PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Exfoliated carbon nitride nanosheet decorated with NiS as efficient noble-metal-free visible-light-driven photocatalyst for hydrogen evolution

Yongtao Lu,^a Dongmei Chu,^a Mingshan Zhu,^{*b} Yukou Du^a and Ping Yang^{*a}

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

A binary composite composed of two dimensional (2D) ultrathin carbon nitride (C_3N_4) nanosheet and NiS nanoparticles was synthesized and applied as a noble-metal-free photocatalyst for hydrogen evolution under visible light irradiation. The ultrathin nanosheets of C_3N_4 were obtained by a facile liquid

¹⁰ exfoliation method and used as 2D supports for the deposition of NiS nanoparticles. In the binary composite, the ultrathin C_3N_4 nanosheets acted as visible light responding semiconductor, and the NiS nanoparticles served as a noble-metal-free catalyst. The binary composite with optimized composition gave comparable hydrogen evolution rate to that of Pt modified C_3N_4 . Moreover, compared to the bulk C_3N_4 , the exfoliated C_3N_4 nanosheets distinctly improve the photocatalytic performance for hydrogen

¹⁵ evolution. The photocatalytic results combined with photoelectrochemical experiments show that C_3N_4 with ultrathin structure promotes the electron-holes transportation and separation during the process of the photoinduced hydrogen evolution. This study displays a facile method to build a low-cost but effective photocatalyst for hydrogen production under visible light irradiation.

1. Introduction

- ²⁰ Because of its high energy capacity and environmental friendliness, hydrogen has been thought as one of the most promising energy source compared with many other new energy carriers. Since the discovery of hydrogen evolution through the photoelectrochemical splitting of water on TiO₂ electrodes,¹ the
- 25 technology of photocatalytic water splitting to produce hydrogen has been considering as an important approach to solve the world energy problem. Searching and optimizing efficient semiconductor-based photocatalysts for hydrogen production have attracted worldwide attentions. Recently, graphitic carbon
- ³⁰ nitride (C₃N₄) has emerged as a new class of photocatalyst due to its responsive to the visible light.²⁻⁵ Scientists around the world use many strategies, such as dopping heteroatoms,⁶⁻⁹ coupling with other semiconductors or dyes,¹⁰⁻¹⁴ loading cocatalysts,¹⁵⁻¹⁹ modification with carbon materials²⁰⁻²³ and controlling
- $_{35}$ morphology²⁵⁻²⁸ to improve the catalytic activity of the C₃N₄based catalysts. However, the most investigates focus on the bulk C₃N₄, which has small specific surface area with limited reactive sites and long diffusion length with high the recombination probability of photoexcited charges. More recently, researchers
- ⁴⁰ discovered ultrathin C_3N_4 nanosheets²⁹⁻³², which were prepared by thermal oxidation "etching" process, chemical exfoliation or sonication exfoliation, have large specific surface area, minimal thickness, and favorable bandgap. This kind of ultrathin C_3N_4 nanosheets displays evidently enhancement to photocatalytic

 $_{45}$ activities compared with those of bulk C_3N_4 .

As is well known, noble metal Pt nanoparticles have been widely used as cocatalyst for enhancing hydrogen evolution. However, the high cost and limited resources of this noble metal restricted the large scale application in the photocatalytic ⁵⁰ systems. From the view point of practical applications, the cocatalysts are required to be inexpensive, abundant and highly effective in photocatalytic hydrogen production. Recent studies have indicated that some transition metal sulfides or oxides including NiS,^{17, 33} MoS₂,³⁴⁻³⁶ Ag₂O,³⁷ Cu₂O,³⁸ Ni(OH)₂,^{16,39} are ⁵⁵ economical and effective cocatalyst for improving H₂ production of the bulk C₃N₄. Accordingly, it is meaningful to develop hybrid materials by integrating C₃N₄ nanosheets and noble-metal free cocatalyst to achieve a higher efficiency for photocatalytic hydrogen production.

⁶⁰ In this paper, we report a novel noble-metal-free photocatalyst composed of two dimensional (2D) ultrathin carbon nitride (C_3N_4) nanosheets and NiS nanoparticles (NiS NPs), which was fabricated through a hydrothermal method. The photocatalytic tests of the composite under visible light irradiation demonstrate ⁶⁵ that combining the exfoliated C_3N_4 nanosheets and NiS NPs remarkably improves the photocatalytic performance for hydrogen evolution. Considering the lower cost of NiS and superior photocatalytic performance of the binary composite, our studies would be impactful for developing noble metal free ⁷⁰ photocatalytic systems with high hydrogen generation efficiency.

2. Experimental Section

2.1. Materials

All chemicals were of analytical grade and purchased from Sinopharm Chemical Reagent Co., Ltd. without further purification before use.

${}_{\rm 5}$ 2.2. Preparation of exfoliated graphitic carbon nitride (e- $C_3N_4)$ nanosheets

The synthesis procedure of bulk C_3N_4 was according to the previous report with some modifications.⁴⁰ 10 g of ammonium thiocyanate was placed in quartz boat and heated at 823 K for 2 ¹⁰ hours in Ar with a ramp rate of 5 °C min⁻¹. The obtained bulk

C₃N₄ was grounded well into powders with a mortar. The as

prepared samples were labeled as b-C₃N₄.

The graphitic carbon nitride nanosheets were fabricated by liquid exfoliation of bulk C_3N_4 powders as reported by Yang ³⁰ ¹⁵ with some modification (Scheme 1). In a typical fabrication, 300 mg bulk C_3N_4 were added into 250 mL flasks and then 100 mL isopropanol (IPA) was added into the above flasks as dispersion solvents. The sealed flasks were sonicated for 10 h. Then the supernatant was further centrifuged at 3000 rpm for 10 min and ²⁰ obtain the supernatant. After that, the isopropanol was evaporated on a rotary evaporator and the exfoliated C_3N_4 nanosheets were obtained. The as prepared samples were labeled as e- C_3N_4 .

Bulk C₃N₄

C₃N₄ nanosheet

${\scriptstyle 25}$ 2.3. Preparation of exfoliated C_3N_4 nanosheets/NiS composite

The e-C₃N₄/NiS composite photocatalysts were prepared by the conventional precipitation and hydrothermal method. Typically, 150 mg as-prepared e-C₃N₄ nanosheets were dispersed in 20 mL Ni(Ac)₂ solution containing certain amount nickel ³⁰ acetate, and then 40 mL Na₂S solution was added under the Ar atmosphere. The molar ratio of Ni(Ac)₂/Na₂S was fixed at 1:3. The mixed solution was stirred at room temperature for 0.5 h. After that, the mixture was transferred to a 100 mL Teflon-lined autoclave and heated at 140 °C for 10 h. After being cooled to ³⁵ room temperature, the solid was isolated by centrifugation, washed with deionized water and ethanol for 3 times and dried in vacuum oven at 60°C. The as-prepared sample labeled as e-C₃N₄/NiS-x, where x stands for the weight percent of NiS of e-

 C_3N_4 . For comparison, 1 wt% NiS hybridized with b- C_3N_4 was ⁴⁰ synthesized by similar method. Meanwhile, 1 wt% Pt loaded on the surface of the b- C_3N_4 was also synthesized using the in-situ photodeposition method.

2.4. Photoelectrochemical measurement

- The photoelectrochemical experiment of the samples were ⁴⁵ measured using a CHI660D potentiostat/galvanostat electrochemical analyzer in a three-electrode system consisting of a working electrode, a platinum wire as a counter electrode, and a saturated calomel electrode (SCE) as a reference electrode. The working electrode was prepared by the drop-coating method.
- ⁵⁰ Indium tin oxide (ITO) conducting glass (1.0 cm*2.0 cm) was washed in water in an ultrasonic bath for 10 min, and then dried at room temperature. The sample (3 mg) was dispersed in (0.5 mL) ethylene glycol/ethanol solution in an ultrasonic bath for 30 min. The suspension was dropped onto the ITO glass and dried in
- ⁵⁵ a vacuum oven. The covered area of film was ca. 1.0 cm*1.5 cm. The electrodes were immersed in a supporting electrolyte solution of 0.1 M Na₂SO₄. The working electrode was irradiated with a GY-10 xenon lamp (150 W) during the measurement.

2.5. Photocatalytic reaction for hydrogen evolution

- The photocatalytic reaction was carried out in a quartz flask equipped with a flat optical entry window. The effective irradiation area for the cell is ca. 3 cm². In a typical photocatalytic experiment, 50 mL of 10 vol% triethanolamine (TEOA) aqueous solution containing 50 mg of the fresh prepared catalyst were added into the quartz flask. Then the mixture was sonicated for 3 min at room temperature. The system was deaerated by bubbling argon into the solution for 30 min before light irradiating. A 150 W Xe lamp equipped with a cut-off filter at 400 nm was used as a visible light source. The lamp was positioned ca. 10 cm away 70 from the optical entry window of the reactor. The produced hydrogen gas was analyzed with an online gas chromatograph
- equipped with a thermal conductivity detector (TCD) and 5 A molecular sieve columns using argon as carrier gas. The standard H_2/Ar gas mixtures of known concentrations were used for GC ⁷⁵ signal calibration. The apparent quantum efficiency (AQE) was
- s signal calibration. The apparent quantum efficiency (AQE) was measured under the same conditions except for replacing the 400 nm cut-off filter with a band pass interference filter centered at 420 nm.

2.6. Apparatus and measurements

Powder X-ray diffraction (XRD) patterns were recorded using an X-ray diffractometer (X' Pert-ProMPD) with Cu Kα irradiation ($\lambda = 1.5406$ Å). Fourier transform infrared (FT-IR) spectra of the samples were recorded on a Nicolet Magna 550 spectrometer. Transmission electron microscopy (TEM) studies were conducted susing a transmission electron microscope (JEOL JEM-2100) operating at an accelerating voltage of 200 kV. Atomic force microscopy (AFM) images were recorded on a Digital Instrument Nanoscope IIIa Multimode system (Santa Barbara, CA) with a silicon cantilever using tapping mode. The sample for AFM measurement was prepared by spraying the diluted suspension of C₃N₄ nanosheet onto a silicon wafer and dried in air. The ultraviolet-visible diffuse reflectance spectra (DRS) were

Scheme 1 Scheme of the preparation process of exfoliated C_3N_4 nanosheets.

obtained using a UV-visible spectrophotometer (Shimadzu UV-3150). The metal compositions in the photocatalysts were measured using inductively coupled plasma (ICP) optical emission spectrometer (Varian 710-ES).

5 3. Results and discussion

3.1 Characterization of the photocatalysts

Fig. 1 XRD patterns of (a) b-C₃N₄, (b) e-C₃N₄ and (c) e-C₃N₄/NiS. The inset shows FTIR spectra of (a) b-C₃N₄ and (b) e-C₃N₄.

- 10 The ultrathin e-C₃N₄ nanosheets were fabricated by liquid exfoliation of b-C₃N₄ powders. The XRD patterns of e-C₃N₄ and e-C₃N₄/NiS are presented in Fig. 1. For comparison, the XRD pattern of $b-C_3N_4$ is also presented. In the case of $b-C_3N_4$, the strong XRD peak at 27.7°, indexed as (002) reflection of the 15 graphitic system, is a characteristic interlayer stacking reflection of b-C₃N₄. After exfoliation, the intensity of this (002) peak significantly decreases, which clearly demonstrates that the layered C₃N₄ has been successfully procured.³⁰ For the e-C₃N₄/NiS sample, the diffraction peak located at ca. 27.7° is the 20 same as that of the e-C₃N₄ nanosheets, demonstrating the presence of e-C₃N₄ in the composite. No diffraction peaks can be attributed to the NiS NPs, which might be due to the low content (1 wt %) and high dispersion of the component. The mass percentage of NiS was determined by ICP analysis and the results 25 show that the actual NiS contents in the e-C₃N₄/NiS are 0.97%,
- 1.82% and 2.69%, for e-C₃N₄/NiS-1.0, e-C₃N₄/NiS-2.0 and e-C₃N₄/NiS-3.0 samples, respectively.

Fig. 2 (A) The TEM image of e-C₃N₄ nanosheets and (B) the tapping-³⁰ mode AFM image of a C₃N₄ nanosheet deposited on the silicon substrate and corresponding thickness analysis taken around the white line in AFM image.

The inset of Fig. 1 presents the FTIR spectra of $b-C_3N_4$ and $e-C_3N_4$. Basically, the spectra of the both samples are similar, ³⁵ indicating that $e-C_3N_4$ has the same chemical structure as $b-C_3N_4$. The peak at 810 cm⁻¹ is characteristic breathing mode of the triazine units of C_3N_4 . The set of peaks between about 1881 and 909 cm⁻¹ is characteristic vibrations of s-triazine derivatives. The broad band between 3670 and 2785 cm⁻¹ is originated from the ⁴⁰ N–H stretches, suggesting the partial hydrogenation of some nitrogen atoms in C_3N_4 .

The morphology of as-prepared samples was investigated via TEM and AFM. The TEM image (Fig. 2A) illustrates the very transparent feature of e-C₃N₄, indicating formation of few-layer 45 C₃N₄. Fig. 2B shows the typical AFM image of the e-C₃N₄ nanosheet. The thickness analysis of the nanosheet by AFM reveals an average thickness of about 3.4 nm, which is in accordance with the transparent feature of the nanosheet obtained from TEM image. These evidences clearly demonstrated that b- $_{50}$ C₃N₄ has been successfully exfoliated into ultrathin C₃N₄ nanosheets. The TEM image of e-C₃N₄/NiS was shown in Fig. 3A. From the image, the intimate contact between the NiS NPs and e-C₃N₄ is clearly observed, which could improve the charge separation of $e-C_3N_4$ and therefore the photocatalytic activity. 55 The HRTEM image (Fig. 3B) of NiS in the composite shows a lattice plane with spacing of 0.201 nm, corresponding to (102) plane of NiS.¹⁷ It indicated sufficiently that NiS nanoparticles were loaded on e-C₃N₄ nanosheets successfully.

 Fig. 3 (A) The TEM image of e-C₃N₄/NiS. (B) The HRTEM image of NiS nanoparticle.

The optical properties of the as-prepared smples have been investigated by UV-Vis diffuse reflectance spectra (DRS), as shown in Fig. 4A. It is found that the absorption edge of $e-C_3N_4$ shows a remarkable blue shift compared with that of $b-C_3N_4$.

Fig. 4 (A) DRS spectra of the $b-C_3N_4$ (a) and $e-C_3N_4$ (b). (B) DRS spectra of $e-C_3N_4/NiS-1.0$ (a), $e-C_3N_4/NiS-2.0$ (b), $e-C_3N_4/NiS-3.0$ (c).

corresponding to an increase in the band gap from 2.75 eV to 2.85 eV (inset of Fig. 4A). The blue shift performance is attributed to the quantum confinement effect by shifting the band edges of the conduction band and valence band in opposite ⁵ directions.³¹ Fig.4B shows the DRS spectra of different loading amounts of the e-C₃N₄/NiS samples. Compared with e-C₃N₄, the UV-vis DRS spectra of e-C₃N₄/NiS samples indicate that combining NiS with e-C₃N₄ does not cause any obvious the

absorption edge shift. The absorption intensity in the visible ¹⁰ region increases as the amount of NiS in the nanocomposite augments, which can be ascribed to the absorption of NiS in the range of 300–800 nm.¹⁷

Fig. 5 (A) Photocurrent responses of b-C₃N₄/NiS and e-C₃N₄/NiS to light irradiation recorded at 0.2 V vs. SCE. The electrolyte was 0.1 M Na₂SO₄ aqueous solution. The illumination from a 150 W xenon lamp was interrupted every 60 s. (B) Nyquist plots of electrochemical impedance spectra (EIS) for b-C₃N₄/NiS and e-C₃N₄/NiS in 0.1 M Na₂SO₄ aqueous solution.

²⁰ The improved charge carrier separation in ultrathin C_3N_4 nanosheet is investigated by the photocurrent experiments and electrochemical impedance spectra. As shown in Fig. 5A, fast and reversible photocurrent responses can be observed for both b- C_3N_4/NiS and e- C_3N_4/NiS electrode. However, the e- C_3N_4/NiS ²⁵ electrode demonstrates higher photocurrent density than that of b-C₃N₄/NiS. The photocurrent of the e-C₃N₄/NiS electrode is about 2 times as high as that of b-C₃N₄/NiS. The electrochemical impedance spectra (EIS) presented as Nyquist plots of the b-C₃N₄/NiS and e-C₃N₄/NiS electrodes are shown in Fig. 5B. The ³⁰ e-C₃N₄/NiS electrode shows a smaller diameter compared with that of b-C₃N₄/NiS, indicating a decrease of resistance and the improvement in charge transfer at the interface of the e-C₃N₄/NiS electrode/electrolyte. These facts demonstrate that the e-C₃N₄ nanosheets in the nanocomposite may significantly improve the ³⁵ conductivity of the electrode, which in turn enhances the separation efficiency of photo induced electrons and holes.⁴¹

The flat band potentials (E_{fb}) of the nanocomposites were determined by the onset potential of the Mott–Schottky plots. ⁴² As shown in the Fig. 6A and 6B, the positive slopes of the linear ⁴⁰ plot suggest n-type semiconductor features of both e-C₃N₄ and b-C₃N₄. The value of E_{fb} for the b-C₃N₄ electrode estimated from the x intercepts of the linear region of the Mott–Schottky plot is ca. -1.32 V vs. SCE, while it is ca. -1.22 V vs. SCE for the e-C₃N₄ electrode. These results shows that both b-C₃N₄ and e-C₃N₄ ⁴⁵ thermodynamically enables photocatalytic reduction of water (H⁺/H₂: -0.41 V vs SHE at pH=7) even though the flat-band potential of e-C₃N₄ is more positive than that of b-C₃N₄.The results of the linear sweep voltammetry investigating the hydrogen evolution potential are shown in Fig. 6C. For the b-⁵⁰ C₃N₄/NiS electrode, the proton reduction potential is ca. -1.07 V vs. SCE, while for the e-C₃N₄/NiS electrode the value changes to 0.00 M = SCE.

-0.99 V vs. SCE, demonstrating that hydrogen gas evolved more easily from the e-C₃N₄/NiS electrode than from b-C₃N₄/NiS.

Fig. 6 The Mott–Schottky plot of the b-C₃N₄(A) and e-C₃N₄ (B) sample. (C) The liner sweep voltammetry of b-C₃N₄/NiS-1.0 and e-C₃N₄/NiS-1.0 electrodes in 0.10 mol L^{-1} Na₂SO₄. Hydrogen evolution potential determined at 0.001 A is -1.07 V for b-C₃N₄/NiS-1.0 and -0.99 V for e-C₃N₄/NiS-1.0.

3.3 Photoinduced hydrogen evolution

Photocatalytic H₂ production activities of the as-prepared samples under visible light irradiation (λ >400 nm) using ⁶⁰ triethanolamine as an electron donor are shown in Fig. 7A. It is found that the e-C₃N₄/NiS-1.0 catalyst shows superior photocatalytic activity to b-C₃N₄/NiS-1.0. The rate of H₂ evolution over e-C₃N₄/NiS reaches 4.2 µmol h⁻¹, which is about *ca.* 2.6 times as high as that of b-C₃N₄/NiS (1.6 µmol h⁻¹). Similar ⁶⁵ results were also obtained for the Pt loaded C₃N₄ samples. The

rate of H₂ evolution over b-C₃N₄/Pt is ca. 2.2 µmol h⁻¹ and the rate of H₂ evolution over e-C₃N₄/Pt is ca. 5.6 µmol h⁻¹. The fact that e-C₃N₄ remarkably enhances photocatalytic activity can be explained as the effects of large surface area and improved 70 electron transport ability of e-C₃N₄. Due to the small sheet thickness around 3 nm of $e-C_3N_4$, electron transport ability improved and the bulk recombination probability of charge carriers substantially reduced in the $e-C_3N_4/NiS$ catalyst, which certainly improve photocatalytic activities of $e-C_3N_4$ -based 75 catalyst. Though photocatalytic activity of $e-C_3N_4/Pt$ is a little higher than that of the $e-C_3N_4/NiS$ samples, consideration high cost of Pt, combining NiS with $e-C_3N_4$ nanosheets can be an efficient way for fabricating effective catalyst for the photocatalytic hydrogen production. NiS was deposited on the e-80 C_3N_4 and has imitated contact with $e-C_3N_4$. NiS provide the reaction site for the hydrogen production and it can reduce the over potential of hydrogen production. Fig. 7B shows the influence of the amount of NiS in the nanocomposite on the photocatalytic activity of $e-C_3N_4/NiS$ photocatalysts. No H₂ can be detected using NiS nanoparticles (NPs) as the photocatalyst, suggesting that NiS itself was not active for photocatalytic H_2 evolution. Pure e-C₃N₄ nanosheets only show a negligible photocatalytic activity (ca. 0.2 µmol h⁻¹). Combining NiS with the 5 e-C₃N₄ nanosheets leads to a hydrogen production enhancement compared to the bare e-C₃N₄ nanosheets. When 1 wt% NiS was loaded on the e-C₃N₄ nanosheets composite, the total amount of hydrogen evolved over the composite is 42.3 µmol under 10 h visible-light irradiation. However higher loading of NiS decreases

¹⁰ the photocatalytic activity of the composite catalyst, which may be attributed to the following two factors: (i) high loading content of NiS leads to a decrease in the surface active sites of $e-C_3N_4$ nanosheets; (ii) excess NiS NPs covered on the surface of C_3N_4 nanosheets may shield the incident light, thus preventing the ¹⁵ generation of electrons.

Fig. 7 (A) Photocatalytic hydrogen production on $b-C_3N_4/NiS-1.0$, $e-C_3N_4/NiS-1.0$, $b-C_3N_4/Pt-1.0$ and $e-C_3N_4/Pt-1.0$. (B) Influence of the NiS content on the photocatalytic activity of $e-C_3N_4$ and $e-C_3N_4/NiS$. Reaction conditions: 50 mg photocatalysts, 45 mL H₂O, 5 mL TEOA, in Ar atmosphere, 150 W Xe lamp equipped with a cut-off filter at 400 nm.

Fig. 8 shows photocatalytic hydrogen production rate with different wavelengths and the DRS of the sample e-C₃N₄/NiS-1.0. The H₂ evolution rate was 1.3 µmol h⁻¹ when a 365 nm band pass
²⁵ filter was used. In the visible region, the H₂ evolution rates were 0.9, 0.7 and 0.2 µmol h⁻¹ when 420 nm, 460 nm and 505 nm band pass filter were used and the AQE is 1.4% at 420 nm. The trend of the hydrogen production rate matches well with the optical absorption spectrum. It clearly illustrates that the light ³⁰ absorption indeed induces the photocatalytic production of H₂. We also compare our result with some other groups' work. The photocatalytic activity of our system is lower than their results¹⁶. ^{32, 33} since the lamp output power (150 W) is lower than that of other group. But the apparent quantum efficiency is comparable ³⁵ with others.

The photocatalytic stability of e-C₃N₄/NiS-1.0 was investigated ⁴⁰ by cycle photocatalytic experiments and the results are shown in Fig. 9. Under visible light irradiation, e-C₃N₄/NiS-1.0 produced 42.3 µmol H₂ in the first run after 10 h light irradiation. In the following two runs, the amount of hydrogen evolved from the system is 39.0 and 38.1 µmol. Furthermore, the recovered ⁴⁵ photocatalyst was characterized by TEM and XRD techniques (Fig. S1 and S2). The TEM image shows that the NiS nanoparticles were deposited on the C₃N₄ nanosheets as the original sample. And the XRD pattern of the e-C₃N₄/NiS-1.0 after the photocatalytic reaction is nearly the same as that of e-⁵⁰ C₃N₄/NiS-1.0 before the photocatalytic reaction. These results suggest that e-C₃N₄/NiS-1.0 is a stable photocatalyst under visible light irradiation.

Fig. 9 The recycling experiment of e-C₃N₄/NiS-1.0. Reaction conditions: 50 mg photocatalysts, 45 mL H₂O, 5 mL TEOA, 150 W Xe lamp equipped with a cut-off filter at 400 nm.

Based on the experiment results, a possible mechanism for visible light induced hydrogen production on the nanocomposite is illustrated as follows: Firstly, the e-C₃N₄ nanosheets absorb ⁶⁰ photons of higher energies than required than the band gap to produce the electron-hole pair and the electrons are excited to the conduction band. Secondly, electrons migrated to the surface while they may recombine each other on their transfer. In this

hysical Chemistry Chemical Physics Accepted Manusc

step, electrons in the exfoliated C_3N_4 nanosheets transfer more efficiently than that of bulk C_3N_4 due to its morphology. It is beneficial for the photocatalytic hydrogen production. Thirdly the H^+ ions accept the electrons from the NiS nanoparticles to s produce the hydrogen while the electrons in the surface of C_3N_4 do not react with the H^+ ions. Future more NiS can reduce the over potential of hydrogen production. Finally, the TEOA was oxidized to its oxidation product.

Scheme 2 Schematic illustration of the visible light photocatalytic performance of the NiS loaded e-C₃N₄ nanosheets and b-C₃N₄.

Conclusions

A novel nanocomposite composed of $e-C_3N_4$ and NiS NPs as a ¹⁵ photocatalyst has been synthesized. NiS NPs are well anchored on the two dimensional $e-C_3N_4$ sheets of the nanocomposite, resulting in the excellent interfacial contact between $e-C_3N_4$ and NiS NPs. In comparison of $b-C_3N_4$, the binary composite with the optimal composition showed good photocatalytic performance

- ²⁰ and superior stability for H_2 evolution with visible light illumination. This is because compared with the b-C₃N₄, the ultrathin C₃N₄ nanosheets efficiently promotes the electron-hole separation, lengthens the charge lifetimes in the process of photocatalytic reaction. Considering the lower cost of NiS
- $_{25}$ compared with noble metal and superior electronic features of ultrathin e-C₃N₄ nanosheets, this study exhibits a facile method to build a low-cost but effective photocatalyst for hydrogen production under visible light illumination.

30 Acknowledgements

The authors are grateful for the financial support of this research by the National Natural Science Foundation of China (21373143) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

35 Notes and references

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China. Fax: +86 512 65880089; Tel: +86 512 65880361; E-mail: pyang@suda.edu.cn (P. Yang)

- ⁴⁰ ^b Department Chemistry and Impact Centre, University of Toronto, Toronto M5S 3H6, Canada. E-mail:mingshanzhu@yahoo.com, mingshanzhu@utoronto.ca (M. Zhu)
- 1 K. Fujishima, A. Honda, Nature, 1972, 238, 37-38.
- 45 2 X. Wang, K. Maeda, A. Thomas, K. Tgakanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, *Nat. Mater.*, 2009, **8**, 76-80.
 - 3 S. Cao and J. Yu, J. Phys. Chem. Lett., 2014, 5, 2101-2107.
 - 4 Y. Wang, X. Wang and M. Antonietti, *Angew. Chem., Int. Ed.*, 2012, **51**, 68-89.
- 50 5 X. Wang, S. Blechert and M. Antonietti, ACS Catal., 2012, 2, 1596-1606.
 - 6 Z. Lin and X. Wang, Angew. Chem., Int. Ed., 2013, 52, 1735-1738.
 - 7 J. Hong, X. Xia, Y. Wang, R. Xu, J. Mater. Chem., 2012, 22, 15006-15012.
- 55 8 J. Li, B. Shen, Z. Hong, B. Lin, B. Gao and Y. Chen, *Chem. Commun.*, 2012, 48, 12017-12019.
 - 9 G. Liu, P. Niu, C. Sun, S. C. Smith, Z. Chen, G. Q. Lu and H. Cheng, J. Am. Chem. Soc., 2010, 132, 11642-11648.
- 10 S. Cao, X. Liu, Y. Yuan, Z. Zhang, Y. Liao, J. Fang, S. C. J. Loo, T. C. Sum and C. Xue, *Appl. Catal. B* 2014, **147**, 940-946.
- 11 J. Fu, B. Chang, Y. Tian, F. Xi and X. Dong, *J. Mater. Chem. A*, 2013, **1**, 3083-3090.
- 12 X. Zhang, L. Yu, C. Zhuang, T. Peng, R. Li and X. Li, *ACS Catal*, 2013, **4**, 162-170.
- 65 13 Y. Wang, J. Hong, W. Zhang, R. Xu, Catal. Sci. Technol., 2013, 3, 1703-1711.

14 S. Cao, X. Liu, Y. Yuan, Z. Zhang, J. Fang, S. C. J. Loo, J. Barber, T. C. Sum and C. Xue, *Phys. Chem. Chem. Phys.*, 2013, **15**, 18363-18366.

- 15 S. Samanta, S. Martha and K. Parida, *ChemCatChem*, 2014, **6**, 1453-1462.
- 16 J. Yu, S. Wang, B. Cheng, Z. Lin, F. Huang, *Catal. Sci. Technol.*, 2013, 3, 1782-1789.
- 17 Z. Chen, P. Sun, B. Fan, Z. Zhang and X. Fang, J. Phys. Chem. C, 2014, 118, 7801-7807.
- 75 18 L. Yin, Y. Yuan, S. Cao, Z. Zhang and C. Xue, *RSC Adv.*, 2014, 4, 6127-6132.
- 19 L. Ge, C. Han, J. Liu and Y. Li, *Appl. Catal. A*, 2011, **409-410**, 215-222.
- 20 Q. Xiang, J. Yu and M. Jaroniec, *J. Phys. Chem. C*, 2011, **115**, 7355-7363.
 - 21 L. Ge and C. Han, Appl. Catal. B 2012, 117-118, 268-274.
 - 22 Z. Wu, H. Gao, S. Yan and Z. Zou, *Dalton Trans.*, 2014, **43**, 12013-12017.
- 23 L. Shi, L. Liang, J. Ma, F. Wang and J. Sun, *Dalton Trans.*, 2014, **43**, 5 7236-7244.
- 24 H. Yan, Chem. Commun., 2012, 48, 3430-3432.
- 25 X. Chen, Y. Jun, K. Takanabe, K. Maeda, K. Domen, X. Fu, M. Antonietti and X. Wang, *Chem. Mater.*, 2009, **21**, 4093-4095.
- 26 K. Kailasam, J. D. Epping, A. Thomas, S. Losse and H. Junge, *Energy Environ. Sci.*, 2011, 4, 4668-4674.
 - 27 J. Liu, J. Huang, H. Zhou and M. Antonietti, ACS Appl. Mater. Interfaces, 2014, 6, 8434-8440.
- 28 X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu and M. Antonietti, J. Am. Chem. Soc., 2009, 131, 1680-1681.
- 95 29 P. Niu, L. Zhang, G. Liu and H. Cheng, Adv. Funct. Mater., 2012, 22, 4763-4770.

- 30 S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang and P. M. Ajayan, *Adv. Mater.*, 2013, 25, 2452-2456.
- 31 J. Xu, L. Zhang, R. Shi and Y. Zhu, J. Mater. Chem. A, 2013, 1, 14766-14772.
- ⁵ 32 K. Schwinghammer, M. B. Mesch, V. Duppel, C. Ziegler, J. Senker and B. V. Lotsch, J. Am. Chem. Soc., 2014, **136**, 1730-1733.
- 33 J. Hong, Y. Wang, Y. Wang, W. Zhang and R. Xu, *ChemSusChem*, 2013, **6**, 2263-2268.
- 34 L. Ge, C. Han, X. Xiao and L. Guo, *Int. J. Hydrogen Energy*, 2013, **38**, 6960-6969.
- 35 Y. Hou, A. B. Laursen, J. Zhang, G. Zhang, Y. Zhu, X. Wang, S. Dahl and I. Chorkendorff, *Angew. Chem. Int. Ed.*, 2013, **52**, 3621-3625.
- 36 J. Wang, Z. Guan, J. Huang, Q. Li and J. Yang, J. Mater. Chem. A, 2014, 2, 7960-7966.
- ¹⁵ 37 L. Shi, L. Liang, J. Ma, F. Wang and J. Sun, *Catal. Sci. Technol.*, 2014, 4, 758-765.
 - 38 J. Chen, S. Shen, P. Guo, M. Wang, P. Wu, X. Wang and L. Guo, *Appl. Catal. B* 2014, **152-153**, 335-341.
- 39 Z. Yan, X. Yu, A. Han, P. Xu, and P. Du, J. Phys. Chem. C, 2014, **118**, 20 22896-22903.
- 40 Y. Cui, J. Zhang, G. Zhang, J. Huang, P. Liu, M. Antonietti and X. Wang, *J. Mater. Chem.* 2011, **21**, 13032-13039.
- 41 Z. Mou, S. Yin, M. Zhu, Y. Du, X. Wang, P. Yang, J. Zheng, C. Lu. *Phys. Chem. Chem. Phys.* 2013, **15**, 2793-2799.
- 25 42 F. Cardon and W. P. Gomes, J. Phys. D: Appl. Phys., 1978, 11, L63.