PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

Catalyzed Hydrogen Sorption Mechanism in Alkali Alanates

Züleyha Özlem Kocabas Atakli,^a Elsa Callini,^{a,b} Shunsuke Kato,^{a,b} Philippe Mauron,^{a,b} Shin-Ichi Orimo,^c and Andreas Züttel^{a,b*}

^a EMPA, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland

^b Ecole polytechnique fédérale de Lausanne (EPFL), Institut des sciences et ingénierie chimiques, CH-1015 Lausanne, Switzerland

^c Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

Abstract: The hydrogen sorption pathways of alkali alanates were analyzed and a mechanism for the catalytic hydrogen sorption was developed. Gibbs free energy values of selected intermediate steps were calculated based on experimentally determined thermodynamic data (enthalpies and entropies) of individual hydrides: MAIH₄, M₃AlH₆, and MH. The values of the activation energies, based on the intermediates M⁺, H⁻, MH, and AlH₃, were obtained. The mechanism of the catalytic activity of Ti is finally clarified: we present an atomistic model, where MAIH₄ desorbs hydrogen through the intermediates M⁺, H⁻, MH, and AlH₃ to the hexahydride M₃AlH₆ and finally the elemental hydride MH. The catalyst acts as a bridge to transfer the M⁺ and H⁻ from MAIH₄⁻ to the neighboring AlH₄⁻, forming AlH₆³⁻ and finally isolated MH, leaving AlH₃ behind, which spontaneously desorbs hydrogen to give Al and 1.5 H₂. The proposed mechanism is symmetric in the direction of hydrogen desorption as well as readsorption processes.

^{*} Author to whom correspondence should be addressed andreas.zuettel@empa.ch , Tel: +41 58 765 40 38

1. Introduction

While the volumetric hydrogen density in hydrides reaches twice the density of liquid hydrogen, the gravimetric hydrogen density in metal hydrides is limited to about 2.5 mass%. Since Bogdanovic and co-workers¹ presented Ti-catalyzed hydrogen sorption in sodium alanate (NaAlH₄) at the MH1996 conference, the complex hydrides have been intensively investigated for solid phase hydrogen storage. NaAlH₄ desorbs hydrogen in three distinct steps, where Na₃AlH₆ and NaH are intermediate products of the partially dehydrogenated alanate in the process as shown by the following three reactions:

$$3NaAlH_4 \rightarrow Na_3AlH_6 + 2Al + 3H_2 \rightarrow 3NaH + 3Al + \frac{9}{2}H_2 \rightarrow 3Na + 3Al + 6H_2$$
(1)

From the total amount of hydrogen (7.4 mass%) in NaAlH₄, half of the hydrogen, that is, 3.7 mass%, is desorbed in the first reaction at 353 K ($p(H_2) = 0.1$ MPa), one quarter, that is, 1.85 mass%, is desorbed in the second reaction at 423 K ($p(H_2) = 0.1$ MPa), and one quarter, that is, 1.85 mass%, is desorbed in the third reaction at 700 K ($p(H_2) = 0.1$ MPa).² A two-step decomposition reaction of NaAlH₄ was proposed by Balema and Balema³ due to the absence of Na₃AlH₆ species. They proposed that NaH obtained from the direct decomposition reaction of NaAlH₄ in order to produce the Na₃AlH₆ as indicated in the following:

$$NaAlH_4 \rightarrow NaH + AlH_3$$
 (2)

$$NaAlH_4 + 2NaH \rightarrow Na_3AlH_6 \tag{3}$$

In the neat NaAlH₄ system, the activation energies for the first and second dehydrogenation reactions shown in Reaction (1) are 118 and 124 kJ/mol H₂, respectively.⁴ Adding a few molar percent of TiCl₃ to the NaAlH₄ reduces the activation energies to 80 and 96 kJ/mol H₂, and the isotherm of the reabsorption of hydrogen follows the desorption isotherm with almost no hysteresis.^{1,5,6} The role of the Ti as a catalyst is to increase the reaction rate for the hydrogen desorption and absorption reaction, that is, to allow the reaction to equilibrate in the time frame of the experiment.⁷ A few molar percent of TiCl₃ have been added to NaAlH₄ by

ball milling or in a solvent.^{1,8,9} Other Ti salts and Ti compounds, such as TiF₃, Ti(OBu)₄, TiH₂, and TiO₂, have also been well studied and it was found that the anion reacts with the sodium in the alanate. ^{10,11,12,13,14} The added quantity of the Ti salt affects the increase of the reaction rate; that is, up to 5 mol%, a linear increase of the reaction rate as a function of the added amount was found, while for larger quantities the reaction rate did not increase anymore.⁵ Apart from that, Bogdanovic et al.¹⁵ reported that adding 2 mol% of ScCl₃ and CeCl₃ into NaAlH₄ reduces hydrogenation times by a factor of approximately two at high pressure and by a factor of ten at low pressure in contrast to adding TiCl₃. Wang et al.¹⁶ compared the reversible hydrogen storage properties of Sc-NaAlH₄ with those of Ti-NaAlH₄. They concluded that Sc-NaAlH₄ cycled better than Ti-NaAlH₄ and that Sc-doped NaAlH₄ exhibited comparable or, in some cases, even higher hydrogen storage capacities than Ti-NaAlH₄. Other metals like Pd, Pt, Ir, Rh, and Ru that are commonly used as hydrogenation catalyst elements have an insignificant effect on the hydrogenation cycling⁷.

The following questions come to mind: 1) What is the catalytically active material? 2) Which are the catalytically active sites? 3) In which oxidation state is the catalyst? 4) What is the mechanism of the catalyzed reaction? Despite years of intense investigations of a large variety of catalytic materials added to alanates, the mechanism of the catalyzed reactions including the role of the catalyst remains unresolved.

Different ideas to explain the mechanisms of the Ti-catalyzed reactions have been proposed by several authors and will be briefly reviewed in the following. One of the early studies by Ivanov¹⁷ on Ti as a catalyst in MAlH₄ explains the role of the Ti species on or in the surface layer to provide a barrierless path for the hydrogen dissociation/recombination (H₂ \neq 2H) reaction as behaving as a "hydrogen pump". Hydrogen atoms diffuse to and from the reaction center independently. However, there are various metals that are known to show a very low dissociation barrier for hydrogen, for example, Pd and Pt, which do not increase the reaction rate of the hydrogen desorption from alanates similarly to Ti. Furthermore, there are no quasifree hydrogen atoms in alanates but rather hydrogen carrying at least a partial negative charge. Gunaydin et al.¹⁸ proposed a vacancy-mediated mechanism that includes initiation of the formation of mobile AlH₃ and NaH vacancies at the phase boundaries of Al-NaAlH₄ and NaAlH₄-Na₃AlH₆. They found that H₂ evolved at the Al-NaAlH₄ interface. Borgschulte et al.¹⁹ further support this vacancy-diffusion-limited interfacial mechanism by suggesting that the role

of Ti in the system is to act as a shuttle at the interface of Al-NaAlH₄. However the decomposition of Na₃AlH₆ was not considered along with the reason for the formation of such an interface in these proposed mechanisms. Since the hydrogen desorption occurs at the surface, the interface is moving through the alanate crystal and therefore no transport limitation is present. The desorption products are formed at the surface and subsequently diffuse to each other to form bulk materials. Recently, Peles and van de Walle²⁰ demonstrated that the presence of Ti could change the Fermi level of the crystal and therefore the energy required to create a charged hydrogen defect decreased. Sun et al.²¹ and Singh et al.²² suggest that during decomposition of NaAlH₄. Ti particles are the centers for nucleation and growth of the decomposed phases. However, the growth of the product phases is not directly connected to the hydrogen release and the nucleation of the phases does not explain the catalytic activity of the reabsorption reaction. Sandrock et al.⁵ suggested that the Ti assisted the "breaking and re-forming" of covalent Al-H bonds. Several groups performed DFT calculation by substituting Ti into the lattice of the NaAlH₄ and Na₃AlH₆ structures. They mostly obtained the lengthening of Al-H bonds by substituting Ti in Na sites. Furthermore, Wang et al.²³ suggested that the interaction between Nacontaining and Ti-containing species was crucial. They proposed that the bond between Na⁺ and H⁻ weakened due to the interactions with Ti hydride, and the transfer of H⁻ from the NaH to AlH₃ was assumed to be an important step in forming covalently bound [AlH₄]⁻ anions. Very recently, Marashdeh et al.²⁴ proposed the "zipper" mechanism of Ti catalysis, where the catalytically active Ti species dispersed on the surface of NaAlH₄ eject Na ions and other species to the surface, where they can easily react. However, the zipper model only specifically explains the decomposition of alanate; the re-hydrogenation step is assumed to occur by a simple hydrogen pump mechanism.

Quite a number of possible mechanisms for the hydrogen sorption in MAlH₄ have been proposed.²⁵ However, none of these approaches are able to explain the fact that Ti catalyzes both hydrogen desorption steps and the adsorption of hydrogen as perfectly symmetric hysterisis.¹ In this work, we present a completely symmetric mechanism where the function of the catalyst is well-defined. Firstly, we focus exclusively on understanding the main intermediate steps in the dehydrogenation and rehydrogenation of MAlH₄ and M_3AlH_6 (where M = Li, Na, and K) based on thermodynamic considerations. With this aim, the Gibbs free energies of each possible compound are calculated from the experimentally available thermodynamic properties of

individual hydrides: MAlH₄, M₃AlH₆, and MH. Secondly, the activation barriers of the two extreme cases, that is, no charge separation and complete charge separation, with the intermediates M^+ , H⁻, MH, and AlH₃, are obtained for the first and second steps. Lastly, we present an atomistic model, based on thermodynamic considerations, where the catalyst acts as a bridge to transfer the MH or M^+ and H⁻ from AlH₄⁻ to AlH₆³⁻ and finally to form MH. The proposed mechanism is symmetric and the catalyst forms a bridge between the ions to form transition states M^+ ---Ti---H⁻, MH, and AlH₃ for the (de)hydrogenation.

2. Thermodynamic Analysis

In order to evaluate the reaction path and the activation energies, the thermodynamic stability of the intermediate products of the MAIH₄ hydrogen sorption process, the enthalpy of formation and entropy data were collected from the published data and are presented in Table 1. The enthalpy of formation of the elements in the standard state is zero ($H_f^0 = 0$) by definition and the entropy S^0 is determined from the heat capacity at constant volume (C_V). Therefore, for the elements at 298 K, we have $H_f^0 = 0$ kJ/mol and S_{298}^0 . The Gibbs free energy G° at a temperature T = 298 K is then defined as:

$$G^{\circ} = H_{f}^{\circ} - T \cdot S^{\circ} \tag{4}$$

where H_{f}° is the enthalpy of formation and S° is the entropy. For any step of the reaction the change in the Gibbs free energy (ΔG) is

$$\Delta G = G_2 - G_1 = H_{f_2}^{\circ} - H_{f_1}^{\circ} - T(S_2^{\circ} - S_1^{\circ}) = \Delta H - T(\Delta S)$$
(5)

(remove the f on the right hand side)

Molar heat capacity is a fundamental thermodynamic property that can be measured under constant pressure or volume. These quantities are defined as follows:

$$C_{p} = \left(\frac{\partial H}{\partial T}\right)_{p}, \quad C_{v} = \left(\frac{\partial U}{\partial T}\right)_{v} \tag{6}$$

Physical Chemistry Chemical Physics Accepted Manuscript

where H is enthalpy, U is the internal energy, and T is the absolute temperature. The integration of the heat capacity at constant pressure with respect to temperature can be used to calculate the enthalpy and entropy at specific temperature. To obtain the enthalpy and entropy values at 453 K, the following equations are utilized.

$$H_{T_1} = \int_{298}^{T_1} C_p dT + H^{\circ}$$
(7)

$$S_{T_1} = \int_{298}^{T_1} \frac{C_p}{T} dT + S^{\circ}$$
(8)

In Table 1, C_p (T=298 K) values are listed for elements and hydrides. The C_p values of potassium aluminum hydride and hexahydride could not be obtained in the literature. Therefore we estimated C_p (T=298 K) values for KAlH₄ and K₃AlH₆ by adding the values of C_p for KH and AlH₃: C_p(KH) = 37.9 J/mol K and C_p(AlH₃) = 40.2 J/mol K (rule of additivity). Bonnetot et al.⁴³ performed similar calculations for the C_p values of NaAlH₄ and Na₃AlH₆. They compared the results obtained from the rule of additivity with experimental C_p values determined by adiabatic calorimetry. In order to verify the data, this rule was also applied for the calculation of the enthalpy of formation and entropy data for the alanates. Satisfactory agreements between estimated and experimental values were obtained except for the enthalpy of formation for Na₃AlH₆. However, with the use of the calculated value of Na₃AlH₆ obtained by the CALPHAD method, the difference between estimated and experimental values was minimized. The higher suitability of the rule of additivity is observed in enthalpy, entropy, and C_p values of hexahydride in our calculations as well as in the calculations of Bonnetot et al., who explained this probable discrepancy by the different surroundings of aluminum atoms in tetra- and hexahydridoaluminate. Therefore, we utilized the calculated result of Na₃AlH₆ obtained by the CALPHAD method.

The dissociation energies of the elemental hydrides (LiH = 238.3 kJ/mol,²⁶ NaH = 205.5 kJ/mol,²⁷ KH = 176.8 kJ/mol²⁸) were used in order to account for the charge transfer in the solid.

$$MH \to M^+ + H^- \tag{9}$$

The thermodynamics of the hydrogen absorption and desorption reaction can be determined by plotting the plateau pressures and temperatures in a van't Hoff plot.

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{P_{eq}}{P_{eq}^{\circ}}$$
(10)

where R is the universal gas constant and P_{eq} is the H₂ equilibrium pressure. At equilibrium, where $\Delta G = 0$, the relationship between H₂ pressure with temperature is given by the Van't Hoff equation

as follows:

$$\ln \frac{P_{eq}}{P_{eq}^{\circ}} = -\frac{\Delta H^{\circ}}{R} \cdot \frac{1}{T} + \frac{\Delta S^{\circ}}{R}$$
(11)

By plotting $\ln(p/p^{\circ})$ versus 1/T, the slope is $\Delta H^{\circ}/R$, often remains reasonably constant over the temperature range considered experimentally. The temperature dependence of H₂ sorption pressure between MAIH₄ and M₃AIH₆ as well as between M₃AIH₆ and MH was evaluated by utilizing this correlation. The enthalpy difference between the compounds and the elements is called the enthalpy of formation (ΔH_f) , while the enthalpy differences between to stable states is called the reaction enthalpy (ΔH_r). Therefore, the enthalpy ΔH^0 in the Van't Hoff equation for the hydrogen desorption is $\Delta H^0 = \Delta H_f$ (hexahydride) - ΔH_f (alanate) for the first step and $\Delta H^0 = \Delta H_f$ (alkali metal hydride) - ΔH_f (hexahydride) for the second step of the reaction. The standard entropy S⁰ of the elements and compounds are given in table 1. The entropy change upon the hydrogen sorption reaction is given by the entropy differences between the standart entropy of the desorbed state plus the standard entropy of hydrogen minus the standard entropy of the hydrides state, therefore, $\Delta S = S^{0}(hexahydride) + S^{0}(H_{2}) + S^{0}(aluminum) - S^{0}(alanate)$ for the first step and $\Delta S = S^{0}(alkali metal hydride) + S^{0}(H_{2}) + S^{0}(aluminum) - S^{0}(hexahydride)$ for the second step of the reaction. Since the sum of the standard entropies of the solid products is larger than that of the starting compound in the hydrogen desorption reaction, the resulting entropy change upon the hydrogen desorption is larger than the standard entropy of hydrogen ΔS $= S^{0}(M) + S^{0}(H_{2}) - S^{0}(MH)$. This is a major difference to the hydrogen desorption from a metal

hydride, where the standard entropy of the hydride is larger than the standard entropy of the metal and, therefore, the entropy change upon hydrogen desorption is equal or less than the standard entropy of hydrogen gas.

Table 1. Experimental thermodynamic properties of LiAlH₄, NaAlH₄, and KAlH₄ at 298 K at 1 atm.

	$-\Delta H_{f}^{\circ}$ (kJ/mol)	Ref	S° (J/mol.K)	Ref	C_p (J/mol.K)	Ref
Al	0	_	28.3	29	24.4	31
H_2	0	_	130.0	30	28.8	31
Li	0	_	29.1	31	24.8	31
Na	0	_	51.2	31	28.2	31
Κ	0	_	64.2	31	29.6	31
LiH	90.6	32	20.0	31	27.9	31
NaH	56.4	33	40.0	31	36.4	31
KH	63.4	34	60.7	35	37.9	36
AlH ₃	11.7	37	30.0	37	40.2	43
LiAlH ₄	115.0	38	78.7	39, 40	83.2	31
NaAlH ₄	113.0	35, 41	89.1	29, 40	85.5	43
KAlH₄	170.5	42	112.9	39	78.1	_
Li ₃ AlH ₆	311.1	38	102.6	39,31	127.7	31
Na ₃ AlH ₆	238.8 ^a	42	161.5	43	150.6	43
K ₃ AlH ₆	308.5	44	223.6	[This study] ^b	153.9	_

a CALPHAD calculation

b This value was optimized by using two decomposition temperatures acquired from differential thermal analysis in the literature 44

The experimental entropy value for K_3AlH_6 was not available from the literature; therefore in this study these data were calculated based on Equation 5 using experimentally determined temperatures found in the literature⁴⁴ for the transition from KAlH₄ to hexahydride (T₁) and from hexahydride to KH and Al (T₂) Since the Δ H and Δ S are already known for the hydrogen desorption from KAlH₄, the entropy (S°) for K₃AlH₆ was calculated by using two (p,T) pairs acquired from differential thermal analysis in the literature.⁴⁴ The calculation details are given in the following section.

3. Results and Discussion

In order to describe the hydrogen sorption reaction of the alkali alanates, for example, LiAlH₄, NaAlH₄, and KAlH₄, the Gibbs free energy along the reaction coordinate was calculated at various temperatures. The Gibbs free energy diagrams were constructed based on

thermodynamic parameters (H_f , S°) as shown in Table 1. MAlH₄ (where M = Li, Na, and K) is known to release hydrogen in two distinct steps; partially dehydrogenated M₃AlH₆ and MH phases appear in the dehydrogenation process as indicated in the reaction (1).^{4,41} From an atomistic point of view, in the case of NaAlH₄, the reaction from the alanate NaAlH₄ to the hexahydride Na₃AlH₆ involves the transfer of two NaH to the neighboring NaAlH₄(12):

$$3 \text{ NaAlH}_4 \rightarrow \text{AlH}_3 \cdot \text{NaH} \cdots \text{NaAlH}_4 \cdots \text{NaH} \cdot \text{AlH}_3 \rightarrow \text{Na}_3 \text{AlH}_6 + 2 \text{ AlH}_3$$
(12)

$$\rightarrow$$
 3NaH + 3AlH₃ (13)

in parallel:
$$AlH_3 \rightarrow Al + {}^3/_2H_2$$
 (14)

The second step of the reaction involves the formation of NaH phase from the hexahydride (13). In parallel the alane (AlH₃) decomposes and releases hydrogen (14). Therefore, all possible intermediates in the (de)hydrogenation processes were considered. Only the intermediates among the possible steps that were energetically favorable and preserved the reaction balance to react three moles of MAlH₄ were taken into account. The study is based on the experimentally observed intermediates which were already emphasized in the literature for the (de)hydrogenation reactions of MAlH₄. In between products transition states, without charge separation (minimum) and with complete charge separation (maximum), are introduced to form the activation barrier in Figure 1 for LiAlH₄, Figure 2 for NaAlH₄, and Figure 3 for KAlH₄.

The calculated Gibbs free energy levels for three moles of LiAlH₄ at 453 K are shown in Figure 1. LiAlH₄ is stable with respect to the decomposition into elements and thermodynamically unstable with respect to the decomposition with the formation of Li₃AlH₆, Al, and H₂. According to the obtained energy values, the (de)hydrogenation reactions are attributed to two possible reaction pathways including the transition state M^+ and H^- (MAX, complete charge separation) and bonded structure of MH (MIN, no charge separation). The reaction route that connects LiAlH₄ to Li₃AlH₆ occurs through a two-step mechanism as shown in Figure 1. First, two LiAlH₄ molecules transfer LiH or Li⁺ and H⁻ from each side to the central LiAlH₄ and two AlH₃ remain. Secondly, the hexahydride Li₃AlH₆ is formed, the two AlH₃ spontaneously desorb hydrogen, and two Al are left. The experimentally determined activation energy for the transformation of LiAlH₄ to Li₃AlH₆ is 111 kJ/mol⁴⁵. This value is in between the levels of the MIN value for the transition state species LiH and the MAX value for Li⁺ and H⁻

(Figure 1). Since the experimental activation energy is much closer to the MAX level, the transition state is close to the complete charge separation, Li^+ and H⁻. The next step is the spontaneous hydrogen desorption from the two AlH₃ to give two Al and three H₂. Kang et al.⁴⁶ performed a computational study on the intermediate products for the hydrogen desorption from LiAlH₄. In their study, they report the stepwise mechanism involving two sequential hydrogen transfers in the first decomposition reaction of LiAlH₄. As a result of these transfers, Li₃AlH₆ plus two AlH₃ molecules are also formed. The driving force for the first reaction step is the thermodynamic stability of the hexahydride. The two Li-H are transferred because the hexahydride is more stable than the alanate; therefore, the movement of the two Li-H has to take place simultaneously.

In the second dehydrogenation step, three LiH are formed from Li₃AlH₆, leaving AlH₃. The reaction proceeds by transferring three hydrogen anions (H⁻) from the hexahydride to the lithium cation (Li⁺), and three LiH are formed. The two activation energies are 15.6 kJ/mol for the transition state of LiH and 174.4 kJ/mol for Li⁺ and H⁻. The experimentally determined activation energy for this step is equal to 100 kJ/mol.⁴⁵ Here the transition state is closer to the LiH than the separated charges. The reaction of LiAlH₄ to form Li₃AlH₆ is exothermic with $\Delta H_{453} = -35.9$ kJ/mol and $\Delta G_{453} = -36.1$ kJ/mol, indicating a spontaneous hydrogen desorption reaction. The Gibbs free energy, $\Delta G_{298} = -19.8$ kJ/mol, is in close agreement with the results of Dymova et al., $\Delta G_{298} = 27.7$ kJ/mol.⁴⁷ The direct hydrogen desorption from LiAlH₄ to the final product has a higher activation energy as compared to the reaction path via the hexahydride. Therefore, this direct dehydrogenation is not observed.

-Figure 1-

The transition states for the dehydrogenation of NaAlH₄ correspond in view of composition to the transition states mentioned above (Figure 2). Therefore the mechanism can be generalized: In both reaction steps of the hydrogen desorption from the alanate the alkali hydride has to move. In the first step two alkali hydrides are transferred to the central alanate in order to form the hexahydride and in the second step three alkali hydrides are removed from the hexahydride. The driving force is the energy gain of the system obtained by forming the

hexahydride and finally the separated alkali hydrides. The hydrogen desorption from the alane is spontaneous. AlH₃ has not been detected experimentally; the reason could be attributed to the unstable behavior of AlH₃, which decomposes immediately into Al and hydrogen at temperatures higher than 418 K.⁴⁸ Here the results indicate that the decomposition of AlH₃ is energetically favorable and its formation is likely in order to obtain elemental compounds. At the end of the first decomposition reaction, AlH₃ is responsible for the release of hydrogen. The experimentally reported activation energies of the first and second hydrogen desorption reactions for NaAlH₄ are 118 and 124 kJ/mol.⁴ The activation barriers for the transition of NaAlH₄ to Na₃AlH₆ are 35.9 for NaH and 172.3 kJ/mol for Na⁺ and H⁻, per formula unit. Therefore, the transition state is in between NaH and Na⁺ and H⁻, indicating that the real transition state has only partial charge separation.

In the second reaction step, the experimentally determined activation energy is closer to the level of NaH rather than the separated charges Na^+ and H⁻ for the hydrogen desorption reaction from Na₃AlH₆ to NaH, Al, and H₂. The second reaction step comprises only one transition state: NaH and AlH₃ (Figure 2). Walters and Scogin et al.⁴⁹ proposed a similar reaction path in which both NaAlH₄ and Na₃AlH₆ release hydrogen by the formation of NaH and AlH₃ as intermediate products. They investigated X-ray diffraction (XRD) patterns, as well as the measured relative composition of selected decomposition samples at various extents of reaction. From those patterns, it was observed that with decreasing concentration of NaAlH₄, aluminum metal appears and the concentration of the intermediate Na₂AlH₅ first increases and then decreases when Na₃AlH₆ increases during the progress of the reaction. Furthermore, they suggested that the AlH₃ plays a major role in both the decomposition and the reformation mechanism and they defined the role of Ti as a catalyst center for the formation of Ti–Al alloys, facilitating the AlH₃ formation and sorption for both decomposition and reformation mechanisms. However, the decomposition of AlH₃ is spontaneous and might not need catalysis in order to release hydrogen.

-Figure 2-

At 453 K the most stable phase is KAlH₄, as shown in Figure 3, while the most stable phase at that temperature is the elemental hydrides for the LiAlH₄ and NaAlH₄ system (Figures 1 and 2). The Gibbs free energies of LiAlH₄ and NaAlH₄ are similar, while that of KAlH₄ is 67 kJ/mol lower than that of NaAlH₄. This is because in the reaction MAlH₄ \rightarrow MH + Al + 3/2 H₂, the enthalpy change with M = K is more endothermic than that with M = Na. Therefore a higher decomposition temperature is required for KAlH₄ (573–673 K) as compared to NaAlH₄ under ambient H₂ pressure. The (de)hydrogenation steps for KAlH₄ follow the same reaction path as in the cases of LiAlH₄ and NaAlH₄. Ares et al.⁴⁴ reported that the apparent activation energies are 131 and 140 kJ/mol for the first and second decompositions of KAlH₄. The experimentally obtained activation energy values from the literature and the calculated values in this study for the two main decomposition steps of Li, Na, and K alanates reveal that both activation barriers tend to be higher when the alkaline metal is larger or less electronegative. They are in the following order: LiAlH₄ < NaAlH₄ < KAlH₄. The higher activation barriers found for the hydrogen desorption in KAlH₄ can be explained by the more pronounced charge separation in the transition state for the less electronegative alkali metals.

-Figure 3-

The Gibbs free energy of the alanate and the hexahydride determine the thermodynamic stability of compounds and also their temperature of hydrogen release at 1 bar pressure. In Figure 4, the Gibbs free energy values for the selected levels are shown at different temperatures. The values are calculated by varying temperatures between 290 and 400 K for NaAlH₄ and 590 and 630 K for KAlH₄. The temperatures for the transition from MAlH₄ to hexahydride (T₁) and from hexahydride to MH and Al species (T₂) are denoted by T₁ and T₂. Those values are calculated where the difference between the Gibbs free energy level of MAlH₄ and M₃AlH₆, or M₃AlH₆ and MH is zero by utilizing equation of $\Delta G = \Delta H - T\Delta S$. The calculated values for NaAlH₄ to M₃AlH₆ as well as from M₃AlH₆ to MH are shown in Figure 4, where the Gibbs free energy is plotted over the reaction coordinate at several temperatures. Bogdonavic et al.⁵⁰ experimentally determined the van't Hoff plot of the dissociation pressures of the hydrogen desorption from NaAlH₄ and

Na₃AlH₆. For the two-step reversible hydrogen sorption of the Ti-doped NaAlH₄, the hydrogen pressures for NaAlH₄ at 456 K and for Na₃AlH₆ at 517 K are 135 and 64 bar, respectively.⁵⁰ The extrapolated hydrogen dissociation pressures at 1 bar for NaAlH₄ and Na₃AlH₆ are found at 292 and 377 K, respectively, which is in excellent agreement with the equilibrium conditions in the Gibbs free energy diagrams.

The experimental entropy value for K_3AlH_6 was not available from the literature; therefore the data were calculated by considering the experimentally found equilibrium temperatures T_1 and T_2 . Ares et al.⁴⁴ investigated the thermal hydrogen desorption of the asprepared KAlH₄ by means of a differential thermal analyzer at 1 atm. This study confirmed that the desorption reaction path is a multistep dehydrogenation. They found that 3KAlH₄ undergoes an initial decomposition reaction to form $K_3AlH_6 + 2AlH_3$ at 593 K and a second decomposition of K_3AlH_6 into 3KH + 2AlH₃ at 628 K. Those two temperatures were used in order to calculate the standard entropy of K_3AlH_6 . The entropy was determined by equating two energy levels of the decomposition phases, that is, transition from KAlH₄ to K_3AlH_6 and from K_3AlH_6 to KH (Figure 4). The optimized entropy for K_3AlH_6 is about 223.6 J/mol K. The obtained entropy value of K_3AlH_6 confirms the Gibbs free energy analysis, as the entropy of K_3AlH_6 is lower than those of Na₃AlH₆ and Li₃AlH₆. In addition to that, starting from the values of *S*° for KH and AlH₃ (*S*°(KH) = 60.7 J/ mol K and *S*°(AlH₃) = 30 J /mol K) and using the rule of additivity, we achieved the estimated *S*° value for K_3AlH_6 : 212.1 J /mol K. This is very close to the value obtained by equating the two energy levels of the decomposition phases in this study.

-Figure 4-

In spite of the difference in their crystal structures, the types of decomposition products, that is, the reaction pathways, for the three alkali alanates under investigation are all the same. This indicates that the mechanism for all three alanates may be similar. A large variety of possible mechanisms for the Ti-catalyzed hydrogen sorption in MAlH₄ have been proposed.²⁵ However, the decomposition of both MAlH₄ and M₃AlH₆ and the rehydrogenation of the solid decomposition products in the presence of Ti were not fully explained. In Figure 5, we illustrate a completely symmetric mechanism where the catalyst has a well-defined function in each reaction step, that is, to form a bridge between the ions M^+ ...Ti...H⁻ and therefore avoid a

complete charge separation. Specifically considering the alanates, the transition states, the hexahydride, and the elemental hydrides, the role of Ti is clarified. As shown by the Gibbs free energy diagrams, the hydrogen sorption mechanism for MAlH₄ follows a reaction pathway in between M^+ and H^- (MAX, complete charge separation) and MH (MIN, no charge separation) along with AlH₃ in both hydrogen (de)adsorption reactions. Furthermore, Figure 5 illustrates that Ti acts as a bridging atom for the ion transfer: Ti bridges two H⁻ and M⁺ from two [AlH₄]⁻ to the neighboring MAlH₄ in the first step and Ti bridges three H⁻ and M⁺ from the Na₃AlH₆ to form NaH in the second step. During the decomposition of Na₃AlH₆, three H⁻ and M⁺ are produced by the removal of three NaH in a side-reaction. At this point, the presence of Ti facilitates the rapid decomposition of Na₃AlH₆, with the possibility of forming TiH⁻. Sc, V, Ce, and Pr, which also work as fairly effective catalysts in alanates, are able to form analogous hydride structures.

The role of Ti in the catalyzed rehydrogenation reaction follows the same path as the dehydrogenation steps. This symmetrical reaction path might also be the reason why the isotherm of the reabsorption follows the desorption isotherm with almost no hysteresis according to the pressure-composition-temperature (PCT) analysis.^{1,5,6} In order to initiate rehydrogenation, conditions that allow the formation of AlH₃ from Al are necessary. While the decomposition reaction of AlH₃ occurs spontaneously, the formation of AlH₃ from Al requires hydrogen at high pressure. Graetz et al.⁵¹ performed *ab initio* calculations of the free energy, showing that the minimum H₂ pressure necessary for AlH₃ hydride formation at 300 K is 700 MPa (fugacity of H₂ = 50 GPa). This is in agreement with high-pressure hydrogenation experiments.⁵² The equilibrium reaction Al + $^{3}/_{2}H_{2} \Rightarrow$ AlH₃ is pressure dependent. During the rehydrogenation, the formation of AlH₃ depends on the left hand side reaction by requiring high hydrogen pressure. However, even high pressure is required and also even a desired product is not thermodynamically favored for the AlH₃ formation, the AlH₃ can be obtained if it is continuously removed from the reaction. Since the formed AlH₃ is immediately consumed in the catalyzed (Ti) subsequent step together with NaH to form the hexahydride or the alanate, the reaction continues to produce AlH₃ by proceeding from left to right. In other words, the concentration of AlH₃ is decreasing in the system because it is consumed to produce both of the alanates, first Na₃AlH₆ and then NaAlH₄. Here Ti is important to form bridge between M+ and H⁻, which is then combined with AlH₃ to form hexahydride and alanate. The reason of requiring much higher pressure for pure AlH_3 may be related to the presence of many unreacted AlH_3 in

the system. In the case of NaAlH₄ and KAlH₄, the required pressure value for the formation of AlH₃ can be lower due to the presence of M+ and H⁻ that decrease concentration of AlH₃ in the system. This is a different scenario from that proposed by Bogdanovic, where seemingly metallic aluminum particles react with NaH to form Na₃AlH₆. Bogdanovic et al.⁵³ further indicated that adding extra aluminum provides a complete reformation of NaAlH₄. According to our proposed mechanism, adding extra aluminum to the system may also promote the formation of additional AlH₃, which interacts with NaH to form Na₃AlH₆ and then NaAlH₄.

-Figure 5-

Sandrock et al.⁵ report that Ti aids the breaking and reforming of covalent Al-H bonds by lowering the activation energy for that process. They also showed that the activation energies for the decomposition of the NaAlH₄ and Na₃AlH₆ drop to much lower and different levels when even a small amount of catalyst is added (0.9%). With further addition of TiCl₃ to the system, the activation energy remains virtually constant, indicating that there is no further change in the fundamental mechanism. In another study conducted by Sandrock et al.,⁵⁴ the positive effect of Ti together with LiH on desorption rates in contrast to the addition of only Ti to AlH₃ is discussed. This may indicate the beneficial interactions of Ti atoms with M⁺ and H⁻, which are essential to form hexahydride and the elemental hydride structure. Since AlH₃ species are very unstable and decompose spontaneously, those species could not be observed at the end of the first and second decomposition steps. The immediate decomposition may be the reason why they are not yet experimentally observed. However, the possibility of their presence cannot be ignored.

4. Conclusions

The Gibbs free energy diagrams were constructed in order to determine the stability of intermediates, products, and reactants based on the published experimental thermodynamic data. We restricted the intermediates among the energetically favorable steps, conserving the reaction balance of three moles of MAIH₄. All investigated alkali alanates follow the same hydrogen desorption mechanism, where the hexahydride is formed by transferring the alkali cation and a

hydrogen anion from the two neighboring alanates to the central one, which forms the hexahydride. The activation energy of the transfer of an alkali hydride MH is lower than the experimentally determined activation energy, while the transfer of M^+ and H^- is energetically above the experimental value. Therefore, the degree of charge separation determines the activation energy. The role of the Ti catalyst is to reduce the charge separation by forming a bridge between the M^+ and the H^- . The second reaction step again involves the movement of the alkali hydride. Again the Ti plays the same role of forming a bridge. The standard entropy of K_3AlH_6 was estimated to be 223.6 J/mol.

References

1	B. Bogdanovic, M. Schwickardi, J. Alloys Compd., 1997, 253-254, 1-9.
2	M. Pozzo, D. Alfe, Int. J. Hydrogen Energy, 2011, 36, 15632-15641.
3	V. P. Balema, L. Balema, Phys. Chem. Chem. Phys., 2005, 7, 1310-1314.
4	B. Bogdanovic, G. Sandrock, MRS Bull. Sept., 2002, 27, 712-716.
5	G. Sandrock, K.Gross, Thomas. G. J. Alloys Compd., 2002, 339, 299-308.
6	W. Luo, K. Gross, J. J. Alloys Compd., 2004, 385, 224-231.
7	A. Leon, O. Kircher, M. Fichtner, J. Rothe, D. Schild, J. Phys. Chem., B., 2006, 110,
8	1192-1200. H. W. Brinks, M. Sulic, C. M. Jensen, B. C. Hauback, J. Phys. Chem. B., 2006, 110,
	2740–2745.
9	M. P. Pitt, P. E. Vullum, M. H. Sørby, M. P. Sulic, C. M. Jensen, J. C. Walmsley,
	R. Holmestad, B. C. Hauback, Acta Mater., 2008, 56, 4691-4701.
10	P. Wang, X. D. Kang, H. M. Cheng, Chem. Phys. Chem., 2005, 6, 2488-2491.
11	C. P. Balde, A. M. J. van der Eerden, H. A. Stil, F. M. F. de Groot, K. P. de Jong,
	J. H. Bitter, J. Alloys Compd., 2007, 446-447, 232-236.
12	G. J. Lee, JH. Shim, Y. W. Cho, K. S. Lee, Int. J. Hydrogen Energy, 2008, 33,
	3748–3753.
13	K. J. Gross, E. H. Majzoub, S. W. Spangler, J. Alloys Compd., 2003, 356-357, 423-
	428.
14	C. M. Jensen, R. Zidan, N. Mariel, A. Hee, H. Chrystel, Int. J. Hydrogen Energy, 1999, 24, 461-465
15	B. Bogdanović, M. Felderhoff, A. Pommerin, F. Schüth, N. Spielkamp, <i>Adv. Mater.</i> ,

	2006, 18 , 1198–1201.
	T. Wang, J. Wang, A. D. Ebner, J. A. Ritter, J. Alloys Compd., 2006, 450, 293-300.
	E. Ivanov, I. Konstanchuk, A. Stepanov, V. Boldyrev, J. Less-Common Met.,
	1987, 131 , 25–29.
	H. Gunaydin, K. N. Houk, V. Ozolins, Proc. Natl. Acad. Sci., 2008, 105, 3673-3677.
	A. Borgschulte, A. Zuttel, P. Hug, G. Barkhordarian, N. Eigen, M. Dornheim,
	R. Bormann, A. Ramirez-Cuesta, J. Phys. Chem. Chem. Phys., 2008, 1, 4045-4055.
	A. Peles, C. G. van de Walle, Phys. Rev. B., 2007, 76, 214101.
	D. Sun, S. S. Srinivasan, G. Chen, C. M. Jensen, J. Alloys Compd., 2004, 373, 265.
	S. Singh, S. W. H. Eijt, J. Huot, W. A. Kockelmann, M. Wagemaker, F. M. Mulder,
	Acta Mater., 2007, 55, 5549-5557.
	P. Wang, X. D. Kang, H. M. Cheng, J. Phys. Chem. B. 2005, 109, 20131.
	A. Marashdeh, R. A. Olsen, O. M. Løvvik, G. J. Kroes, J. Phys. Chem. C., 2008, 112,
	15759–15764.
	T. J. Frankcombe, Chem. Rev., 2012, 112, 2164–2178.
	K. Kenneth, Modern Physics, 2nd ed.; Wiley, 1996.
	N. Sreedhara Murthy, T. Manisekaran, N.S. Bapat, <i>Quant J. Spectrosc. Radiat. Transf.</i> ,
	1983, 29, 183-187.
	F. Qun-Chao, W. G. Sun, <i>Chin. Phys. Lett.</i> , 2008, 25 , 2012–2015.
	D. R. Lide, Ed., CRC Handbook of Chemistry and Physics, 80th ed.; CRC Press: Boca
	Raton, 2000.
	D. J. Siegel, C. Wolverton, V. Ozoliņs, <i>Phys. Rev. B</i> , 2007, 76, 134102.
	D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, R. L. Nuttall, Selected values
	of chemical thermodynamic properties [Part 8]. Compounds of Uranium, Protactinium,
	Thorium, Actinium, and the Alkali Metals, Volume: NBS Technical Note 270-8;
	National Bureau of Standards, 1981.
	A. J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution; New York,
	S. R. Gunn, L. G. Green, J. Am. Chem. Soc., 1958, 80, 4782-4786.
	J. Sangster, A. D. Pelton, J. Phase Equilib., 1997, 18, 387–389.

35	M. B. Smith, Jr. G. E. Bass, J. Chem. Eng. Data, 1963, 8, 342-346.				
36	M.W. Jr. Chase, NIST-JANAF Themochemical Tables. 4th ed J. Phys. Chem. Ref. Data				
	Monograph, 1998, 9, 1–1951.				
37	G. C. Sinke, L. C. Walker, F. L. Oetting, D. R. Stull, J. Chem. Phys., 1967, 47, 2759-2761.				
38	P. Claudy, B. Bonnetot, J. M. Letoffe, G. Turck. <i>Thermochim. Acta</i> , 1978, 27 , 213–221.				
39	Gavrichev, K. S. Inorg. Mater. 2003, 39, 89–112.				
40	B. Bonnetot, P. Claudy, M. Diot, J. M. Létoffé, J. Chem. Thermodyn., 1979, 11, 1197-				
	1202.				
41	SI. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, C. M. Jensen, Chem. Rev., 2007, 107,				
	4111–4132.				
42	T. N. Dymova, D. P. Aleksandrov, V. N. Konoplev, T. A. Silina, N. T. Kuznetsov,				
	Russ. J. Coord. Chem. C/C of Koordinatsionnaia Khimiia, 1993, 19, 529–534.				
43	B. Bonnetot, G. Chahine, P. Claudy, M. Diot, J. M. Letoffe, J. Chem. Thermodyn., 1980,				
	12 , 249–254.				
44	J. R. Ares, KF. Aguey-Zinsou, F. Leardini, I. Jimenez Ferrer, J.F. Fernandez, ZX. Guo,				
	C. Sanchez, J. Phys. Chem. C, 2009, 113, 6845–6851.				
45	R.A. Varin, L. Zbroniec, J. Alloys Compd., 2010, 504, 89-101.				
46	J. K. Kang, J.Y. Lee, R. P. Muller, W. A. Goddard, III. J. Chem. Phys., 2004, 121, 10623.				
47	T. N. Dymova, D. P. Aleksandrov, V. N. Konoplev, T. A. Silina, A. S.Sizareva,				
	Russ. J. Coord. Chem., 1994, 20, 279-285.				
48	J. Graetz, J. J. Reilly, J. Phys. Chem. B, 2005, 109, 22181-22185.				
49	R.T. Walters, J.H. Scogin, J. Alloys Compd., 2004, 379, 135-142.				
50	B. Bogdanovic, R.A. Brand, A. Marjanovic, M. Schwickardi, J. Tolle, J. Alloys Comp.,				
	2000, 302 , 36–58.				
51	J. Graetz, S. Chaudhuri, Y. Lee, T. Vogt, J. T. Muckerman, J. Reilly, J. Phys. Rev. B,				
	2006, 74 , 214114				
52	A. K. Konovalov, B. M. Bulychev, Inorg. Chem., 1995, 34, 172-175.				
53	B. Bogdanovic, M. Felderhoff, M. Germann, M. Hartel, A. Pommerin, F. Sschuth,				
	C. Weidenthaler, B. Zibrowius, J. Alloys Compd., 2003, 350, 246-255.				
54	G. Sandrock, J. Reilly, J. Graetz, W.M. Zhou, J. Johnson, J. Wegrzyn, Appl. Phys. A,				

2005, 80, 687-690.

Figure Captions

Fig.1 Gibbs free energy diagram of the hydrogen sorption reaction in $LiAlH_4$ and the intermediates formed at 453 K. The levels of the minimum reaction path (no charge separation) in blue (-), the levels based on the experimentally found activation energies in orange (-), and the maximum reaction path (complete charge separation) in red (-) are shown.

Fig. 2 Gibbs free energy diagram of the hydrogen sorption reaction in NaAlH₄ and the intermediates formed at 453 K. The levels of the minimum reaction path (no charge separation) in blue (-), the levels based on the experimentally found activation energies in orange (-), and the maximum reaction path (complete charge separation) in red (-) are shown.

Fig. 3 Gibbs free energy diagram of the hydrogen sorption reaction in KAlH₄ and the intermediates formed at 453 K. The levels of the minimum reaction path (no charge separation) in blue (-), the levels based on the experimentally found activation energies in orange (-), and the maximum reaction path (complete charge separation) in red (-) are shown.

Fig. 4 Transition temperatures for the reactions from MAlH₄ to hexahydride (T_1) and from hexahydride to MH and Al species (T_2) and the temperatures in between these transitions (T_{1-2}) for (a) NaAlH₄ and (b) KAlH₄.

Fig. 5 The function of the Ti is to bridge H⁻ and M⁺ (M⁺---Ti---H⁻) in order to remove the ion couple from the MAlH₄ or M₃AlH₆ without the need to transfer individual M⁺ and H⁻ ions.

Fig.1 Gibbs free energy diagram of the hydrogen sorption reaction in LiAlH4 and the intermediates formed at 453 K. The levels of the minimum reaction path (no charge separation) in blue (-), the levels based on the experimentally found activation energies in orange (-), and the maximum reaction path (complete charge separation) in red (-) are shown. 201x141mm (300 x 300 DPI)

Fig. 2 Gibbs free energy diagram of the hydrogen sorption reaction in NaAlH4 and the intermediates formed at 453 K. The levels of the minimum reaction path (no charge separation) in blue (-), the levels based on the experimentally found activation energies in orange (-), and the maximum reaction path (complete charge separation) in red (-) are shown. 201x141mm (300 x 300 DPI)

Fig. 3 Gibbs free energy diagram of the hydrogen sorption reaction in KAIH4 and the intermediates formed at 453 K. The levels of the minimum reaction path (no charge separation) in blue (-), the levels based on the experimentally found activation energies in orange (-), and the maximum reaction path (complete charge separation) in red (-) are shown. 201x141mm (300 x 300 DPI)

Fig. 4 Transition temperatures for the reactions from MAIH4 to hexahydride (T1) and from hexahydride to MH and Al species (T2) and the temperatures in between these transitions (T1–2) for NaAIH4 201x141mm (300 x 300 DPI)

Fig. 4 Transition temperatures for the reactions from MAIH4 to hexahydride (T1) and from hexahydride to MH and AI species (T2) and the temperatures in between these transitions (T1–2) for KAIH4. 201x141mm (300 x 300 DPI)

Fig. 5 The function of the Ti is to bridge H- and M+ (M+---Ti---H-) in order to remove the ion couple from the MAIH4 or M3AIH6 without the need to transfer individual M+ and H- ions. 254x190mm (96 x 96 DPI)