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Abstract

Histone tails are the short peptide protrusions outside of the nucleosome core par-

ticle and they play a critical role in regulating chromatin dynamics and gene activity.

Histone H3 N-terminal tail, like other histone tails, can be covalently modified on

different residues to activate or repress gene expression. Previous studies have indi-

cated that, despite its intrinsically disordered nature, the histone H3 N-terminal tail

has regions of notable secondary structural propensities. To further understand the

structure-dynamics-function relations in this system, we have carried out 75.6 μs long

implicit solvent simulations and 29.3 μs long explicit solvent simulations. The extensive

samplings allow us to better characterize not only the underlying free energy landscape

but also kinetic properties through Markov state models (MSM). Dihedral principal

component analysis (dPCA) and locally scaled diffusion map (LSDMap) analysis yield

consistent results that indicate an overall flat free energy surface with several shallow

basins that correspond to conformations with a high α-helical propensity in two regions

of the peptide. Kinetic information extracted from Markov state models reveals rapid

transitions between different metastable states with mean first passage times spanning

from several hundreds of nanoseconds to hundreds of microseconds. These findings

shed light on how the dynamical nature of histone H3 N-terminal tail is related to its

function. The complementary nature of dPCA, LSDMap and MSM for the analysis of

biomolecules is also discussed.

Introduction

In eukaryotic cells, highly conserved histone proteins provide the basic scaffold to package

the genome inside the nucleus, while playing a critical role in regulating gene activity at the

same time. A DNA segment of approximately 146 base-pairs tightly wraps around a histone

hetero-octomer consisting of two subunits of each type of histone proteins (H2A, H2B, H3

and H4) to form a nucleosome, which can further fold into higher order chromatin fibers.1,2

The structure of the nucleosome core particle (NCP) has been resolved experimentally and
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also studied by molecular simulations.3–6 The histone terminal tails extending out of the

NCP and adjacent regions are critical for chromatin remodeling and thus regulation of gene

transcription.1 The histone tails can be covalently modified upon receiving upstream signals.

The post-translational modifications, such as methylation, acetylation and phosphorylation,

can alter the charges on specific residues, leading to changes in binding affinity and other

functional consequences.7,8 Even though the histone tails are of intrinsically disordered na-

ture, some can still transiently assume secondary structural elements according to previous

experimental and computational studies.9–13 However, dynamic properties of histone tails,

such as the kinetics of transitions among different metastable conformations, remain to be

elucidated.

Histone H3 N-terminal tail, in particular, can be covalently modified with various pat-

terns and is of great interest to both experimental and computational studies. For instance,

methylation of the K4 residue is linked to gene activation while methylation of K9 or K27 is

linked to gene repression.14–16 Methylation of K9 is a specific target for heterochromatin pro-

tein 1 (HP1).15,17,18 In an NMR structure of its complex with HP1, the region from K4 to S10

showed an extended structure with K4 and K9 both in the dimethylated form.19 In another

study, an 8-residue variant of the peptide with K4 trimethylated showed an extended β-strand

conformation from A1 to T6 in complex with ING2 (inhibitor of growth family, member 2)

plant homeodomain (PHD) finger.20 An experimental study using circular dichroism (CD),

however, showed that some α-helix content is present in histone H3/H4 tails, even though it

was difficult to selectively isolate H3 or H4 tail.9 Previous computational studies11,13 showed

that histone H3 tail populates α-helical conformations, and that post-translational modifi-

cations only have a marginal influence on the most populated conformations.11 The degree

of sampling in these pioneering computational studies was somewhat limited, despite the

use of replica exchange techniques,13 leading to some regions of the free energy surface only

sparsely sampled. Moreover, the kinetics of transitions among the various conformations
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were not explored. In this study, we use Markov State Model (MSM), dihedral angle princi-

pal component analysis (dPCA) and locally scaled diffusion map (LSDMap) to gain a further

understanding of the free energy landscape and dynamics of this peptide.

MSMs have been used to extract long time scale kinetic information from many short

MD simulation trajectories.21–27 Here we run extensive explicit solvent simulations on H3

N-terminal tail using graphics processing units, with seeds from intensively sampled implicit

solvent conformational ensembles. We extract kinetic information from the MSM and char-

acterize the kinetically metastable states. No metastable state has a dominant population

and the peptide makes transitions between different states at the microsecond time scale.

dPCA and LSDMap also reveal a generally flat free energy surface with low barriers between

basins. The low free energy barriers and rapid transitions between different metastable

conformations are consistent with the functional requirement of the H3 tail to respond to

different covalent modifications and binding partners.

Computational Methods

Simulation Protocol

Due to the lack of defined experimental structure, we build a stretched initial structure of

the histone H3 N-terminal tail according to its amino acid sequence,28 with the C-terminal

capped with an N-methyl group. A 38 residue construct is used (with the sequence: ARTKQ

TARKS TGGKA PRKQL ATKAA RKSAP ATGGV KKP), which is slightly longer than the

biochemically isolated one by trypsination. This sequence preserves the structural geometry

of the tail and is of the same length as the construct used in another computational study,13

making it straightforward to compare the current and previous results. All simulations are

carried out with the Amber14 MD package on graphics processing units.29,30 The ff99SBnmr1

force field31 is used because recent benchmark calculations suggested that this force field

4

Page 4 of 27Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



provides reliable structural propensities with both explicit and implicit solvent simulations.32

We carry out both implicit and explicit solvent simulations on the system in this work.

The initial structure is minimized and equilibrated using the GB7 generalized Born im-

plicit solvent model.33 An initial 2 μs long simulation is then carried out. The conforma-

tions in the trajectory are clustered with K-means clustering algorithm implemented in the

MMTSB Tool Set,34 and seed conformations are randomly chosen from different clusters for

parallel production runs. In total, 75.6 μs of simulations are collected. In these simulations,

no cutoff is used for the non-bonded interactions. 0.15 M of NaCl is applied using a mod-

ified generalized Born model based on the Debye-Hückel limiting law for ionic screening of

electrostatic interactions.35 The SHAKE algorithm36 is used to constrain all bonds involving

hydrogen atoms. An integration time step of 2 fs is used. Langevin dynamics with a collision

frequency of 20 ps−1 is used to keep the temperature at 300 K.

For explicit solvent simulations, the seed conformations are taken from the entire implicit

solvent simulation ensemble following the same clustering and selection procedure. This seed-

ing procedure enhances sampling by starting simulations from as diverse set of conformations

as possible; as shown in Supporting Information, the propensities of secondary structures

from the implicit and explicit solvent simulations are generally similar after extensive sam-

pling, supporting the use of implicit solvent models to seed explicit solvent simulations. The

seed conformations are solvated with TIP3P water,37 with a box size of around 70 × 70 ×
70 Å3 using periodic boundary conditions. The system is neutralized with counterions and

an additional 0.15 M NaCl is added to mimic the physiological condition. The electrostatic

interactions are calculated using the particle mesh Ewald method with a grid spacing of

about 1.0 Å. The cutoff for van der Waals interactions is set at 10 Å. The system is first

minimized with protein fixed and then for the entire system. 1 ns NPT simulation is carried

out to equilibrate the volume of the system. Production simulations are run in the NVT

ensemble at 300 K using the weak-coupling algorithm38 with a time constant of 5.0 ps. A

total of 29.3 μs of trajectories are collected for analysis.
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Dihedral Principal Component Analysis (dPCA)

The explicit solvent simulations are analyzed by principal component analysis based on

backbone dihedral angles.39,40 Since histone H3 tail frequently undergoes folding/unfolding

in the simulations, the backbone dihedral angles are better coordinates for the analysis

compared to Cartesian coordinates. If we denote each backbone dihedral angle as ϕi, we

have 75 [2 × number of residues (38) - 1] backbone dihedral angles in total, lacking φ angle

for the first residue. Due to the periodicity of dihedral angles, we transform each angle into

its cosine and sine values,

q2n−1 = cosϕn,

q2n = sinϕn,

(1)

where n = 1,...,75. The correlated internal motions can then be represented by the covariance

matrix

σij = 〈(qi − 〈qi〉)(qj − 〈qj〉)〉, (2)

where q1,...,q150 are the transformed cosine and sine values for the dihedral angles. By

diagonalizing the covariance matrix, we obtain 150 pairs of eigenvalues and eigenvectors.

The conformations in the ensemble are then projected onto the two eigenvectors with the

largest eigenvalues. The free energy surface of the system is then calculated as

ΔG(Q1, Q2) = −kBT [ln ρ(Q1, Q2)− ln ρmax], (3)

where ρ is an estimate of the probability density function obtained after binning the data.

ρmax is the maximum density, which has the free energy minimum with ΔG set to 0.

6

Page 6 of 27Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



Locally Scaled Diffusion Map

The conformation ensemble of histone H3 N-terminal tail is further analyzed by LSDMap.

LSDMap is a multiscale method to determine the collective reaction coordinates of macro-

molecular dynamics.41 For computational efficiency, the ensemble is subsampled and a total

of 11,731 conformations are used for the calculation. The transition probability between two

conformations is described by the kernel K,

Kij = exp(−‖xi − xj ‖2
2εiεj

), (4)

where ‖ xi−xj ‖ is the root mean squared deviation (RMSD) between the two conformations

xi and xj based on backbone atoms (CA, C, N, O) and CB. εi and εj are the respective

local scales. The local scales for every point in the data set is estimated according to the

previously proposed procedure.41 The elements in the kernel matrix characterize the ease

for a conformation to diffuse into another. The kernel can be normalized and converted to

a Markov matrix, from which we compute the first few largest eigenvalues and the corre-

sponding eigenvectors. The eigenvectors represent the diffusion coordinates. For technical

details, we refer the interested reader to reference 41.

MSM Construction and Validation

For the construction of MSM, conformations in the 29.3 μs long explicit solvent simulation

trajectory are saved every 50 ps, resulting in ∼ 586 thousand conformations. These confor-

mations are clustered into 8,000 microstates using the hybrid k-centers/k-medoids clustering

method24 based on the RMSD of backbone atoms (CA, C, N, O) and CB. The number of

transitions between microstates at an interval of a certain lag time is counted. The count

matrix is then symmetrized and normalized to obtain the transition probability matrix (T).

The Markov time, the lag time at which the model is Markovian, is determined by examining

the implied time scales at different lag times. At a specific lag time, the implied time scales
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can be calculated as:

κ(τ) =
−τ

ln[μ(τ)]
(5)

where κ is a relaxation time scale, τ is the lag time, and μ(τ) is an eigenvalue for the transition

matrix T(τ). If the model is Markovian at a certain lag time, the relaxation time scales

should remain constant when using longer lag times, satisfying the Chapman-Kolmogorov

equation. Here we use the smallest lag time at which the implied time scales level off to

build the microstate MSM for further analysis. The microstate MSM is used to calculate the

kinetic properties. To facilitate interpretation, the 8,000 state microstate model is coarse

grained to 150 macrostates using the Bayesian agglomerative clustering engine (BACE),42

which has been shown to be a robust method in a recent study that compared different

coarse graining protocols.43 The population of each macrostate is the sum of the equilibrium

populations of the microstates belonging to this macrostate. The MSMBuilder software is

used to construct the model.21,24,44

Mean First Passage Time (MFPT) Calculation

MFPT is defined as the average transition time between a pair of states in an MSM. The

MFPT from initial state i to final state j can be determined by solving the following set of

equations:

MFPTif =
∑

j

T(τ)ij(τ +MFPTjf ) (6)

where τ is the lag time and T(τ) is the corresponding transition probability matrix.45 To

compute the MFPT from the microstate MSM, we first set the MFPTs of all the microstates

within the destination macrostate to be zero. MFPTs starting from each microstate in the

starting macrostate are then calculated. A weighted average is then carried out to obtain

MFPTif : MFPTif =
∑

l∈i plMFPTlf , where pl is the normalized population of microstate

l within macrostate i.
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Results and Discussion

In the following, we first comment on the degree of sampling and validation of the Markov

model. Then we characterize the free energy landscape by analyzing the conformational

features of macro states from MSM and comparing the observations to the free energy sur-

face computed by dPCA and LSDMap. Finally, we discuss the kinetics of conformational

transitions by computed MFPTs.

Convergence and Model Validation

Adequate sampling is critical for extracting valid equilibrium and kinetic information from

molecular simulations. The various analyses in this work are based on the fairly long (∼ 30μs)

explicit solvent simulations, which are seeded by different conformations from a longer set

of (∼80μs) implicit solvent simulations. To evaluate the convergence of the simulations, we

monitor the radius of gyration (Rg) distribution and the dPCA free energy surface when

only part of the simulation data is used. As shown in Figures S1 and S2, when only 15 μs,

20 μs or 25 μs of the explicit solvent data is used, the Rg distributions remain nearly the

same; the free energy landscapes obtained with dPCA are also similar in terms of the main

free energy basins and their connectivity. Thus we conclude that the degree of sampling

carried out here is adequate to draw meaningful conclusions.

In the MSM analysis, for the model to be Markovian, it should satisfy the Chapman-

Kolmogorov equation and the relaxation time scales should remain constant at different

lag times. Instead of spot-checking specific states, we conduct a global check on the MSM

by observing the implied time scale plot at different lag times. As shown in Figure 1(a),

the implied time scales for the 8,000 microstate model reach plateau at about 6 ns, which is

used to construct the microstate MSM. The quantitative properties, including the MFPTs,

are calculated from this model.

To better elucidate the free energy landscape, we coarse grain the 8,000 microstate model

9
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to a 150 state macrostate MSM using the BACE coarse graining method. The implied time

scales for the 150 state model, as shown in Figure 1(b), also level off at about 6 ns. The

relaxation time scales are slightly shorter than those of the microstate MSM. As noted in

previous study,27 this discrepancy results from lumping very small microstates with large

ones and may be corrected by keeping those small microstates as independent states. Here,

we will only use the macrostate MSM for the purpose of elucidating key features of the free

energy landscape.

Figure 1: Analysis of the Markov State Model (MSM) with different lag times. (a) Implied
timescales plot for the 8,000-state microstate MSM. (b) Implied timescale plot for the 150-
state macrostate MSM. In each case, the slowest eigenmodes of the corresponding transition
matrix are analyzed.

Analysis of the Free Energy Landscape

The equilibrium populations of the kinetically metastable states obtained from the macrostate

MSM (Figure 2) shows the free energy surface is rugged without a single dominant well. The

10
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most populated macro state has a population of about 3.4%. This is physically reasonable

considering the high structural flexibility of the histone tail.

Figure 2: Equilibrium population of the 50 most populated macrostates.

To gain a better understanding of the characteristics of the major free energy basins, we

further investigate the structural features of the top 9 most populated macro states (there

is a small gap in population between the 9th and 10th states, see Fig.2). As shown in Figure

3, most of the structures in these basins have two α-helix regions, one from residue 2 to

residue 11 and another from residue 17 to residue 28; the second α-helix segment has a

higher propensity to be folded. The other regions mainly assume coil and turn structures.

The most populated state, as show in Figure 3(a), has an N-terminal α-helix region with an

average probability of 0.41 and a second α-helix region with an average probability of 0.77.

It has an average Rg of 18.04 Å. The 4th most populated state has a very low probability

for the first α-helix (Figure 3(d)). The Rg’s among the top nine states range from 15.09 Å

to 19.49 Å, with the standard deviation of ∼1.5 Å. An outlier is the 9th state, which only

has a single short α-helix between residues 20 and 26; it also features a much more collapsed

structure with an average Rg of 10.00±0.14 Å (Figure 3(i)).

In Figure 4, the Rg values for the 150 macro states are plotted in the order of their

populations. There is not a strong correlation between the level of compactness and pop-

ulation. Most of the macrostates have Rg values between 12 and 18 Å, with substantial
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Figure 3: Representative structures and structural features for the nine most populated
macrostates. The population for each state is labeled on the top-left. The representative
structures are colored in rainbow with blue denoting the N-terminus and red for the C-
terminus. To the right is the probability for each residue to be α-helical in each state. The
mean and standard deviation of the radius of gyration (Rg) for the conformations in each
state are also listed.
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standard deviations. The only exception is the already noted 9th state, which features only

very compact conformers with a small (0.14) standard deviation in Rg. Several other macro

states also have an average Rg of around 10 - 11 Å but with substantially higher standard

deviations. The fact that the standard deviations in Rg for most macro states are fairly large

(∼1-2 Å) suggests that many conformations of different Rg’s interconvert rapidly (e.g., when

the isomerization only involves simple bond rotations etc., see discussions below). Many

compact structures are assigned to different macro states, which explains that the macro

states with low average Rg’s are not highly populated.

Figure 4: The average Rg’s of the 150 metastable states in the MSM; the states are numbered
based on their populations, with the first state being most populated and the last being least
populated. The error bars are twice the standard deviation of the Rg’s among conformations
in each state.

To better understand the overall structural propensities of the peptide, we investigate

the secondary structure distribution for the entire conformational ensemble (Figure 5). On

average, about 21 residues are coil and about 10 residues assume α-helix structure (Figure

5(a)). The most α-helical regions are observed from residues 5 to 9 and residues 17 to 26,

with the rest mainly being coils and turns (Figure 5(b)). The most populated macro states

have a higher content of α-helix structure than average. The analysis of the implicit solvent

simulations shows a similar pattern (see Figure S3). In the previous computational study

13

Page 13 of 27 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



with a 16-residue H3 N-terminal tail variant, the region from residues 4 to 11 showed a

high propensity to assume α-helix structure,11 corresponding to the first α-helical fragment

in this study. In another computational study using the same construct as this work, 2-3

regions strongly favoring α-helix structure were observed,13 in qualitative agreement with

our finding.

Figure 5: Secondary structure of histone H3 tail in explicit solvent simulations. (a) The
average number of residues having a specific type of secondary structure. The error bars
show the standard deviation. (b) The probability for each residue to have each type of
secondary structure.

Free Energy Landscape Analyzed With dPCA

Dihedral PCA decomposes the free energy surface into three major basins. As shown in

Figure 6, the free energy surface is well connected and the barriers between the major

basins are around 0.5 - 1.5 kcal/mol. The largest basin, labeled ‘ii’ in the figure, has the

characteristic structural feature of two α-helical segments as observed for the top-populated

macro states from MSM (Figure 3). The second largest basin, labeled ‘i’ in the figure, has
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very compact conformations. It lacks the N-terminal helix but maintains the second helical

segment, similar to the 9th macro state from MSM. The conformations in basin ‘iii’ are

quite open in nature and have less helical content than those in basin ‘ii’. Even though it

is difficult to make a one to one mapping between the free energy basins from dPCA and

the macro states from MSM, the dPCA results confirm the overall feature of the free energy

landscape implied by the MSM analysis. In the study by Papoian and co-workers,13 the free

energy landscape was also analyzed with dPCA, which showed dispersed free energy basins

with depths of around 1 - 3 kcal/mol. The free energy surface in the current work is better

connected due to the more extensive sampling, although the gross features are fairly similar.

The ensemble average Rg of 15.2 Å is, however, higher than that reported in the previous

study, which was 11.6 Å.

Figure 6: Free energy profile of histone H3 tail dynamics projected onto two main dPCA
principal components. Representative structures from the three main free energy basins are
shown in rainbow colors, with blue denoting the N-terminus and red for C-terminus. The
average Rg and the α-helix content are also shown for each basin.
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Free Energy Surface Analyzed With LSDMap

The LSDMap shows two major basins on the free energy surface (Figure 7). The barrier

between these two basins is around 2 - 2.5 kcal/mol. The small basin (basin ‘i’) has very

compact structures, with an average Rg of 10.0 Å. However, the structures have a low α-helix

content (∼18.2%) and are largely in random coils. The large basin (basin ‘ii’) has an average

Rg of 16.9 Å and an α-helix content of 33.5%, showing that the structures are more open

with two main α-helix segments. The time scale separation, as shown in Figure 7a, indicates

that a single time scale appears to dominate the dynamics. The projection of the free energy

landscape onto the first diffusion coordinate and Rg (Figure 8) shows that the first diffusion

coordinate corresponds to the collapse/expansion of the peptide.

Comparing the free energy landscape analyzed with LSDMap and dPCA, based on the

average Rg and the α-helix content, basin ‘i’ on the LSDMap corresponds to basin ‘i’ on the

dPCA free energy surface, and basin ‘ii’ on the LSDMap corresponds to basins ‘ii’ and ‘iii’

on the dPCA free energy surface. The basin ‘i’ on both free energy surfaces feature very

compact conformations, similar to the 9th-populated macro state from MSM (Figure 3). The

other basins have higher Rg values, similar to other top-populated MSM macro states.

MFPTs Between Different Metastable States

Kinetic information is extracted from the MSM by calculating the MFPTs between different

metastable states. As shown in Figure 9, the MFPTs between these 150 metastable states

range from hundreds of nanoseconds to hundreds of microseconds. Most of the transitions

are on the order of several microseconds. The fastest transition occurs at ∼178 ns and the

slowest at ∼242 μs. The fastest transition corresponds to the conversion from the 14th

most populated state to the most populated state. Both of these two states have quite

open structure (with Rg’s of 16.46 Å and 18.04 Å, respectively) and two helical regions.

The slowest transition is from the 122nd most populated state to the 9th most populated

state. Both of these two states have very compact structures, with Rg’s of 11.31 Å and 10.00
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Figure 7: Results from the locally scaled diffusion map (LSDMap) analysis. (a) The ex-
ponential of the negative of the Fokker-Planck operator eigenvalues as a function of the
eigenvalue number. The zero-th eigenvalue corresponds to the Boltzmann distribution. The
major spectral gap between the first and second eigenvalues suggests that there is a single
time scale that tends to dominate the dynamics. (b) Free energy landscape of histone H3 tail
projected onto the first and second diffusion coordinates. Representative structures for the
two main free energy basins are shown in rainbow colors, with blue denoting the N-terminus
and red for C-terminus. The average Rg and the α-helix content are also shown for each
basin.
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Figure 8: Free energy landscape of histone H3 tail projected onto the first diffusion coordinate
and Rg.

Å, respectively. These observations are plausible considering that the transition between

open structures might simply involve the rotation of several single bonds while that between

compact structure may have to involve the breaking of electrostatic interactions and hydrogen

bonds. For example, the representative structure in the 122nd most populated state is a

compact random coil structure (Figure S4(a)), while that for the 9th most populated state

has an α-helical region (Figure S4(b)). This conformational transition involves breaking

the original contacts in the compact random coil structure and the formation of an α-helix

fragment.

The generally rapid transitions observed here are consistent with the relatively low barri-

ers between free energy basins obtained with dPCA and LSDMap. This feature might be due

to the abundant positive charges on the histone H3 N-terminal tail (it has four Arg residues

and eight Lys residues, and no Asp/Glu). The generally repulsive electrostatic interactions

make it harder to form many distinct compact structures. This is also supported by the

relatively open conformations in the most populated macro states. The transitions likely

mainly involve the partial folding and unfolding of the α-helix segments, movements around

the linkage between these two segments, and also the flexible C-terminus.
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Figure 9: Distribution of MFPTs between the 150 different macrostates.

Concluding Remarks

In this study, we carry out extensive explicit solvent simulations on the histone H3 N-terminal

tail and construct the MSM to describe its dynamics. The MSM shows that the peptide has a

rather flat free energy surface with shallow free energy basins separated by low barriers. The

conformations in the main metastable states show two α-helix prone segments. The overall

secondary structural propensity is consistent with observations from previous experimental

and computational studies.9,11,13 The free energy surfaces obtained using dPCA and LSDMap

show similar features, with conformations in the free energy basins exhibit partial helical

contents. The MFPTs computed from MSM indicate that the transitions between different

metastable states range from hundreds of nanoseconds to hundreds of microseconds.

The rapid transition between different conformational states of histone H3 N-terminal

tail may well indicate how this peptide functions. The low free energy barrier between

different conformational states can be easily perturbed by various modifications on different

residues.The binding between the peptide and its counterpart may also involve an induced

fitting process. For instance, in the NMR structure of a K4 and K9 dimethylated form
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in complex with HP1 and the crystal structure of K4 trimethylated form in complex with

ING2 PHD finger, the histone H3 N-terminal tail in general showed extended structures.19,20

Since chemical modifications were not found to have a major impact on the structure of

this peptide,11 these structural variations observed in different experiments are expected

to be due largely to binding to other proteins, which led to the conformational transition

from helical to extended structures. The resolved region in the experimental structures

largely corresponds to the first α-helical fragment in this study. It is worth noting that

the N-terminal helical region is more labile than the second helical region. In the 9th most

populated macrostate in the MSM and the basins labeled ‘i’ on the free energy surfaces

analyzed with dPCA and LSDMap, the structures all have an extended N-terminus very

similar to that found in the experimental structures. The side chains of K4 and K9 orient

away from the helical region (Figure S4(b-d)), which might facilitate the modifications and

binding process. The conformational transitions of the peptide in the induced-fit process

can be facilitated by the intrinsically fast kinetics of the peptide. Similar discussion has

been made for other intrinsically disordered proteins, whose conformations respond actively

to solution conditions, self aggregation and binding to other proteins.27,46,47 These studies

and the current work highlight how the internal dynamics of this important class of peptides

contribute to function.

From a technical perspective, the present work illustrates the advantage of integrating

MSM, dPCA and LSDMap to study the free energy landscape and kinetics of a flexible

system. dPCA is computationally efficient since it relies only on structural information

and provides a compact description of the free energy landscape. LSDMap goes beyond

dPCA by considering the “kinetic connectivity” among different conformations, thus the

dominant eigenvectors better describes the collective dynamics of the system. MSM explicitly

considers microscopic kinetic information for the interconversion among metastable states

and therefore leads to a more complete description of the free energy landscape, although

at the cost of requiring more thorough sampling. In the current work, the results from
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the three methods are largely consistent in terms of dominant structural features, although

MSM clearly contains richer information regarding the kinetic stability and accessibility of

different populations. The integration of the three methods provides us with a means of cross

validation and a more complete characterization of the free energy landscape and kinetics of

the histone H3 N-terminal tail.
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content of the histone tails of the nucleosome. J. Biol. Chem. 2000, 275, 35013–20.

(11) Liu, H.; Duan, Y. Effects of posttranslational modifications on the structure and dy-

namics of histone H3 N-terminal Peptide. Biophys. J. 2008, 94, 4579–85.

(12) Yang, D.; Arya, G. Structure and binding of the H4 histone tail and the effects of lysine

16 acetylation. Phys. Chem. Chem. Phys. 2011, 13, 2911–2921.

(13) Potoyan, D. A.; Papoian, G. A. Energy landscape analyses of disordered histone tails

reveal special organization of their conformational dynamics. J. Am. Chem. Soc. 2011,

133, 7405–15.

22

Page 22 of 27Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



(14) Strahl, B. D.; Ohba, R.; Cook, R. G.; Allis, C. D. Methylation of histone H3 at lysine 4

is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena.

Proc. Natl. Acad. Sci. USA 1999, 96, 14967–72.

(15) Nakayama, J.; Rice, J. C.; Strahl, B. D.; Allis, C. D.; Grewal, S. I. Role of histone H3

lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 2001,

292, 110–3.

(16) Plath, K.; Fang, J.; Mlynarczyk-Evans, S. K.; Cao, R.; Worringer, K. A.; Wang, H. B.;

de la Cruz, C. C.; Otte, A. P.; Panning, B.; Zhang, Y. Role of histone H3 lysine 27

methylation in X inactivation. Science 2003, 300, 131–135.

(17) Bannister, A. J.; Zegerman, P.; Partridge, J. F.; Miska, E. A.; Thomas, J. O.; All-

shire, R. C.; Kouzarides, T. Selective recognition of methylated lysine 9 on histone H3

by the HP1 chromo domain. Nature 2001, 410, 120–124.

(18) Lachner, M.; O’Carroll, N.; Rea, S.; Mechtler, K.; Jenuwein, T. Methylation of histone

H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001, 410, 116–120.

(19) Nielsen, P. R.; Nietlispach, D.; Mott, H. R.; Callaghan, J.; Bannister, A.;

Kouzarides, T.; Murzin, A. G.; Murzina, N. V.; Laue, E. D. Structure of the HP1

chromodomain bound to histone H3 methylated at lysine 9. Nature 2002, 416, 103–

107.

(20) Pena, P. V.; Davrazou, F.; Shi, X. B.; Walter, K. L.; Verkhusha, V. V.; Gozani, O.;

Zhao, R.; Kutateladze, T. G. Molecular mechanism of histone H3K4me3 recognition by

plant homeodomain of ING2. Nature 2006, 442, 100–103.

(21) Bowman, G. R.; Huang, X.; Pande, V. S. Using generalized ensemble simulations and

Markov state models to identify conformational states. Methods 2009, 49, 197–201.

23

Page 23 of 27 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



(22) Bowman, G. R.; Beauchamp, K. A.; Boxer, G.; Pande, V. S. Progress and challenges in

the automated construction of Markov state models for full protein systems. J. Chem.

Phys. 2009, 131, 124101.

(23) Noe, F.; Fischer, S. Transition networks for modeling the kinetics of conformational

change in macromolecules. Curr. Opin. Struct. Biol. 2008, 18, 154–162.

(24) Beauchamp, K. A.; Bowman, G. R.; Lane, T. J.; Maibaum, L.; Haque, I. S.; Pande, V. S.

MSMBuilder2: Modeling Conformational Dynamics at the Picosecond to Millisecond

Scale. J. Chem. Theory Comput. 2011, 7, 3412–3419.

(25) Senne, M.; Trendelkamp-Schroer, B.; Mey, A. S. J. S.; Schuette, C.; Noe, F. EMMA: A

Software Package for Markov Model Building and Analysis. J. Chem. Theory Comput.

2012, 8, 2223–2238.

(26) Voelz, V. A.; Bowman, G. R.; Beauchamp, K.; Pande, V. S. Molecular Simulation of ab

Initio Protein Folding for a Millisecond Folder NTL9(1-39). J. Am. Chem. Soc. 2010,

132, 1526–8.

(27) Qiao, Q.; Bowman, G. R.; Huang, X. Dynamics of an intrinsically disordered protein

reveal metastable conformations that potentially seed aggregation. J. Am. Chem. Soc.

2013, 135, 16092–101.

(28) Mariño-Ramı́rez, L.; Hsu, B.; Baxevanis, A. D.; Landsman, D. The Histone Database:

a comprehensive resource for histones and histone fold-containing proteins. Proteins

2006, 62, 838–42.
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