,⁵⁸ traditional Swalen and Ibers¹⁰³ value 0.25 eV; ^c: From Sousa-Silva et al.;⁵⁹ ^d: From Yurchenko et al.;⁶⁰ ^e: From Yurchenko et al.;⁶¹ ^f: Best calcualtion we perform, CCSD(T)/aug-pwCVQZ but without Born-Oppenheimer breakdown or spin-orbit corrections. ^g: alternative assignment with *r* below *s*; ^h: alternatively¹¹³ $R_{\rm NH} = 1.012$ Å, $\tau_e = 22.1^{\circ}$, $\theta_e = 106.7^{\circ}$; ⁱ: rough approximation as experimental data only available up to ~ 0.5 eV in the torsional mode; ^j:From Costain and Sutherland.¹¹⁶

 Table 2: Comparison of observed and calculated SAC-CI (very similar to EOM-CCSD)⁸¹ ground-state vertical excitation energies for NH₃, in eV.

Basis	r	dr	S	$n \rightarrow \sigma_{E}^{*}$	$\sigma_{E} \rightarrow \sigma^{*}{}_{E}(a')$	$\sigma_{E} \rightarrow \sigma_{E}^{*}(e)$	$\sigma_{\scriptscriptstyle E}\!\rightarrow\! \sigma^{*}{}_{\scriptscriptstyle NH}$
STO-3G	-	-	14.6	16.0	28.7	25.1	22.2
cc-pVDZ	7.7	24.4	23.4	20.0	26.1	26.8	29.5
cc-pVTZ	7.3	23.8	18.6/19.7	20.5	27.6	26.3	24.7
cc-pVQZ	7.1	23.5	19.0/25.4	18.1	24.3/32.8	23.8/33.0	27.8
aug-cc-pVDZ	6.5	~28	25.4	21.4	27.5	27.9	30.8
d-aug-cc-pVDZ	6.5	~28	20.6/28.1	23.5/25.5		29.3	
aug-cc-pVTZ	6.5	28.1	16.2/26.7	16.4/23.7	23.6/30.1	22.3/28.7	21.8/31.7
Observed	6.5 ^a			18.4 ^b	30	and 33, broad ^b	

^a: From Robin⁶²; ^b: From Ishikawa et al.¹¹⁴.

This journal is © The Royal Society of Chemistry [year]

[journal], [year], [vol], 00-00 | 7

www.rsc.org/xxxxx

Table 3. Observed, calculated EOM-CCSD/VTZ and fitted vertical excitation energies to the valence (s), double valence (d), and Rydberg (r) states of XH₃ molecules, in eV, as well as the CCSD(T)/aug-cc-PVQZ calculated and observed vertical ionization potentials, in eV.

v	5	7	6	d			r			Vert. IP		
л	Cal	Fit	Cal.	Fit		Cal	Fit		Cal	$\mathrm{Obs}^{\mathrm{b}}$		
N	18.6	18.4		43.4		7.3 ^a	7.5		10.9	10.9		
Р	7.9 ^c	8.0	19.9	20.2		14.1	13.2		10.6	10.6		
As	7.7	7.6		19.7		13.2	12.4		10.5	10.5		
Sb	7.4	7.1	18.4	18.2		11.3	10.8		9.8	10.0		
Bi	7.3	6.6	16.1	15.7		11.9	11.1		10.0			

 $_{\text{s}}$ a. obs. 6.5 eV;⁶² for convergent calculations using larger basis sets see Table 2. b. From Potts and Price;⁶³ c. Obs. 6.9 eV. $^{117,\,118}$

The 18.4 eV band was assigned to the *dr*-type series transitions $n\rightarrow 3s, n\rightarrow ?$ leading up to an observed very weak ionization process at 24 eV involving *r* excitation plus ionization, $n\rightarrow 3s, n\rightarrow \infty$.¹¹⁹ This would appear feasible as the isolated ionization process $n\rightarrow\infty$ occurs at 10.9 eV whilst the *r* absorption $n\rightarrow 3s$ occurs at 6.5 eV, summing to 17.4 eV, amidst the observed band. However, the depression of the lowest Rydberg transition $n\rightarrow 3s$ to 6.5 eV, 4.4 eV lower than the ionization continuum $15 \ n\rightarrow\infty$, occurs because of the strong interaction between the *r* and *s* states, and as a result the calculations always place the *dr* excitation $n\rightarrow 3s, n\rightarrow\infty$. Hence the calculations do not support the concept that significant absorption $n\rightarrow 3s, n\rightarrow?$ occurs at energies 20 6 eV less than the ionization potential of 24 eV. Also, the

calculations do not suggest that the transition moment of this band could be sufficient to provide the observed absorption.

The broad bands observed in the 27-35 eV range with possible maxima at 30 and 33 eV are very intense, comparable with those ²⁵ of the strongest Rydberg transitions. All double excitations manifested in the calculations are very weak and could not be reasoned to account for the major part of the observed absorption. Originally, the possibility that the unassigned absorption could be attributed to resonances associated with valence excitations

³⁰ was not considered. All calculations indicate that the $n \rightarrow \sigma^*_A$ band *s* is very weak and therefore unlikely to be directly detected in the experiments. However, the $\sigma_E \rightarrow \sigma^*_E$ system is predicted to yield a very strong in-plane (e) transition and a strong axial (a') transition comparable to the intensities of Rydberg bands, while

³⁵ $\sigma_E \rightarrow \sigma_A^*$ is predicted to be of medium strength and $n \rightarrow \sigma_E^*$ to be weak. Table 2 shows that $n \rightarrow \sigma_E^*$ is predicted to lie near to the observed weak band at 18.4 eV, whilst the other bands are predicted in the vicinity of the intense absorption in the 26-20 eV region using valence basis sets. Adding augmented functions to

⁴⁰ these basis sets allows better representation of the Rydberg states but basis-set dependent resonances with the valence states are predicted, distributing the single-excitation intensity of the 22-33 eV range. While calculations in which the Rydberg and continuum orbitals are represented using say Green's functions ⁴⁵ (rather than the discrete representation used herein) are required

for an authoritative assignment, it seems reasonable to reassign

ARTICLE TYPE

the 18.4 eV band to the $n \rightarrow \sigma^*_E$ resonance and the 30 eV and 33 eV systems to a $\sigma_E \rightarrow \sigma^*_E$ and/or $\sigma_E \rightarrow \sigma^*_A$ resonance combination.

Specifically, the $n \rightarrow \sigma^*_E$ band is predicted to be at 16 eV by ⁵⁰ STO-3G, changing to 20, 21, and 18 eV as the valence basis set is increased from double to quad zeta. Adding a single set of augmented functions pushed the band up by 1 eV but adding a second set introduces an accidental resonance that splits the band into components of which the most obvious appear at quite high

ss energy, 23.5 and 25.5 eV. Considering only the easily interpretable results, the calculations appear to support assignment of the observed 18.4 eV band to this resonance.

Concerning the development of diabatic models to understand the ground-state structure, Table 2 shows that the *dr* double ⁶⁰ excitation $n\rightarrow3$ s, $n\rightarrow3$ s occurs at ca. 4 times the energy of the single *r* excitation $n\rightarrow3$ s independent of basis set and is therefore a robust feature of the calculations. Similarly, the critical valence excitation *s* is robustly described. It is upon these properties that the diabatic model is based and conclusions concerning why NH₃

⁶⁵ has a qualitatively different bond angle to the other series members are drawn. Tables 1 and 3 combine to show how the calculations reproduce other experimental data for the whole of the XH₃ series.

f) Potential-energy surfaces fitted with the 11-parameter 6-70 state diabatic model.

Table 4 gives the diabatic parameters fitted to a wide range of electronic structure calculations performed for the XH₃ series.

i. Properties of NH_3 evaluated using the STO-3G and aSTO-3G bases.

Fig. 2 shows the calculated and fitted surfaces for NH₃ obtained using small basis sets only. These small basis sets are the minimal STO-3G basis that allows for valence excitations only plus that augmented by a single N *s* function to crudely introduce the 3s Rydberg transition. Results are shown for both CASSCF and EOM-CCSD calculations. The EOM-CCSD calculations equally include all orbitals but preferentially treat the ground-state with respect to the single excitation, whereas the CASSCF calculations treat each state equivalently but non-key

85 orbitals are included inconsistently. For the STO-3G basis only the simplest CASSCF calculation CAS(2,2) is needed, whereas CAS(2,5) is used for the aSTO-3G basis, including all unoccupied orbitals to allow for orbital switching as a function of geometry. An advantage of the 90 CASSCF method is that only a limited number of excited states are manifested. The CAS(2,2) calculations produce only the key 3 valence states g, s, and d. However, the CAS(2,5) calculations deliver 7 states whereas only 6 (g, s, d, r, rv, dr) are anticipated. The additional state is the $n \rightarrow \sigma^*_{E}, n \rightarrow \sigma^*_{E}$ double excitation and 95 is easily identified and eliminated. However, identifying the nature of the other 6 states can be difficult as one must decide which order to place s and r (i.e., is the valence state lower or higher in energy than the 3s Rydberg state), with a follow-on problem for d, rv, and dr. We proceed by examining the form of 100 the orbitals and the partitioning of the excited-state wavefunctions into contributions involving different orbital

excitations. The σ^*_A orbital is characterized by its valence antibonding nature whilst the Rydberg orbital is characterized by

[journal], [year], [vol], 00-00 | 8

This journal is © The Royal Society of Chemistry [year]

www.rsc.org/xxxxx

ARTICLE TYPE

Table 4	. Diabatic-mode	el potentials conta	aining	# free param	eters fitte	ed to calcu	ilated grou	und and exe	cited-state	potential e	nergy surfa	ices of X	H ₃ mole	cules.
XH ₃	Method	Basis	#	J_G	$J_{ m D}$	α_{G}	α_{D}	k	$\gamma_{\rm G}$	$\gamma_{\rm D}$	k_4	$E_{\rm R}$	Γ_{R}	$V_{\rm RV}$
				eV	eV	meV/°	meV/°	$meV/^{\circ 2}$	$meV/^{\circ 3}$	$meV/^{\circ 3}$	$\mu e V/^{\circ 4}$	eV	eV	eV
NH ₃	CAS(2,2)	STO-3G	8	6.09	7.64	0.264	0.343	7.61	-0.21	-0.36	-6.68	0	0	0
	CAS(2,5)	aSTO-3G	11	8.97	13.45	0.341	0.298	9.17	-0.26	0.12	-4.24	7.48	4.11	4.29
	EOM-CCSD	STO-3G	8	5.87	7.12	0.249	0.340	6.27	-0.09	0.02	13.38	0	0	0
	EOM-CCSD	aSTO-3G	11	7.27	15.12	0.286	0.407	6.45	-0.26	-1.42	-10.1	6.88	6.52	4.95
	EOM-CCSD	6-31G*	11	12.21	18.11	0.335	0.193	8.00	-0.31	-1.15	-12.56	10.85	3.71	8.3
	EOM-CCSD	cc-pVDZ	11	8.33	12.93	0.238	0.378	6.64	-0.17	-1.15	-11.59	10.73	6.50	7.26
	EOM-CCSD	cc-pVTZ	11	6.82	12.27	0.224	0.276	6.48	-0.14	-0.45	-6.74	9.08	7.77	4.92
	EOM-CCSD	cc-pVQZ	11	5.95	13.42	0.198	0.356	6.33	-0.19	-0.31	-8.70	11.89	1.44	5.70
PH ₃	EOM-CCSD	STO-3G	8	3.43	4.78	0.273	0.365	8.18	0.03	-0.65	0.02	0	0	0
	EOM-CCSD	cc-pVDZ	11	4.29	3.91	0.269	0.177	8.44	-0.22	-0.08	-17.0	9.67	6.22	4.15
	EOM-CCSD	cc-pV(T+d)Z ^a	11	3.74	5.02	0.258	0.291	9.40	-0.22	-0.22	-19.95	7.47	0	2.57
	EOM-CCSD	cc-pV(T+d)Z	11	3.37	3.71	0.258	0.217	9.21	-0.22	-0.17	-20.2	7.98	2.89	2.38
AsH_3	EOM-CCSD	STO-3G	8	3.62	4.70	0.266	0.349	8.66	0.05	-0.55	-0.50	0	0	0
	EOM-CCSD	cc-pVDZ-PP	11	3.75	3.88	0.228	0.180	6.57	-0.13	0.12	-1.70	9.39	5.92	4.73
	EOM-CCSD	cc-pVTZ-PP	11	2.93	3.43	0.234	0.171	7.16	-0.17	0.12	-5.40	7.16	3.39	2.25
SbH ₃	EOM-CCSD	STO-3G	8	3.12	3.97	0.237	0.328	9.04	0.12	-0.55	-0.62	0	0	0
	EOM-CCSD	cc-pVDZ-PP	11	2.89	3.39	0.208	0.190	7.09	-0.11	0.04	-5.19	8.49	3.79	4.36
	EOM-CCSD	cc-pVTZ-PP	11	1.98	3.14	0.195	0.170	6.65	-0.08	0.13	0.59	5.93	3.06	1.96
BiH ₃	EOM-CCSD	cc-pVDZ-PP	11	2.74	2.96	0.187	0.185	4.63	0.02	-0.21	5.70	7.7	3.52	4.81
	EOM-CCSD	cc-pVTZ-PP	11	1.63	2.63	0.206	0.130	5.71	-0.18	0.05	-6.20	6.07	3.01	2.49

out-of-phase combinations of the Gaussians that dominate the N 2s and 3s orbitals, making identification straightforward.

- All possible excited states made from single or double s excitations of the CCSD reference are manifested in the EOM-CCSD calculations, and hence these intrinsically require more complex analysis. However, by noting the orbital compositions and excited-state descriptions in terms of orbital excitations and by following them adiabatically as a function of angle, identification of the states of interest can be accomplished. These states do undergo accidental resonances with other states and so the native properties of the excited states may in practice only be traced over restricted torsional bending amplitudes. As a result,
- the data points shown in Fig. 2 and later figures sometimes terminate only partly way along the potential-energy curves. This situation also arises during the CASSCF calculations except that the interfering states are not directly manifested. Sometimes the state of interest is clearly identifiable both before and after an avoided crossing and in such circumstances the actual data points
- ²⁰ in the avoided crossing region are replaced with values interpolated between the before and after regions to produce smooth surfaces for fitting.

Figure 2 shows the raw calculated surfaces (points) and their fit to the 8-parameter (STO-3G basis) or 11-parameter (aSTO-3G

 $_{25}$ basis) models, revealing that the diabatic model accurately interpolates the calculated data. If the *s* and *r* states are incorrectly assigned, then poor quality fits usually emerge as the model treats valence and Rydberg states intrinsically differently. The most striking aspect of the figure is that the shown CASSCF and EOM-CCSD surfaces are in good qualitative agreement with each other, despite their considerable methodological and implementational differences. This indicates that the properties of ammonia inversion are realistically determined using traditionally conservative treatments of electron correlation.

The effects of inclusion of the Rydberg 3s orbital into the 35 calculations are evidenced through the comparison of the STO-3G and aSTO-3G results in Fig. 2. The valence single s and double d excitation energies at the planar geometry are ca. 12 eV and 26 eV when only valence orbitals are included. Analysis 40 indicates that the non-interacting diabatic Rydberg state Rappears at near 7 eV (model parameter $E_{\rm R}$, see Table 4) but interacts with the diabatic valence state S with a coupling of near 5 eV (model parameter $V_{\rm RV}$). As the description used for the 3s orbital in terms of the STO-3G orbitals plus a single additional 45 Gaussian function with an arbitrarily chosen exponent is crude, these results are not expected to provide a quantitative description of the Rydberg state. Rather, they just serve to indicate the fundamental physical situation in a simple and easy to interpret Significantly, S becomes considerably destabilized, way. 50 resulting in two new adiabatic states at energies near 5 eV (r) and 18 eV (s). The double valence excitation d is destabilized proportionally more, going from ca. 26 eV using STO-3G to ca. 47 eV using aSTO-3G. These effects have a profound influence

Fig. 2. Calculated adiabatic potential energy surfaces (points) and their fits using a diabatic model (lines) for the torsional potential of NH₃: blackground state g, red- single valence excitation s, magenta- double valence excitation d, blue- single Rydberg excitation r, brown- Rydberg + valence double excitation rv, green- double Rydberg excitation dr. The inserts highlight the changes in energy vs. τ from those at the D_{3h} structure.

on the inversion barrier especially from the EOM-CCSD calculations, increasing it from 0.81 eV to 1.24 eV (Table 1).

ii. Properties of NH₃ evaluated using large valence basis sets. While indeed the effect of adding a single 3s Rydberg orbital
will turn out to be critical to understanding the nature of NH₃, the EOM-CCSD STO-3G and aSTO-3G well depths of 0.81 and 1.24 eV, respectively, are far removed from the observed value of 0.220 eV.^{57, 58 103} Figure 3 (and Tables 1 and 2) show how the EOM-CCSD ground and excited-state surfaces change as the ¹⁰ basis set is increased from aSTO-3G to 6-31G* to cc-pVDZ to compVTZ to compVTZ to compVTZ.

cc-pVTZ to cc-pVQZ. Identifying single orbitals and excited states as being either σ_A^* or N 3s character becomes difficult as many other orbitals interact to deform the orbital shapes. In

particular, the Rydberg orbital gains considerable H 2*s* character 15 as well as valence σ_A bonding character, whilst σ^*_A gains both N 3*s* and H 2*s* character.

Overviewing the results in Table 4, we see that the energy E_R of the diabatic 3s Rydberg state R at the planar geometry is consistently near 11 eV, close to where these methods would ²⁰ predict the $2p \rightarrow 3s$ transition in the isolated nitrogen atom. However, the energy $2J_G$ of the diabatic valence state S decreases from 12 eV at the 6-31G* level to 8 eV at cc-pVDZ to 6 eV at ccpVQZ, back to near its value for STO-3G. Indeed, 7 of the 8 valence-state diabatic parameters take on similar values for the ²⁵ STO-3G and cc-pVQZ bases, indicating that the genera usefulness of STO-3G in describing valence-state properties and

Fig. 3. Calculated EOM-CCSD adiabatic potential energy surfaces (points) and their fits using a diabatic model (lines) for the torsional potential of NH_3 : black- ground state g, red- single valence excitation s, magenta- double valence excitation d, blue- single Rydberg excitation r, brown-Rydberg + valence double excitation rv, green- double Rydberg excitation dr.

Fig. 4. Calculated EOM-CCSD adiabatic potential energy surfaces (points) and their fits using a diabatic model (lines) for the torsional potential of XH_3 molecules obtained using double-zeta bases (top row) and triple-zeta bases (bottom row): black- ground state g, red- single valence excitation s, magenta- double valence excitation d, blue- single Rydberg excitation r, brown- Rydberg + valence double excitation rv, green- double Rydberg excitation dr.

the need for a sophisticated treatment of the valence shell once Rydberg orbitals are introduced. However, one diabatic parameter, *J*_D, changes considerably from the STO-3G value once Rydberg orbitals are introduced, and this feature will in Section 5 4e become a focus for discussion.

iii. Properties of the XH₃ series evaluated using large valence basis sets.

Figure 4 compares the calculated and fitted adiabatic potentialenergy surfaces for the XH₃ series obtained using EOM-CCSD 10 with correlation-consistent basis sets at the double zeta (VDZ)

- and triple zeta (VTZ) levels. Examination of the wavefunctions indicates that the σ_A^* orbital clearly is lower in energy than the lowest-lying Rydberg orbital for AsH₃, becoming progressively more stable for SbH₃ and BiH₃. For these molecules, fitting the
- ¹⁵ diabatic model assuming the diabatic orbitals are alternatively ordered leads to fits with mostly low errors but the extracted parameters change in unexpected ways. This effect is significant enough for it to be possible to determine that the orbital ordering has reversed in comparison to that in NH₃ *independent* of
- ²⁰ wavefunction analysis, demonstrating the robustness of the diabatic approach. However, for PH₃, neither wavefunction analysis nor diabatic fitting provide a decisive qualitative picture of the orbital ordering. The σ_A^* valence and 4s Rydberg orbitals are near degenerate in this molecule. Tables 1 and 4 present
- ²⁵ results fitted to energies calculated using the triple zeta basis assuming both possible orderings, leading to the conclusion that *S* is actually slightly lower in energy than *R*, and this is the result depicted in Fig. 4 and other places. Comparison of the XUV absorption bands of Ar, HCl, H₂S, PH₃, and SiH₄ in the gas-phase
- ³⁰ and solid has also led to the conclusion that, whilst strong mixing does occur for PH₃, the valence state is dominant for Ar, HCl,

 $\rm H_2S,$ and PH_3 but the Rydberg state is dominant for SiH_4. $^{118,\ 120}$ Nevertheless, the lowest-energy observed VUV transition in PH_3 is often called the "Rydberg band". 117

- ³⁵ Overall, Table 1 shows that the HXH equilibrium bond angles from the fits are accurate to typically within 2° of the raw surface values for all heavy atoms but P for which errors grow to 5°. From this data, the variations found for the XH₃ series at the TZP level are displayed in Fig. 5a, highlighting the anomaly for PH₃.
- ⁴⁰ This anomaly arises as the *S* and *R* diabatic states are near degenerate, providing the worst-case scenario for the appropriateness of the diabatic Hamiltonian, Eqn. (10).

While even 2° differences are large on the scale to which angles and measured and discussed, the resulting differences to ⁴⁵ the potential-energy surfaces are small on the scale of the energies accessed by the 6 molecular potential-energy surfaces. Hence they are mostly not obvious looking at say Figs. 2-4. Always the equilibrium angle is fitted to be too large, however,

- suggesting that systematic improvement in the analysis is so possible. The fitted well depths are accurate to typically 0.03 eV for NH₃ increasing to 0.1 eV for BiH₃. As highlighted in Fig. 5b, this parallels the actual changes in the barrier height which increases from 0.22 eV to 2.6 eV down the series. All optimized bond lengths R_{XH} at the adiabatic equilibrium geometry are close
- ss to the experimental and very high quality theoretical estimates (Table 1), and the vertical transition energies for key states at this geometry differ from the calculated values (Table 3) by on average just -0.4 ± 0.4 eV.

f) Reliability of the diabatic-model parameters

One measure of the success of the diabatic model is that the

This journal is © The Royal Society of Chemistry [year]

see text.

shapes of 6 potential energy surfaces are fitted using just 11 parameters. This is less than half the number of parameters required by a Taylor-series expansion involving just 0th, 2nd, and 4th order terms (later in Section 4d such Taylor expansions are ⁵ also shown often to be very inaccurate). This indicates that the

- information contained in the diabatic-model equations reflects the factors controlling the molecular chemistry and spectroscopy. However, for the parameters to be robust and have an identifiable physical meaning, they must vary in a systematic and chemically sensible way as the basis set and heavy atom are varied. While
- both of these effects can be examined based on the data in Table 4, the effects of changing the heavy atom are highlighted in Fig. 5 which shows the variation between elements of the 11 diabatic-model parameters evaluated at the TZP level, properties derived 15 from these parameters, related adiabatic properties, and other properties of interest.
- The critical diabatic-model parameters $J_{\rm G}$ and $J_{\rm D}$ (Fig. 5g), $\alpha_{\rm G}$, and $\alpha_{\rm D}$ (Fig. 5e), and k (Fig. 5f) show systematic variations and hence have clear physical meaning. Specifically, the force ²⁰ constant k changes little except for P for which the diabatic
- Hamiltonian is challenged owing to the near degeneracy of the diabatic σ_A^* and P 4*s* orbitals. Also, the resonance integrals J_G and J_D show marked differences between N and P-Bi and as a function of basis set, but these differences are attributed to actual ²⁵ chemical effects and basis set properties. Similarly, the Rydberg-
- state parameters $E_{\rm R}$ (Fig. 5m), $V_{\rm RV}$, (Fig. 5n), and Γ_{R} (Fig. 5n) show systematic variations as a function of X, but they show more basis-set dependence that is desired. Figure 5m also compares the Rydberg-state energy in XH₃ to that calculated for ³⁰ atomic X using the same methods, showing similar variations
- (except for a small anomaly again owing to the orbital degeneracy in PH₃). This comparison demonstrates the reliability of the major fitted diabatic parameters. The remaining 3 parameters $\gamma_{\rm G}$ (Fig. 5k), $\gamma_{\rm D}$ (Fig. 5k), and k_4 (Fig. 5l) show larger so variations with basis set and should be considered as being used
- primarily to empirically account for non-included effects in the

diabatic model, although γ_{G} may be meaningful.

While the vibronic coupling constants α_{G} and α_{D} are important quantities in their own right and can be evaluated analytically by ⁴⁰ codes such as MOLPRO⁵² (and soon for TD-DFT in Q-CHEM),^{121, 122} it is more usual to describe chemical and spectroscopic properties in terms of geometries and reorganization energies. For anharmonic diabatic potentials, these quantities are not uniquely defined and we choose their 45 harmonic components au_{mG} , au_{mD} , λ_G , and λ_D defined in Eqns. (6) and (8). Alternatively, these quantities could be extracted from the actual properties of the diabatic surfaces $H_{LL}^{3L}(\tau)$, $H_{\rm CC}^{3L}(\tau)$ and $H_{\rm RR}^{3L}(\tau)$ using Eqn. (5), or from the adiabatic equilibrium geometry. Table 5 and Fig. 5 present the deduced 50 analytical values only, along with the implied values of the HXH diabatic-minimum bond angles θ_{mG} and θ_{mD} (Eqns. (1) and (6), Fig. 5d), reorganization energies λ_G , and λ_D (Eqn. (8), Fig. 5h), and the associated values of the control variables $2J_G/\lambda_G$ and $2J_D/\lambda_D$ (Fig. 5i). The best behaved quantity is found to be $2J_G/\lambda_G$ 55 but, while the other properties show more variation with basis set than was found for the model parameters themselves, the variations with X shown in Fig. 5 are better behaved. Provided also in Table 5 and Fig. 5 are the associated values of the corresponding parameters τ_{m2} , θ_{m2} , λ_2 , etc. extracted using the 60 effective 2-state model Eqn. (13). These are all well behaved and have properties similar to the state-dependent ones, with typically the 2-state model parameters sitting between the ones for the Gand D interactions. This gives confidence that the parameters are meaningful. In particular, the perceived G-D differences and the 65 aforementioned uncharacteristic large difference found for only NH_3 in the value of J_D between the STO-3G and cc-pVQZ bases reflect actual molecular and method properties.

12 | Journal Name, [year], **[vol]**, 00–00

www.rsc.org/xxxxx

ARTICLE TYPE

Table 5. Properties of XH_3 calculated adiabatic potential-energy surface minima and those from various fits of the torsional potential to a diabatic formcontaining # free parameters.

XH_3	Method	Basis	#		τ_m / \circ			θ_m / \circ		$J_2^{\rm a}$ / eV		λ / eV		$2J/\lambda$		
				τ_{mG}	τ_{mD}	τ_{m2}	θ_{mD}	θ_{mD}	θ_{m2}	-	λ_{G}	λ_{D}	λ_2	$2J_{\rm G}/\lambda_{\rm G}$	$2J_{\rm D}/\lambda_{\rm D}$	$2J_2/\lambda_2$
NH_3	CAS(2,2)	STO-3G	8	35	45	27	91	75	101	6.9	18	31	18	0.67	0.49	0.76
	CAS(2,5)	aSTO-3G	11	37	31	28	87	94	99	11.2	25	19	28	0.71	1.39	0.79
	EOM-CCSD	STO-3G	8	40	54	28	84	61	100	6.5	20	37	19	0.59	0.39	0.70
	EOM-CCSD	aSTO-3G	11	44	63	30	77	46	97	11.2	25	51	31	0.57	0.59	0.72
	EOM-CCSD	6-31G*	11	42	24	32	80	104	94	15.2	28	9	35	0.87	3.89	0.87
	EOM-CCSD	cc-pVDZ	11	36	57	31	89	56	96	10.6	17	43	26	0.98	0.60	0.83
	EOM-CCSD	cc-pVTZ	11	35	43	30	91	79	97	9.6	15	24	23	0.88	1.04	0.85
	EOM-CCSD	cc-pVQZ	11	31	56	30	95	58	97	9.7	12	40	23	0.96	0.97	0.85
PH_{3}	EOM-CCSD	STO-3G	8	33	45	27	93	76	101	4.1	18	33	19	0.38	0.29	0.44
	EOM-CCSD	cc-pVDZ	11	32	21	28	95	108	100	4.1	17	8	15	0.50	1.05	0.54
	EOM-CCSD	cc-pV(T+d)Z ^b	11	27	31	28	100	96	100	4.4	14	18	16	0.53	0.56	0.56
	EOM-CCSD	cc-pV(T+d)Z	11	28	24	27	100	105	101	3.5	14	10	13	0.47	0.73	0.53
AsH_3	EOM-CCSD	STO-3G	8	31	40	27	96	83	101	4.2	16	28	18	0.44	0.33	0.47
	EOM-CCSD	cc-pVDZ-PP	11	35	27	27	91	101	101	3.8	16	10	15	0.47	0.79	0.50
	EOM-CCSD	cc-pVTZ-PP	11	33	24	27	94	105	101	3.2	15	8	13	0.38	0.84	0.48
SbH_3	EOM-CCSD	STO-3G	8	26	36	27	102	89	101	3.6	12	24	15	0.50	0.33	0.48
	EOM-CCSD	cc-pVDZ-PP	11	29	27	27	98	101	101	3.1	12	10	14	0.47	0.67	0.45
	EOM-CCSD	cc-pVTZ-PP	11	29	26	26	98	103	102	2.6	11	9	12	0.35	0.72	0.43
BiH ₃	EOM-CCSD	cc-pVDZ-PP	11	40	40	27	82	83	101	2.9	15	15	15	0.36	0.40	0.39
	EOM-CCSD	cc-pVTZ-PP	11	36	23	26	89	106	102	2.1	15	6	12	0.22	0.89	0.34

^a: J_G and J_D are given in Table 1, $J_2 \approx (J_G + J_D)/2$. ^b: alternative assignment with r below s.

4. Discussion

s a) Orbital following

Pauling's concept of hybridization significantly influenced chemical understanding, pointing out that the shapes of molecules and the shapes of the bonding orbitals are intricately connected. ^{123, 124} This is expressed clearly in the *orbital following*⁶⁹

- ¹⁰ principle. For this principle to be used as a predictive tool for molecular structure rather than just an interpretive one, some mechanism is needed for determining the orbital shapes beforehand. The diabatic model provides such a method. At any particular angle, resonance mixes two geometry-independent ¹⁵ diabatic orbitals to produce a lone-pair orbital of determined
- shape. Application of the orbital orthogonality condition is then sufficient to determine the shapes of the bonding orbitals. If the orbital following principle holds, then the orbital angles will match the bond angles.
- 20 Figure 6 shows how this works in practice. First, Fig. 6a

contains a modified Walsh diagram^{53, 54} indicating how the lonepair *n* and antibonding σ^*_A orbitals change as structures are distorted from planarity. The diabatic orbitals are given simply as the \pm linear combinations of these orbitals at the planar 25 structure, the contribution of which from the central X atom is of the form of *sp* hybrids $2^{-1/2}(\psi_s \pm \psi_{pz})$.⁵² At the planar geometry the diabatic orbitals are degenerate and so the adiabatic orbitals result from full resonance between the diabatic orbitals. As the molecule distorts, this resonance is broken and the adiabatic 30 orbitals slowly transform to be more like the *sp* diabatic ones. Figure 6b shows how bonding hybrid orbitals are constructed for the special case in which there is no resonance interaction at all. In this case the adiabatic lone-pair orbital becomes simply one of the sp diabatic orbitals. The hybrid orbitals thus produced have $_{35} s^{1/2} p^{5/2}$ character and are oriented at a torsional angle of $\tau =$ $atan(1/2) = 26.6^{\circ}$, making the HXH bond angle $\theta = acos(-1/5) =$ 101.5° (Eqn. (1)).

Fig. 6. (a) Modified Walsh diagram showing how *sp* hybridized diabatic orbitals on X interfere to produce pure *p* and *s* adiabatic orbitals at the planar geometry, and how the adiabatic orbitals decouple as XH₃ molecules distort. (b) An X *sp* diabatic lone-pair orbital $2^{-1/2} \left(\frac{\psi_s + \psi_{pz}}{\psi_s + \psi_{pz}} \right)$ and its 3 orthogonal $s^{1/2} p^{5/2}$ bondable hybrid orbitals at a torsional angle of τ =26.6° and HXH bond angle θ =101.5°.

A key feature of this analysis is that it predicts the orbital orientations to be the same for both XH₃ molecules and XH₃⁺ ¹⁰ radical cations, so that the orbital following principle would then predict the same geometries for both species, neglecting the small changes that occur to orbital properties upon molecular ionization. This is because the key properties in the diabatic model are one-electron properties such as resonance energies and ¹⁵ vibronic coupling constants. Yet the geometries of these species

are known experimentally to be very different and the diabatic model simply anticipates this through the renormalization of the diabatic bond-angle apparent in Eqn. (11) – the torsional angle $2^{1/2}$ times large for XH₃ than for XH₃⁺ if the basic orbital ²⁰ properties are conserved. This change occurs owing to the electron occuration of the long pair orbital, the single electron

electron occupation of the lone-pair orbital: the single electron present in XH₃⁺ leads to a 2-state diabatic problem dominated by a single conical intersection seam whilst the double occupancy in XH₃ leads to 3 coupled diabatic states with 3 associated coupled ²⁵ conical-intersection seams.

Figure 7 shows how the angle between the bonding hybrid orbitals changes as a function of the HXH bond angle using simple 3-parameter diabatic models for NH_3 , NH_3^+ , BiH_3 , and BiH_3^+ . According to the orbital following principle, these two

- angles should always be equal. However, we see there are large deviations, with the angles between the bonding orbitals tending to the limit of $\theta = a\cos(-1/5) = 101.5^{\circ}$ depicted in Fig. 6b for diabatic orbitals in the absence of resonance. This angle comes from a torsional angle of $\tau = a\tan(1/2) = 26.6^{\circ}$ (Fig. 6b).
- ³⁵ Therefore the orbital following argument most directly applies only to the one-electron situation of the XH_3^+ series. Renormalization of the parameters for XH₃ changes these angles to $\tau = 2^{1/2} \operatorname{atan}(1/2) = 37.6^{\circ}$ and $\theta = \operatorname{acos}[3\sin^2(2^{1/2} \operatorname{atan}(1/2))/2 - 1/2] = 86.7^{\circ}$. These critical values are listed in Table 6 and are
- ⁴⁰ the expected equilibrium angles in the absence of resonance coupling. Figure 7 shows that the Bi hydrides approach the uncoupled limit much faster than the N hydrides owing to their smaller value of $2J_2/\lambda_2$. These results are qualitatively consistent

with our high-level calculations. For NH₃, the angles between the ⁶⁵ natural hybrid orbitals have previously been calculated¹²⁵ and the results are shown in Fig. 7. These are in realistic agreement with the simple predictions of the 3-parameter diabatic model.

The orbital following theory was developed to explain equilibrium structures whereas Fig. 7 examines properties at ⁹⁵ arbitrary bond angles. It is interesting to note that at the equilibrium geometries of NH₃ (108°) and BH₃ (90°), the hybrid angles from the diabatic theory are within 2° of the bond angles, in accordance with basic expectations. Indeed, the assumption that orbital following controlled the equilibrium angle in the ¹⁰⁰ absence of resonance expounded in Fig. 6b is used to construct Fig. 7, making for a consistent analysis.

Fig. 7. The angle between the natural hybrid bonding orbitals, determined assuming that they are orthogonal to the lone-pair orbital composition determined from the 3-parameter diabatic model, as a function of the HXH bond angle. Red- X=N XH₃ ($2J_2/\lambda_2 = 0.79$, θ_{m2} =86.7°), blue- X=Bi

 $(2J_u/\lambda_u = 0.38, \theta_{m2} = 86.7^\circ)$, solid lines- for XH₃ (ashed lines- for XH₃⁺ (n.b., using XH₃ parameters), points- calculated values¹²⁵ for NH₃.

Table 6. Maximum orbital overlap predictions for the equilibrium bond ⁷⁵ angles in the absence of resonance ($J_G = J_D = 0$).

Molecule	Angle	Equation	Value
XH_3^+	τ_{e}	atan(1/2)	26.6°
	θ_{e}	asin(-1/5)	101.5°
XH_3	τ_{e}	$2^{1/2} \operatorname{attan}(1/2)$	37.6°
	θ_{e}	$acos[3sin^2(2^{1/2}atan(1/2))/2-1/2]$	86.7°

b) τ_{m2} and θ_{m2} as universal constants

The orbital following arguments lead to the conclusion that the equilibrium bond angles in the absence of resonance are specified ¹⁴⁰ as in Table 6. These results can be summarized as indicating that $\tau_{m2} = \operatorname{atan}(1/2) = 26.6^{\circ}$ and $\theta_{m2} = \operatorname{acos}(-1/5) = 101.5^{\circ}$ are expected to be universal constants, independent of composition X, ionization, calculation type, and basis set. Indeed, the deduced values of θ_{m2} for all 12 fits to XH₃ molecules reported in Table ¹⁴⁵ 5 for X \neq N are between 100°-102°, independent of basis set and composition, averaging 101.1±0.5°. For NH₃, the same result holds for the STO-3G basis but the addition of the N 3*s* Rydberg orbital perturbs the picture, with the larger basis sets yielding 97°. Nevertheless, the magnitude of this anomaly is small and

¹⁵⁰ significant understanding of even NH₃ can be obtained assuming that universality holds. However, focusing on this discrepancy,

14 | Journal Name, [year], [vol], 00–00

This journal is © The Royal Society of Chemistry [year]

70

90

we see that whilst for P-Bi the influence of the Rydberg states can be accounted for simply by the extended diabatic model, the effects for N are more profound and act to change slightly the fundamental nature of the valence orbitals.

- In Section 4g the properties of XH_3^+ are considered from a quantitative perspective. Preliminarily, we note that the CCSD(T)/aug-pwCVQZ calculated equilibrium bond angles are 120°, 113°, 112°, 112°, and 109° for NH_3^+ - BiH₃⁺, respectively. These naively appear to be consistent with the expected
- ¹⁰ asymptotic limit of the universal angle of = 101.5° .

The expectation that θ_{m2} is a universal constant arises as this parameter most directly affects the ground-state equilibrium geometry. At a crude level of approximation, ignoring the orbital dependence of the on-site repulsion between electron pairs, etc.,

- 15 one expects $\theta_{mG} = \theta_{mD} = \theta_{m2}$ and hence it is of interest to see if θ_{mG} and θ_{mD} also appear as universal constants. Table 5 shows this not to be the case, however, as θ_{mG} and θ_{mD} show fluctuations that there average (nb., Eqn. (12)) θ_{m2} does not. While part of these fluctuations arises from the difficulty of
- 20 robustly fitting the parameters, part is also systematic. θ_{m2} is concerned mostly with the properties of the ground-state g and its "twin state" d_{1}^{52} the other parameters are controlled in addition by the properties of the single excitation s, the state that directly interacts with the key Rydberg state r. Even at the STO-3G level,
- ²⁵ θ_{mG} and θ_{mD} are differentiated, however, with θ_{mG} becoming the largest of the pair. When the energy of the diabatic Rydberg state R is lower than that for the diabatic valence state S (in Table 5 this is for X=N and for the X=P alternate assignment), this difference is enhanced, but when the valence state is the lowest

30 then this difference is reversed.

35

Table 7. Parameters from the effective two-state model fit to semiempirical potential energy surfaces for XH₃ molecules evaluated using CAS(2,2).

XH_3	Method	J_2 / eV	λ_2 / eV	$2J_2/\lambda_2$	$\tau_{m2} \: / \: ^{\circ}$	$\theta_{m2} \ / \ ^{\circ}$
NH_3	CNDO/S	4.9	8.9	1.09	20	99
PH_3	INDO/S	2.9	7	0.84	24	91
NH_3	CNDO/2	4.2	13	0.65	23	94
PH_3	CNDO/2	2.8	10	0.55	22	96
AsH_3	CNDO/2	2.4	10	0.49	23	94

Finally, we consider the predictions of simple but intuitive semiempirical molecular-orbital methods such as CNDO/S, INDO/S, and CNDO/2. Historically, results from such calculations provided the first glimpses into quantitative understanding of 40 molecular properties and aided in producing much of the chemical intuition that we inherit today. Fitted model parameters for XH₃ series members are given in Table 7 and show larger deviations from the universal angle $\theta_m = 101.5^\circ$ than do the ab initio ones. This is at first surprising as simpler computational 45 methods often neglect the subtleties that cause reality to differ from simplistic predictions. However, these methods also suffer from the well-known problem that different parameters must be used to describe ground-state geometries and reactivity (the "/2" parameterizations) than are used to describe spectroscopy (the 50 "/S" parameterizations). Figure 2 demonstrates this property,

showing that the CNDO/2 ground-state surfaces closely parallel the ab initio ones whilst CNDO/S predicts NH₃ to be planar $(2J_2/\lambda_2 = 1.09)$. The diabatic analysis makes the primary cause

for these phenomena clear: explicit inclusion of the key Rydberg 55 orbital is required for a fully robust semi-empirical theory. These method fail here not because they omit subtle effects but rather because their nature does not allow them to simultaneously describe spectroscopy and structure and hence they are fundamentally incapable of recognizing the importance of the 60 universal angle.

c) The critical importance of $2J_2/\lambda_2$ in linking molecular structure to molecular spectroscopy

That θ_{m2} (or equivalently τ_{m2}) is a universal parameter means that at the simplest level only two parameters, say J_2 and $_{65}$ λ_2 , control the ground-state and twin-state properties calculated for each molecule by each computation method. However, the critical ratio $2J_2/\lambda_2$ controls many of these properties including the location of the XH₃ adiabatic ground-state minimum which from Eqn. (11) and standard 2-state diabatic relationship is^{52, 126}

$$\tau_e = \sqrt{2}\tau_{m2} \left[1 - \left(\frac{2J_2}{\lambda_2}\right)^2 \right]^{1/2}.$$
 (15)

Hence now in the effective two-state diabatic description just one adjustable quantity controls the equilibrium bond angle.

As an initial evaluation of the usefulness of this result, we predict τ_e from the TZP values of $2J_2/\lambda_2$ listed in Table 5 (see 75 also Fig. 5i). This ratio decreases dramatically between NH₃ and PH₃ (0.85 to 0.53) but then decreases slowly through AsH₃, SbH₃, and BiH_3 (0.48, 0.43, and 0.34). From Eqn. (15), the anticipated equilibrium bond angle θ_e therefore changes from 109° to 95° to 93° to 92° to 90° for NH₃ to BiH₃, paralleling the observed (Table 80 1) values of 108°, 93°, 92°, 92°, and 90°, respectively. This portrays a deep relationship connecting the ground-state equilibrium angle and well depth with the vertical excitation energy to the doubly excited twin state d at the planar geometry.

d) Predicting spectroscopic transition energies knowing just 85 the ground-state equilibrium torsion angle and well depth.

To exploit the simplicity of the effective two-state diabatic model with only two free parameters, Eqn. (15) can be rearranged to determine the critical ratio $2J_2/\lambda_2$ knowing *only* the observed or calculated equilibrium bond angle τ_{e} :

$$\frac{2J_2}{\lambda_2} \approx \frac{2J_u}{\lambda_u} = \pm \left[1 - \frac{1}{2} \left(\frac{\tau_e}{\tau_{m2}}\right)^2\right]^{1/2}.$$
 (16)

From this, the vertical transition energies to the d state at the planar and equilibrium geometries can immediately be obtained if the observed or calculated ground-state well depth ΔE^{\ddagger} is known⁵²

$$\varepsilon_{d}(0) - \varepsilon_{g}(0) = 4 |J_{u}| = 4\Delta E^{\ddagger} \left(\frac{2|J_{u}|}{\lambda_{u}}\right) \left(1 - \frac{2|J_{u}|}{\lambda_{u}}\right)^{-2}$$

$$\varepsilon_{d}(\tau_{e}) - \varepsilon_{g}(\tau_{e}) = 2\lambda_{u} = 4\Delta E^{\ddagger} \left(1 - \frac{2|J_{u}|}{\lambda_{u}}\right)^{-2}.$$
(17)

Table 8 shows results for $2J_u/\lambda_u$, J_u and λ_u evaluated using for τ_e and ΔE^{\ddagger} values taken (i) from experimentally refined surfaces for NH₃,⁵⁷ PH₃,⁵⁹ and SbH3⁶⁰ or else, for BiH₃, high-level fulldimensional potential-energy surfaces, (ii) from CCSD(T)/aug-100 cc-pwCVQZ calculations, and (iii) the analogous calculated quantities $2J_2/\lambda_2$ and $4J_2$ from Table 5 evaluated using actual excited-state energies from EOM-CCSD/VTZ calculations using The three sets of $2J/\lambda$ values are in good Eqn. (13).

This journal is © The Royal Society of Chemistry [year]

www.rsc.org/xxxxxx

ARTICLE TYPE

Table 8. Estimates of $2J_u/\lambda_u$ and the related energy of the double excitation twin state *d* at the planar geometry, $4J_u$, and at the ground-state equilibrium geometry, $2\lambda_u$, based on either observed, CCSD(T)/aug-cc-pwCVQZ, or CCSD/VTZ calculated ground-state equilibrium bond angles τ_e and inversion barrier heights ΔE^{\ddagger} taken from Table 1, obtained assuming the universality of $\theta_{m2} = a\cos(-1/5) = 101.5^{\circ}$ (Eqns. (16)-(17)); the EOM-CCSD/VTZ multi-state calculated values of $2J_2/\lambda_2$ and $4J_2$ evaluated without this assumption from Table 5 are also provided for comparison.

		0	bserved			CC	SD(T)/a	ug-cc-pv	wCV()Z		EOM-CCSD/VTZ						
XH ₃	$\tau_e/^{o}$	ΔE^{\ddagger} eV	$2J_{\rm u}/\lambda_{\rm u}$	$4J_{\mathrm{u}}$ eV	$\begin{array}{c} 2\lambda_u \\ eV \end{array}$	τ_e	ΔE^{\ddagger} eV	$2J_{\rm u}/\lambda_{\rm u}$	$4J_{\mathrm{u}}$ eV	$\begin{array}{c} 2\lambda_u \\ eV \end{array}$	τ_e_{\circ}	ΔE^{\ddagger} eV	$2J_{\rm u}/\lambda_{\rm u}$	$4J_{\rm u}$ eV	$\begin{array}{c} 2\lambda_u \\ eV \end{array}$	$2J_2/\lambda_2$	$4J_2$ eV	$\begin{array}{c} 2\lambda_2 \\ eV \end{array}$
NH_3	21.4	0.22	0.82	23 ^a	28 ^a	22.0	0.23	0.81	21 ^a	24 ^a	22.8	0.27	0.79	20.4 ^a	26 ^a	0.85	38	45
PH_3	32.9	1.38 ^b	0.48	10^{b}	21 ^b	32.5	1.44	0.50	12	20	32.5	1.5	0.50	12.1	24	0.53	14	27
AsH_3	33.8	1.38 ^b	0.44	8 ^b	17 ^b	33.5	1.76	0.45	11	19	33.5	1.82	0.45	11.0	24	0.48	13	26
SbH_3	34.2	1.63 ^b	0.41	8 ^b	19 ^b	33.7	1.92	0.44	11	16	33.8	1.99	0.44	10.9	25	0.43	10	24
BiH ₃	35.1	1.67 ^b	0.36	6 ^b	16 ^b	34.8	2.55	0.38	10	29	34.7	2.65	0.38	10.7	28	0.34	9	25

s^a: large errors arise from valence/Rydberg orbital inversion modifying τ_m combined with the instability of Eqn. (17) as of $2J_u/\lambda_u \rightarrow 1$.

^b: ΔE^{\ddagger} extrapolated from observed transitions and/or calculated data only up to 0.5 eV.

agreement with each other, although the differences are largest for NH_3 : 0.82 from Eqn. (15) using observed data, 0.79 from this equation using CCSD/VTD data, and 0.85 from the more general

- ¹⁰ Eqn. (13). However, reasonable agreement for the spectroscopic transition energies is only found for PH₃ to BiH₃. For example, the predicted vertical excitation energies for NH₃ are 28 eV from Eqn. (17) using experimental data, 24 26 eV using calculated data, and 45 eV from the actual EOM-CCSD calculations. This ¹⁵ problem arises as Eqn. (17) becomes unstable as $2J_{\nu}/\lambda_{\nu} \rightarrow 1$,
- The problem arises as Eqn. (17) becomes unstable as $2J_u/\lambda_u \rightarrow 1$, producing large errors in the transition energy from small ones in $2J_u/\lambda_u$. Hence in practice this method is only useful for estimating excited-state energies when the lone pair is strongly localized on one side of the heavy atom.

20 e) Predicting the ground-state torsional potential energy surface knowing just the ground-state equilibrium torsion angle and well depth.

Figure 8 shows the torsional potentials from the experimentally refined (for NH₃,⁵⁷ PH₃,⁵⁹ and SbH₃⁶⁰) or, for BiH₃, high-level ²⁵ full-dimensional potential-energy surfaces. These are compared to CCSD(T)/aug-cc-pwCVQZ surfaces and are in excellent

- agreement for the low-energy region to which the experimental surfaces were fitted. The CCSD(T)/aug-cc-pwCVQZ surfaces are fitted using: a 3-parameter diabatic model with τ_{m2} variable ³⁰ (unbroken lines), a 2-parameter diabatic model with τ_{m2} =
- atan(1/2) = 26.6° (short-dashed lines), and a two-parameter fit as quartic polynomials (long-dashed lines). The 3-parameter fits provide excellent descriptions of the torsional potentials, often with RMS errors less than 1 meV, but the fitted parameters have ³⁵ no obvious physical meaning.⁵² However, the 2-parameter model fits lead to realistic predictions of excitation energies, as
- fits lead to realistic predictions of excitation energies, as discussed earlier, and for most molecules provide excellent fits of the potentials out to large torsional angles. In contrast, 2parameter fits using a quartic Taylor-expansion function produce
- ⁴⁰ very poor approximations to the vibration frequencies and well shape, particularly for small $2J_2/\lambda_2$. These results show that assuming the universal diabatic angle leads to simple and accurate methods for predicting the ground-state surface knowing

only the equilibrium torsional angle and well depth.

Fig. 8. Offset CCSD(T)/aug-pwCVQZ(-PP) torsional potentials for the XH₃ series (solid circles) are compared to results from full-dimensional surfaces (open circles) for BiH₃ and those as refined to fit experimental data for NH₃, PH₃, and SbH₃, and fitted by 3-parameter (solid lines), two-parameter (assuming $\theta_{m2} = atan(-1/5) = 101.6^{\circ}$) (short-dashed line) models as well as quartic potentials (long-dashed lines). Note that only observed torsional levels up to ca. 0.5 eV in energy above the minima were available for inclusion in the surface refinements.

This journal is © The Royal Society of Chemistry [year]

f) Why NH_3 is so different to $PH_3 - BiH_3$.

Figures 5g and 5h show that the sharp change in $2J_2/\lambda_2$ found between NH₃ and PH₃ comes from similar sharp changes in the individual properties $2J_2$ and λ_2 , except that the change for λ_2 is s smaller than that for $2J_2$. Both originate from the properties of the diabatic *sp* orbitals: the resonance integrals scale like

$$2J_2 = \left\langle \psi_s + \psi_p \left| H \right| \psi_s - \psi_p \right\rangle \tag{18}$$

where ψ_s and ψ_p are the wavefunctions for the X orbitals,

- ¹⁰ whilst λ_2 tells the energy of swapping one of the linear combinations for the other with the hydrogens placed at the diabatic angle τ_{m2} . Naively, one could expect the resonance energy to scale like the one-electron integrals, a simple indication of which is given by the atomic parameter β used in semi-¹⁵ empirical theories, and the values developed for PM6¹²⁷ for N-Bi are indicated in Fig. 5c. Similarly, the reorganization energy could be expected to scale with bond energies as swapping over the diabatic orbitals breaks chemical bonds, and so the
- CCSD/VTZ-calculated atomization energies E_{atom} are also shown ²⁰ in Fig. 5c. However, neither quantity mimics the behaviour of J_2 or λ_2 . A quantity that does behave similarly is the atomic Pauling electronegativities and these are shown in Fig. 5o. It is difficult to establish a connection, however, as the electronegativities introduce only small changes whereas J_2 and λ_2 change markedly.
- ²⁵ More formally, the full list of contributions to J_2 at the CAS(2,2) level evaluated at the planar geometry can be expressed in terms of standard integrals from Hartree-Fock theory. This lists one-electron integrals and many two-electron integrals, one of which is the difference in the on-site repulsion integral (often
- ³⁰ called the "Hubbard U") for two electrons in the *n* orbital and for two electrons in the σ_A^* orbital. We focus on this contribution.
- Figure 9 shows orbital isodensity surfaces determined using HYPERCHEM¹²⁸ for the σ_A^* orbitals of NH₃ and AsH₃ at their planar geometry evaluated using the STO-3G and aSTO-3G bases
- ²³⁵ (to which 6-31G* results are very similar). For NH₃, the antibonding orbital has much hydrogen character and the orbital is spatially extended. The hydrogen orbitals interact with the Rydberg orbital in an *antibonding* way for NH₃ and in a *bonding* way for AsH₃. This fundamental change occurs owing to the ⁴⁰ reversed orbital ordering:

The antibonding combination found for NH₃ introduces a nodal surface between the hydrogens and the outer Rydberg shell, the effect of which is very apparent in Fig. 8: Rydbergization of the ⁴⁵ σ^*_{A} orbital in NH₃ compresses the electron density into a tight

- ⁴⁵ O A orbital in 1913 compresses the electron density into a tight volume which has a profound effect on the orbital energy. Placing two electrons into this compressed orbital therefore develops a large electron-electron repulsion. It is this repulsion that becomes manifest in the large value of the resonance integral
- $_{50} J_2$ for NH₃. However, when the valence orbital is lower than the Rydberg orbital, the valence-dominated linear combination has bonding character, stabilizing the σ^*_A orbital to reduce the resonance energy. As Fig. 8 shows, this effect on the large AsH₃ molecular orbital is small, so it is really the Rydbergization-
- ss driven orbital compression of NH₃ that provides for its unusually large HXH bond angle of 108°.

Further evidence supporting this hypothesis comes from

This journal is © The Royal Society of Chemistry [year]

Fig. 9. Isodensity surfaces of the unoccupied σ_{A}^{*} valence orbital of NH₃ and AsH₃ that controls hybridization, at its planar D_{3h} structure, evaluated using the Hartree-Fock method.

looking at the J_D/J_G ratio shown in Fig. 5j: this is roughly constant at ~ 1.4 for the STO-3G basis but with triple-zeta bases 150 it is 1.80 for NH₃, 1.10 for PH₃, and 1.17 for AsH₃. The large jump in the resonance energy explicitly involves double occupancy of σ^*_{A} . This effect was noted earlier in that the diabatic parameters for NH3 evaluated using STO-3G and ccpVQZ are very similar for all properties except $J_{\rm D}$, the only 155 property sensitive to the "Hubbard U" of the σ^*_A orbital. Further, the discontinuity in the reorganization energy λ_2 also flows from the orbital compression apparent in Fig. 8: the diabatic orbitals made by combining the lone-pair orbital *n* with σ^*_A , and bending the compressed orbital in one direction will lead to more bonding 160 character whist the other direction will lead to more antibonding character, increasing the reorganization energy. The effect is not as pronounced as the resonance energy involves the interaction of two electrons within the same compressed orbital whereas the reorganization energy involves the interaction of the compressed 165 orbital with its weakly perturbed environment.

g) Why XH_3^+ radical cations have different geometries and inversion barriers to XH_3 molecules.

As discussed earlier, the renormalization apparent in Eqn. (11) doubles the apparent resonance energies and reorganization ¹²⁵ energies whilst increasing the diabatic angle by a factor of 2^{1/2} on going from XH₃⁺ to XH₃ assuming that the properties of the orbitals are unchanged. This arises owing to the increased number of electrons and the appearance of new coupled conical-intersection seams. However, the ionization process does result ¹³⁰ in a rearrangement of the remaining electrons and hence some changes to orbital properties are actually expected.

Table 8. Comparison of CCSD(T)/aug-pwCVQZ calculated properties of XH₃ neutral and XH₃⁺ radical cation species, interpreted assuming that the diabatic angle controlling the limiting values down columns in the ¹¹⁰ periodic table is a universal constant (see Table 6).

XH ₃		Neu	ıtral		Radical cation					
	τ_e	θ_e	ΔE^{\ddagger} eV	$2J_{\rm u}/\lambda_{\rm u}$	τ_e	θ_{e}_{\circ}	ΔE^{\ddagger} eV	$2J_{\rm u}/\lambda_{\rm u}$		
NH ₃	22.0	106.8	0.23	0.81	0	120	-	1.05		
PH ₃	32.5	93.9	1.44	0.:50	15.5	113.2	0.13	0.81		
AsH ₃	33.5	92.5	1.76	0.45	16.4	112.4	0.18	0.79		
SbH ₃	33.7	92.2	1.92	0.44	16.4	112.4	0.28	0.79		
BiH ₃	34.8	90.7	2.55	0.38	19.6	109.3	0.42	0.67		
Limit	37.6	86.7			26.6	101.5				

Table 8 compares the CCSD(T)/aug-pwCVQZ calculated ground-state properties of the XH₃ molecules with those of the XH₃⁺ radical cations. The radical cations tend in the limit of a very heavy central atom $(2J_u/\lambda_u \rightarrow 0)$ to quite different bond angles just as the theory predicts based on the absence of *d* the

- s angles, just as the theory predicts based on the absence of *d* the states in the radical cation (Table 6). However, the deduced values of $2J_u/\lambda_u$ are uniformly larger for the radical cations, indicating that the resonance energy is more sensitive to occupation than is the reorganization energy. This effect is most
- ¹⁰ significant for NH₃⁺ as for it $2J_u/\lambda_u = 1.05$ and so the ion is planar. So while the generic renormalization effect causes all ions to have larger HXH bond angles than their corresponding neutral molecules, the production of high-symmetry planar structures *requires* in addition changes in the orbital properties.
- ¹⁵ The Rydbergization compression effect operates for this cation just as it does for neutral ammonia, making its properties distinctly different from those of the others, but this does not explain why $2J_u/\lambda_u$ increases for all molecules. Its explanation is related, however: the positive charge changes the orbital shapes
- ²⁰ to attract electrons closer to the nucleus, confining their volume. The effect is again larger at the planar geometry than at localized geometries, hence $2J_u/\lambda_u$ increases. Diabatic description of the bonding thus captures the chemical insight that goes into VSEPR theory, explains the orbital dependencies embodied into Walsh's ²⁵ rules,^{53, 54} and quantifies how close any molecule is to being at
- ²⁵ rules, ^{53, 54} and quantifies how close any molecule is to being at the boundary between low-symmetry and high-symmetry structures.

We do not provide full quantitative analysis of the potential energy surfaces for the XH_3^+ radical cations, however, as within

- ³⁰ the valence-bond description more terms come into play than just those involving $n \rightarrow \sigma^*{}_A$ and these would need to be included. These terms involve $\sigma_A \rightarrow n$ excitation. Intuition from VSEPR theory indicates that vibronic couplings associated with this new excitation are small as it predicts the associated dications to be ³⁵ planar. Hence they are ignored in the previous discussion, and in
- Table 6.

5. Conclusions

Our general diabatic formalism for closed-shell chemical reactions is expanded by inclusion of Rydberg orbitals, allowing

- ⁴⁰ it to quantitatively analyze the results from high-level calculations of the ground and excited states of XH₃ molecules. Generally, this results in a 6-state 11-parameter diabatic model that simultaneously fits ground-state and excited-state potentialenergy surfaces down to very small HXH angles of order 70°. In
- ⁴⁵ addition, our formalism offers a much simpler diabatic description in terms of a renormalized effective two-state model containing only 3 parameters. The two states used in this model are the ground-state g and its "twin state", in this case the double valence excitation $d (n \rightarrow \sigma^*_{A}, n \rightarrow \sigma^*_{A})$. The conclusions drawn ⁵⁰ from application of the model are:

(i) Reversal of Rydberg and valence orbital ordering. The most important feature revealed by the diabatic model is that the ordering of the lowest Rydberg orbital and the σ^*_A valence orbital interchanges between NH₃ and AsH₃, with the two being

⁵⁵ nearly degenerate for PH₃ but ordered more like AsH₃ than NH₃; for NH₃, the Rydberg orbital is the lowest in energy. As the diabatic model uses different functional forms for the properties of these orbitals, the near degeneracy for PH₃ produces homogenized orbitals and therefore presents a worst-case ⁶⁰ scenario for model application. The results obtained are still

meaningful and useful, however.

(ii) Rydbergization and reassigned absorption spectra for NH₃

*and PH*₃. While the electronic-structure calculations used to parameterize these diabatic models are required to show balance ⁶⁵ between absolute accuracy and interpretability, their usefulness is demonstrated by the introduction of new spectral assignments for the VUV electronic absorption of NH₃. Bands in the one-photon absorption spectrum observed at 18.4 eV and at 30-33 eV previously assigned to double excitations involving Rydberg ⁷⁰ transitions are reassigned to the valence single-excitation

resonances $n \rightarrow \sigma^*_E$ and a combination of $\sigma_E \rightarrow \sigma^*_E$ and $\sigma_E \rightarrow \sigma^*_{A_2}$ respectively. The 18.4 eV band had been previously assigned¹¹⁴ as $n \rightarrow 3s, n \rightarrow$? and presumed to be associated with the IP observed at 24 eV that is assigned¹¹⁹ to the double excitation

n→3s,n→∞. Properties of the diabatic model are key to this reassignment as the n→3s,n→3s excitation dr is found to be counter-intuitively at higher energies than n→3s,n→∞ and ca. four times the energy of r, the corresponding single excitation n→3s. This result arises because of the strong coupling between the Rydberg and valence states, an effect described by Mulliken as "Rydbergization",^{70, 71} and the anomalous orbital ordering for NH₃. Our theoretical analysis also independently confirms previous experimentally based deductions^{118, 120} that the lowest-energy transition in PH₃, which is commonly still labelled as a ss Rydberg absorption,¹¹⁷ is in fact dominantly valence in nature.

(iii) The number of electrons occupying the interacting orbitals controls the number of critical conical intersections to rescale the magnitudes of the interactions and the extent of distortion produced. For the XH_3^+ radical cations, only the conical intersection between G and S critically controls structure, but for XH₃ the extra electron generates conical intersections between S and D and between G and D that qualitatively change the groundstate structure. This naively doubles the effective resonance couplings and reorganization energies and increases the diabatic storsional angle by a factor of $2^{1/2}$. Hence the HXH bond angles in the radical cations are always much larger than those in the corresponding neutral molecules.

(iv) Universality of the diabatic angle. The critical prediction of the diabatic model, that the fundamental nature of the diabatic 100 orbitals is always preserved, is established for both XH₃ and XH_3^+ once the required parameter renormalization is taken into account. This hold well for molecules in which the valence state is lowest in energy, independent of X and calculation type. For XH₃ molecules we fit $\theta_{m2} = 101.1 \pm 0.5^\circ$, very close to the value 105 of $a\cos(-1/5) = 101.5^{\circ}$ expected for maximum overlap with bonding orbitals orthogonal to sp diabatic orbitals. Deviations of a few degrees are found when the Rydberg orbital is lowest in energy, indicating that this scenario leads to a significant perturbation in the nature of the diabatic orbitals. As a result, the 110 expected bond angles in the absence of resonance (i.e., the equilibrium structure expected as the row number in the periodic table becomes infinite) are therefore 101.5° for XH_3^+ and 86.7° for XH₃ (Table 6).

(v) $2J_2/\lambda_2$ controls structure and hybridization. This identification of one of the three parameters in the effective twostate model as a universal constant leaves only two parameters, say J_2 and λ_2 , left to describe simultaneously the properties of the ground state g and its twin state d. Significantly, the value of the equilibrium ground-state equilibrium HXH bond angle θ_e then ¹²⁰ becomes controlled only by the ratio $2J_2/\lambda_2$. In the limits of $2J_2/\lambda_2=0$ and $2J_2/\lambda_2\geq 1$ the XHX bond angles then become $\theta_e =$ 86.7° and 120°, respectively, using Eqns. (1) and (15), see Table 6. The EOM-CCSD/VTZ calculated values of $2J_2/\lambda_2$ quantitatively track the observed bond angles within this range, ¹²⁵ including reproduction of the anomalously large value for NH₃.

(vi) The size of the sp hybrid orbital controls $2J_2/\lambda_2$ and hence

18 | Journal Name, [year], [vol], 00–00

This journal is © The Royal Society of Chemistry [year]

weather molecules are planar or pyramidal. The values of J_2 , λ_2 , and hence $2J_2/\lambda_2$ are related to the size of the *sp* diabatic orbital of the central atom. The reorganization energies λ reflect the cost of interchanging one *sp* linear combination in a bonding

- s configuration with the other, in the presence of the hydrogens. The resonance energies J reflect the interaction between an electron in one of the *sp* linear combinations with the other. Both properties clearly scale with *sp* orbital size but the resonance energy scales quadratically and hence $2J_2/\lambda_2$ also scales with size.
- ¹⁰ When XH₃ molecules are ionized to make XH₃⁺, the resulting orbital contraction towards the heavy-atom nucleus again increases this ratio, making it > 1 for NH_3^+ , forcing this ion to be planar.
- (vii) The Rydberg-valence orbital reordering produces a discontinuous change in sp hybrid orbital size. In any simple theory describing the ground-state structure of the XH₃ series, the most significant question of interest is the large difference between the bond angle of NH_3 and the other molecules. The diabatic model associates this discontinuity with an abrupt change
- ²⁰ in $2J_2/\lambda_2$, linking it quantitatively to the analogous discontinuity in the well depth and also to the discontinuity in the energies of the Rydberg excitations. Its origin stems from the inversion of the ordering of the Rydberg and valence orbitals that occurs for NH₃ that fundamentally changes the nature of the twin state (and
- ²⁵ hence the ground state) from one that is *stabilized* by Rydbergization in PH₃-BiH₃ to one that is significantly *compressed and destabilized* by it in NH₃. So while the cause of Rydbergization is the same in NH₃ and the other molecules, its manifestations are completely different. In this way, a close link
- ³⁰ is also established between the equilibrium structure and well depth in NH₃ and the properties of diabatically treated photodissociation reactions that directly exploit Rydbergization.^{49, 50, 70, 71, 129}
- (viii) Diabatic models unify molecular structural, kinetic, and ss spectroscopic properties. A tight connection is established between the ground-state structure and reactivity of these molecules and their spectroscopy, as has been achieved in the past using diabatic models only for electron-transfer reactions.²⁰ For example, this allows the details of the ground state surface
- ⁴⁰ out to 70°, including the equilibrium bond angle and well depth, to be determined purely from the properties of the excited states evaluated at the 120° planar D_{3h} geometry. A central concept of the diabatic approach is that key factors controlling ground-state properties can be determined through looking at excited-state
- ⁴⁵ properties, a technique not available to established chemical interpretation approaches such as VSEPR theory. Conversely, it is also possible to predict excited-state transition energies purely

95 Appendix. Mathematical Symbols used.

from the shape of the ground-state surface.

- *(ix) Orbital following.* Pauling's ideas concerning ⁵⁰ hybridization led to a revolution in chemical understanding^{123, 124} by showing how *s-p* orbital mixing could produce shapes that pointed in the directions of bonds. The insight is that bonds form at specific angles to maximize overlap with these orbital shapes, a process known as *orbital following.*⁶⁹ While much of modern ⁵⁵ chemical understanding, including the VSEPR theory, is based on
- this principle, detailed calculations have shown that significant deviations often occur, especially for distorted structures.^{69, 125} We see that the principle applies to equilibrium structures, making it useful in VSEPR theory and in hybridization analysis,
- ⁶⁰ and in our diabatic approach for determining the equilibrium bond angle in the absence of resonance coupling. The diabatic model then reproduces the deviations from orbital following found for non-equilibrium structures.

(x) Answer to the VSEPR riddle- what really is the 65 characteristic XHX bond angle? Whilst we find intuition derived from VSEPR theory to be very helpful in understanding parameters in the diabatic model, the standard description of the XH₃ series by VSEPR is confused. The traditional approach was that molecules with 4 electron pairs were intrinsically tetrahedral $_{70}$ (θ =109.5°) and that electronegativity differences between the atoms exploited angular size differences between bonding and lone-pair electrons to provide modification.65 Indeed, a discontinuity in electronegativity is found between N and P that parallels the bond-angle discontinuity (Fig. 5a and 5o). VSEPR 75 theory has now been modified to instead view the intrinsic geometry as octahedral,^{66, 67} implying that the lone pair expands to fill all uncoordinated sites. However, actual bond angles are determined by evoking minimum ligand radii, completely bypassing the electronegativity argument for the XH₃ series (at 80 least).6

So what is the intrinsic HXH angle, 109.5° or 90°? What about XH₃⁺? The diabatic model gives simple answers to these questions: the parameter $\theta_{m2} = a\cos(-1/5) = 101.5^{\circ}$ is a universal constant, and the number of coupled electrons modulates this to ss indicate intrinsic angles of 101.5° for XH₃⁺ and 86.7° for XH₃

- (Table 6). By tuning the resonance energy to reorganization energy ratio, any value between these and 120° can be achieved. The unusual angle in NH₃ arises from the electronegativity-driven discrete change in the ordering of lowest Rydberg orbital and the
- $_{90} \sigma_{A}^{*}$ antibonding orbital of NH₃, an effect that significantly changes the repulsion of electrons *within* an electron pair. Even for NH₃⁺ this effect holds as the resonance energy is actually an orbital property *independent* of occupation. These dominant controlling effects are not included within VSEPR theory.

Variable Class	Description	Variations
		τ , θ - general variables, simply related by Eqn. (1)
0	XH ₃ improper torsional	τ_e, θ_e - adiabatic equilibrium values
au, heta	angle, HXH bond angle	$\tau_{mG}, \tau_{mD}, \theta_{mG}, \theta_{mD}$, - local diabatic-model minimum angles if potential harmonic, Eqn. (6)
		τ_{m2}, θ_{m2} - fitted effective 2-state model parameters, Eqns. (11)-(12).
		\mathbf{H}^{3D} - expressed in basis of delocalized diabatic states $\{G, S, D\}$ depicting the ground state
н	Electronic Hamiltonian matrix	(G), single excited state (S), and double excited state (D).
п		$\mathbf{H}^{\mathbf{3L}}$ - expressed in basis of localized diabatic states $\{L, C, R\}$ centred on the L (left)
		pyramidal structure, C (central) planar structure, and R (right) pyramidal structure.
$\left arphi_{s} ight angle$, $\left arphi_{p} ight angle$	X atomic orbitals	

J	Resonance integral	$J_2 = \frac{1}{2} \langle \psi_s + \psi_p H \psi_s - \psi_p \rangle \Big _{\tau=0} used in effective 2-state model, Eqns. (11), (12), (18); a quarter of the energy difference between g and d adiabatic states at \tau = 0.J_G, J_D - this allowing for differences between the G and D states, Eqns. (2) and (5).$						
۵	Reorganisation energy	λ_2 is the effective 2-state model parameter, Eqns. (11) and (12); a half of the energy lifference between the <i>g</i> and <i>d</i> adiabatic states states at $\tau = 0$. λ_G, λ_D - local quantities allowing for differences between the <i>G</i> and <i>D</i> diabatic states, lefined only for harmonic potentials, Eqn. 8.						
2J / J	General ratio controlling properties of diabatic model Hamiltonians	$2J_2 / \lambda_2$ for the effective 2-state model, ≥ 1 indicates if the molecule is planar, otherwise pyramidal; Eqns. (11) and (12). $2J_u / \lambda_u$ is the value fitted assuming the diabatic angles τ_{m2}, θ_{m2} are universal constants (Table 6). $2J_G / \lambda_G$ and $2J_D / \lambda_D$ are local quantities allowing for differences between the <i>G</i> and <i>D</i> diabatic states						
k	Harmonic force constant							
k_4	Quartic force constant							
α	Linear vibronic coupling constant	$ \begin{aligned} \alpha_{G} &= \left\langle \Psi_{G} \left \partial \mathbf{H} / \partial \tau \right \Psi_{S} \right\rangle \Big _{\tau=0} \\ \alpha_{D} &= \left\langle \Psi_{D} \left \partial \mathbf{H} / \partial \tau \right \Psi_{S} \right\rangle \Big _{\tau=0} \end{aligned} $						
β	Quadratic vibronic coupling constant	$\begin{split} \beta &= \left\langle \Psi_{G} \left \partial^{2} \mathbf{H} / \partial \tau^{2} \left \Psi_{D} \right\rangle \right _{\tau=0}, & \text{always set to } 0 \\ \beta_{S} / 2 &= \left\langle \Psi_{S} \left \partial^{2} \mathbf{H} / \partial \tau^{2} \left \Psi_{S} \right\rangle \right _{\tau=0} - k, & \text{always set to } 0 \\ \beta_{D} / 2 &= \left\langle \Psi_{D} \left \partial^{2} \mathbf{H} / \partial \tau^{2} \left \Psi_{D} \right\rangle \right _{\tau=0} - \beta_{S} / 2 - k, & \text{always set to } 0 \end{split}$						
γ	Cubic vibronic coupling constant	$\begin{split} \gamma_{G} &= \left\langle \Psi_{G} \left \partial^{3} \mathbf{H} / \partial \tau^{3} \right \Psi_{S} \right\rangle \Big _{\tau=0} \\ \gamma_{D} &= \left\langle \Psi_{D} \left \partial^{3} \mathbf{H} / \partial \tau^{3} \right \Psi_{S} \right\rangle \Big _{\tau=0} \end{split}$						
E _R	Unperturbed Rydberg state energy	$\langle \Psi_R \mathbf{H} \Psi_R \rangle$						
Γ _R	On-site repulsion between two electrons occupying the Rydberg orbital	Energy of the double Rydberg excitation above the ground state DR less twice the difference between E_R and the ground0state energy						
V _{RV}	Rydberg-valence interaction energy	$\langle \Psi_R \mathbf{H} \Psi_V \rangle$						

30 5.

Acknowledgments

We thank the Australian Research Council Discovery Projects scheme for funding this research and National Computational ⁵ Infrastructure (NCI) for computational resources.

Notes and references

a: International Centre for Quantum and Molecular Structure, College of Sciences, Shanghai University, Shanghai 200444 China; 86-

10 15618155341; E-mail: <u>Jeffrey.Reimers@uts.edu.au</u> b: School of Mathematical and Physical Sciences, University of Technology Sydney, NSW 2007 Australia c: Department of Physics and Astronomy, University College London,

Gower Street, London WC1E 6BT UK

15 d: School of Chemistry, The University of Sydney, Sydney, NSW 2006 Australia

e: School of Mathematics and Physics, The University of Queensland, QLD 4072 Australia

f: School of Molecular Biosciences, The University of Sydney, NSW, 2006 20 Australia

- 1. F. London, Z. Phys., 1928, 46, 455.
- P. Evindon, Z. Phys., 1920, 10, 185.
 H. Eyring and M. Polanyi, Z. Phys. Chem. Abt. B, 1931, 12, 279.
- M. G. Evans and M. Polanyi, *Trans. Faraday Soc.*, 1938, 34, 11.
- J. Horiuti and M. Polanyi, J. Molec. Catalysis A, 2003, 199, 185. Translation of Acta Physicochimica U.R.S.S. 1935, 2, 505– 532.
 - F. T. Wall and G. Glockler, *J. Chem. Phys.*, 1937, **5**, 314.
- 6. N. S. Hush, J. Polymer Sci., 1953, 11, 289.
- 7. F. London, Z. Phys., 1932, 74, 143.
- 8. L. D. Landau, Z. Phys. Sowjetunion, 1932, 2, 46.
- 9. L. D. Landau, Z. Phys. Sowjetunion, 1932, 1, 88.
- 35 10. W. F. Libby, J. Phys. Chem., 1952, 56, 863.
 - 11. J. Weiss, Proc. R. Soc. London, Ser. A, 1954, 222, 128.
 - 12. R. Kubo and Y. Toyozawa, Prog. Theor. Phys., 1955, 13, 160.
 - 13. R. A. Marcus, *J. Chem. Phys.*, 1956, **24**, 966.
 - 14. V. G. Levich and R. R. Dogonadze, *Dokl. Akad. Nauk. SSSR Ser. Fiz. Khim.*, 1959, **124**, 123.
- 15. N. S. Hush, Z. Elektrochem. Angewandte Physik. Chem., 1957, 61, 734.
- 16. N. S. Hush, J. Chem. Phys., 1958, 28, 962.
- 17. N. S. Hush, Disc. Farad. Soc., 1960, 29, 113.
- 45 18. R. A. Marcus, Discuss. Faraday Soc., 1960, 21.
 - N. S. Hush, in Proceedings of the 4th Moscow Conference on Electrochemstry 1956, English translation: Consultants Bureau, New York, 1961, p. 99.

20 | Journal Name, [year], **[vol]**, 00–00

This journal is © The Royal Society of Chemistry [year]

20

110

120

125

- 20. N. S. Hush, Prog. Inorg. Chem., 1967, 8, 391.
- 21. C. Creutz and H. Taube, J. Am. Chem. Soc., 1969, 91, 3988.
- 22. J. M. Warman, M. P. d. Haas, M. N. Paddon-Row, E. Cotsaris, N. S. Hush, H. Oevering and J. W. Verhoeven, Nature, 1986, 320, 615
- 23. I. B. Bersuker, Chem. Rev., 2001, 101, 1067.
- 24. I. B. Bersuker, Chem. Rev., 2013, 113, 1351.
- 25. S. Zilberg, Y. Haas, D. Danovich and S. Shaik, Angew. Chem., Int. Ed., 1998, 37, 1394.
- 10 26. S. Shaik, S. Zilberg and Y. Haas, Acc. Chem. Res., 1996, 29, 211.
- 27. S. Shaik, A. Shurki, D. Danovich and P. C. Hiberty, J. Am. Chem. Soc., 1996, 118, 666.
- 28. S. Shaik, A. Shurki, D. Danovich and P. C. Hiberty, Chem. Rev. (Washington, D. C.), 2001, 101, 1501.
- 15 29. S. Zilberg and Y. Haas, J. Phys. Chem. A, 2011, 115, 10650.
- 30. D. G. Truhlar and C. A. Mead, Phys. Rev. A, 2003, 68, 032501.
- 31. P. Politzer, J. R. Reimers, J. S. Murray and A. Toro-Labbe, J. Phys. Chem. Lett., 2010, 1, 2858.
- 32. R. Valero, L. Song, J. Gao and D. G. Truhlar, J. Chem. Theory Comput., 2009, 5, 1.
- 33. J. Pu, J. Gao and D. G. Truhlar, Chem. Rev., 2006, 106, 3140.
- 34. V. K. Babamov, V. Lopez and R. A. Marcus, J. Chem. Phys., 1983, 78, 5621.
- 35. J. Aqvist and A. Warshel, Chem. Rev., 1993, 93, 2523.
- 25 36. D. N. Silverman, Biochim. Biophys. Acta, Bioenerg., 2000, 1458, 88. 37. A. Warshel, P. K. Sharma, M. Kato, Y. Xiang, H. Liu and M. H. M. Olsson, Chem. Rev., 2006, 106, 3210.
 - 38. R. A. Marcus, J. Chem. Phys., 2006, 125, 194504.
- 39. S. Hammes-Schiffer and A. A. Stuchebrukhov, Chem. Rev., 2010, 110, 6939. 30
- 40. A. Sirjoosingh and S. Hammes-Schiffer, J. Phys. Chem. A, 2011, 115. 2367.
- 41. A. Sirjoosingh and S. Hammes-Schiffer, J. Chem. Theory Comput., 2011, 7, 2831.
- 35 42. R. H. McKenzie, Chem. Phys. Lett., 2012, 535, 196.
 - 43. M. S. Baranov, K. A. Lukyanov, A. O. Borissova, J. Shamir, D. Kosenkov, L. V. Slipchenko, L. M. Tolbert, I. V. Yampolsky and K. M. Solntsev, J. Am. Chem. Soc., 2012, 134, 6025.
- 44. R. H. McKenzie, J. Chem. Phys., 2014, 141, 104314/1.
- 40 45. H. A. Jahn and E. Teller, Proc. Roy. Soc. A, 1937, 161, 220.
- 46. P. García-Fernández, J. A. Aramburu, M. Moreno, M. Zlatar and M. Gruden-Pavlović, J. Chem. Theory Comput., 2014, 10, 1824.
- 47. R. G. Pearson, Journal of Molecular Structure: THEOCHEM, 1983, 115 103, 25.
- 45 48. G. Herzberg and E. Teller, Z. Phys. Chem., 1933, 21, 410.
- 49. Z. H. Li, R. Valero and D. G. Truhlar, Theor. Chem. Acc., 2007, 118, 9
- 50. S. Nangia and D. G. Truhlar, J. Chem. Phys., 2006, 124, 124309.
- 51. C. C. Levin, J. Am. Chem. Soc., 1975, 97, 5649.
- 50 52. J. R. Reimers, L. McKemmish, R. H. McKenzie and N. S. Hush, Phys. Chem. Chem. Phys., 2015, in press DOI:10.1039/C5CP02236C
 - 53. A. D. Walsh, J. Chem. Soc., 1953, 2296.
- 54. A. D. Walsh and P. A. Warsop, Trans. Faraday Soc., 1961, 57, 345.
- 55 55. L. Song and J. Gao, J. Phys. Chem. A, 2008, 112, 12925.
- 56. I. B. Bersuker, N. N. Gorinchoi and V. Z. Polinger, Theor. Chim. Acta, 1984, 66, 161.
- 57. S. N. Yurchenko, R. J. Barber, J. Tennyson, W. Thiel and P. Jensen, J. Mol. Spectrosc., 2011, 268, 123.
- 60 58. X. Huang, D. W. Schwenke and T. J. Lee, J. Chem. Phys., 2011, 134, 044320.
- 59. C. Sousa-Silva, A. F. Al-Refaie, J. Tennyson and S. N. Yurchenko, Mon. Not. R. Astron. Soc., 2015, 446, 2337.
- 60. S. N. Yurchenko, M. Carvajal, A. Yachmenev, W. Thiel and P. Jensen, Journal of Quantitative Spectroscopy and Radiative
- Transfer, 2010, 111, 2279. 61. S. N. Yurchenko, J. Breidung and W. Thiel, Theor. Chem. Acc.,
- 2005, 114, 333. 62. M. B. Robin, Higher excited states of polyatomic molecules,
- Academic Press, London, 1974.
- 63. A. W. Potts and W. C. Price, Proc. R. Soc. London, Ser. A, 1972, 326, 181.

- 64. O. T. K. K. K. N. Kato M and Y. Hatano, J. Phys. B: At. Mol. Opt. Phys., 2003, 36, 3541.
- 75 65. R. J. Gillespie and R. S. Nyholm, Quart. Rev. Chem. Soc, 1957, 11, 339
 - 66. R. J. Gillespie and E. A. Robinson, Angewandte Chemie International Edition in English, 1996, 35, 495.
 - 67. R. J. Gillespie, Coord. Chem. Rev., 2008, 252, 1315.
- 80 68. M. Kaupp, Angewandte Chemie International Edition, 2001, 40, 3534.
 - 69. N. V. Cohan and C. A. Coulson, Trans. Faraday Soc., 1956, 52, 1163.
- 70. R. S. Mulliken, Acc. Chem. Res., 1976, 9, 7.
- 85 71. R. S. Mulliken, Chem. Phys. Lett., 1977, 46, 197.
- 72. H.-J. Werner, P. J. Knowles, F. R. Manby, M. Schütz, P. Celani, G. Knizia, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C.
- Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang and A. Wolf, MOLPRO, version 2010.1, a package of ab initio programs, University of Birmingham, Birmingham, 2010.
- 73. H. J. Werner and P. J. Knowles, J. Chem. Phys., 1985, 82, 5053.
- 74. P. J. Knowles and H. J. Werner, Chem. Phys. Letts., 1985, 115, 259.
- 75. D. Hegarty and M. A. Robb, Molec. Phys., 1979, 38, 1795.
- 100 76. J. F. Stanton and R. J. Bartlett, J. Chem. Phys., 1993, 98, 7029.
 - 77. T. Korona and H.-J. Werner, J. Chem. Phys., 2003, 118, 3006.
 - 78. C. Møller and M. S. Plesset, Phys. Rev. A, 1934, 46, 618.
 - 79. K. Raghavachari, G. W. Trucks, J. A. Pople and M. Head-Gordon, Chem. Phys. Lett., 1989, 157, 479.
- 105 80. H. Nakatsuji, Chem. Phys. Lett., 1979, 67, 329.
 - 81. M. Ehara, M. Ishida, K. Toyota and H. Nakatsuji, ed. K. D. Sen, World Scientific, Singapore, 2002, pp. 293.
 - 82. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, I. S. S., J. Tomasi, V. Barone, B. Mennuci, M. Cossi, S. G., R. N., G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. A. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 09, Revision D.01, Gaussian, Inc., Pittsburgh PA, 2009
 - 83. J. D. Bene and H. H. Jaffè, J. Chem. Phys., 1968, 48, 1807.
- 84. R. L. Ellis, G. Kuehnlenz and H. H. Jaffé, Theoret. Chim. Acta, 1972, 26, 131. 130
 - 85. M. C. Zerner, G. H. Loew, R. F. Kirchner and U. T. Mueller-Westerhof, J. Am. Chm. Soc., 1980, 102, 589.
 - 86. J. Zeng, N. S. Hush and J. R. Reimers, J. Am. Chem. Soc., 1996, 118, 2059.
- 135 87. B. Tejerina and J. Reimers, 2008.
- 88. W. J. Hehre, R. F. Stewart and J. A. Pople, J. Chem. Phys., 1969, 51, 2657
- 89. K. Raghavachari, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650.
- 140 90. D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys., 1993, 98, 1358. 91. T. H. Dunning, Jr., J. Chem. Phys., 1989, 90, 1007.
 - 92. T. H. Dunning, Jr., J. Chem. Phys., 1989, 90, 1007.
- 93. R. A. Kendall, T. H. Dunning, Jr. and R. J. Harrison, J. Chem. Phys., 1992, 96, 6796.
- 145 94. D. E. Woon and J. T.H. Dunning, J. Chem. Phys., 1993, 98, 1358.

This journal is © The Royal Society of Chemistry [year]

Journal Name, [year], **[vol]**, 00–00 | **21**

Physical Chemistry Chemical Physics Accepted Manuscrip

- J. T.H. Dunning, K. A. Peterson and A. K. Wilson, J. Chem. Phys., 2001, 114, 2944.
- 96. K. A. Peterson, D. Figgen, E. Goll, H. Stoll and M. Dolg, J. Chem. Phys., 2003, 119, 11113.
- 5 97. D. Andrae, U. Háußermann, M. Dolg, H. Stoll and H. Preuß, *Theor. Chim. Acta*, 1990, 77, 123.
- N. J. DeYonker, K. A. Peterson and A. K. Wilson, J. Phys. Chem. A, 2007, 111, 11383.
- 99. T. Van Voorhis, T. Kowalczyk, B. Kaduk, L.-P. Wang, C.-L. Cheng and Q. Wu, *Annu. Rev. Phys. Chem.*, 2010, **61**, 149.
 - 100.J. R. Reimers and N. S. Hush, Chem. Phys., 2004, 299, 79.
 - 101.S. Larsson, J. Am. Chem. Soc., 1981, 103, 4034.
 - 102.E. B. D. Wilson, J. C; Cross, Paul C., Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, McGraw-
 - Hill Book Company, New York, 1955.

15

- 103.J. Swalen and J. Ibers, J. Chem. Phys., 1962, 36, 1914.
- 104.J. R. Reimers, L. McKenmish, R. H. McKenzie and N. S. Hush, *Phys. Chem. Chem. Phys.*, 2015, in press 10.1039/C5CP02238J.
- 20 105.L. McKemmish, R. H. McKenzie, N. S. Hush and J. R. Reimers, *Phys. Chem. Chem. Phys.*, 2015, in press DOI:10.1039/C5CP02239H.
- 106.L. K. McKenmish, R. H. McKenzie, N. S. Hush and J. R. Reimers, J. Chem. Phys., 2011, 135, 244110/1.
- 25 107.P. Schwerdtfeger, L. J. Laakkonen and P. Pyykkö, J. Chem. Phys., 1992, 96, 6807.
 - 108.W. Klopper, C. C. M. Samson, G. Tarczay and A. G. Császár, J. Comput. Chem., 2001, 22, 1306.
- 109.W. Jerzembeck, H. Bürger, L. Constantin, L. Margulès, J. Demaison,
 J. Breidung and W. Thiel, *Angewandte Chemie International Edition*, 2002, 41, 2550.
- 110.T. Rajamäki, A. Miani and L. Halonen, J. Chem. Phys., 2003, 118, 6358.
- 111.C. Puzzarini, Theor. Chem. Acc., 2008, 120, 325.
- 35 112.R. Marquardt, K. Sagui, J. Zheng, W. Thiel, D. Luckhaus, S. Yurchenko, F. Mariotti and M. Quack, J. Phys. Chem. A, 2013, 117, 7502.
 - 113.J. Pesonen, A. Miani and L. Halonen, J. Chem. Phys., 2001, 115, 1243.
- ⁴⁰ 114.L. Ishikawa, T. Odagiri, K. Yachi, T. Nakazato, M. Kurokawa, M. Kitajima and N. Kouchi, J. Phys. B: At., Mol. Opt. Phys., 2008, 41, 195204.
 - 115.W. Jerzembeck, H. Bürger, F. L. Constantin, L. Margulès and J. Demaison, J. Mol. Spectrosc., 2004, 226, 24.
- 45 116.C. C. Costain and G. B. B. M. Sutherland, J. Am. Chem. Soc, 1952, 52, 321.
 - 117.T. J. Xia, C. Y. R. Wu and D. L. Judge, Phys. Scr., 1990, 41, 870.
- 118.H. Friedrich, B. Sonntag, P. Rabe, W. Butscher and W. H. E.
- Schwarz, Chem. Phys. Lett., 1979, **64**, 360.
- ⁵⁰ 119.E. M. Ishida M and H. Nakatsuji, *J. Chem. Phys.*, 2002, **116**, 1934.
 - 120.W. H. E. Schwarz, *Chem. Phys.*, 1975, **9**, 157. 121.X. Zhang and J. M. Herbert, *J. Chem. Phys.*, 2015, **142**, 064109.
 - 121.X. Zhang and J. M. Herbert, J. Chem. Phys., 2015, 142, 004105. 122.X. Zhang and J. M. Herbert, J. Chem. Phys., 2014, 141, 064104.
- 123.L. Pauling, *The Nature of the Chemical Bond*, 3rd edn., Oxford University Press, 1960.
 - 124.L. Pauling, J. Am. Chem. Soc, 1931, 53, 1367.
 - 125.J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102, 7211.
 - 126.N. S. Hush, NATO Adv. Study Inst. Ser., Ser. C, 1980, 58, 151.
 - 127.J. P. Stewart, *J Mol Model*, 2007, **13**, 1173.
- 60 128.. HYPERCHEM 8.0 Pro for Windows, (2011) Hypercube Inc., Gainsville FL.
 - 129.E. Evleth and E. Kassab, Theor. Chim. Acta, 1982, 60, 385.

Page 22 of 23

www.rsc.org/xxxxx

ARTICLE TYPE

10

Novelty statement:

 $The origins \ of \ the \ observed \ bond \ angles \ in \ XH_3 \ and \ XH_3^+ \ are \ explained \ using \ high-level \ calculations \ and \ a \ simple \ diabatic \ model.$