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A generalized formulation of explicit force-based transformations is introduced to investigate the concept of a canonical po-

tential in both fundamental chemical and intermolecular bonding. Different classes of representative ground electronic state

pairwise interatomic interactions are referenced to a chosen canonical potential illustrating application of such transformations.

Specifically, accurately determined potentials of the diatomic molecules H2, H+
2 , HF, LiH, argon dimer, and one-dimensional

dissociative coordinates in Ar-HBr, OC-HF, and OC-Cl2 are investigated throughout their bound potentials. Advantages of the

current formulation for accurately evaluating equilibrium dissociation energies and a fundamentally different unified perspective

on nature of intermolecular interactions will be emphasized. In particular, this canonical approach has significance to previous

assertions that there is no very fundamental distinction between van der Waals bonding and covalent bonding or for that matter

hydrogen and halogen bonds.

1 Introduction

A coherent representation for ubiquitous radially dependent

two body pairwise interatomic interaction potentials remains

elusive even in the simplest bonding.1–3 Initially conceived

Mie,4 Lennard-Jones,5 and Morse6 potentials have now pro-

liferated to over 100 different algebraic functions7 stimulated

by possible existence of a general potential function, dif-

ferent only for various diatomic molecules through involve-

ment of two, three or more parameters. However, the search

for a unique universal1 or reduced8 potential for accurately

representing a wide range of such molecules continues un-

abated. Here, we introduce a fundamentally different ap-

proach, a generalized formulation for accurately generating

explicit force-based transformations9 to a canonical poten-

tial for both diatomic and two body intermolecular interac-

tions. Different types of pairwise interatomic interactions in

their ground electronic state are referenced to a chosen canon-

ical potential illustrating application of such transformations.

Specifically, accurately determined potentials of the diatomic

molecules H2, H+
2 , HF, LiH; Ar2, and one-dimensional dis-

sociative coordinates in intermolecular Ar-HBr, OC-HF, and

OC-Cl2 are selected as examples and investigated throughout

their ground state bound potentials. The results indicate that

an explicit transformation developed specifically for the Born-

Oppenheimer potential of H2 (ref. 10) can then be applied to
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the other selected two body molecular potentials generating a

corresponding canonical potential with no adjustable parame-

ters. Once transformed into this dimensionless form, the re-

sulting potentials are all consistent within an absolute average

accuracy of 14 parts in 104. The current formulation also ac-

curately predicts equilibrium dissociation energies, De, for the

systems investigated. Additionally, this generalized canonical

approach gives a unified and fundamentally different pathway

for modeling pairwise intramolecular and intermolecular in-

teractions.

Recently, we demonstrated that different classes of ground

electronic state pairwise interatomic interaction potentials

could be referenced to a canonical potential9 using a sin-

gle explicit transformation generated from the extremely ac-

curate Born-Oppenheimer potential of H2.10 In particular, a

canonical potential and associated force distribution were con-

structed in the context of semi-classical Rydberg-Klein-Rees

(RKR) potential methodology.11–13 Once that explicit trans-

formation was generated, there was no necessity for any ad-

justable parameters across a range of bonding types to which

it was applied. A key factor in the effective application of this

RKR approach was substitution of atomic instead of nuclear

masses for the reduced masses in the calculations14,15 utilized

to determine the corresponding RKR potentials.16,17 Thus par-

tially corrected for adiabatic and non-adiabatic effects, the de-

termined RKR potential for the interatomic interaction was

closer to that within the Born-Oppenheimer approximation.

A similar approach enabled generation of corresponding ex-

plicit expressions for the force distribution. Such approaches9

were then applied to a range of diatomic molecules N2, CO,
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H+
2 , H2, HF, LiH, Mg2, Ca2, O2; argon dimer, and adapted

for the intermolecular dissociative coordinates of intermolec-

ular interactions in OC-HBr, OC-HF, OC-HCCH, OC-HCN,

OC-HCl, OC-HI, OC-BrCl, and OC-Cl2 one-dimensional cuts

through multidimensional potentials. All respective potentials

subject to transformation were consistently based on accurate

semi-empirically determined interatomic RKR (ref. 16,17) or

morphed intermolecular potentials.9 This canonical approach

has significance to previous assertions that there is no very

fundamental distinction between van der Waals bonding and

covalent bonding18 or for that matter hydrogen and halogen

bonds. An obvious advantage of this approach was that it

was based on a reputable semi-empirical approach without ne-

cessity of specifying an algebraic form of the potential. The

absolute average deviation over the systems included in such

fits were 7 parts in 10,000 within applicability of the RKR

method. Such approaches were, however, limited with respect

to general applicability and limitations of this RKR method to

cover the entire bound potentials particularly in the asymptotic

limit near dissociation.

It is recognized that almost all physical phenomena, exclud-

ing the atomic nuclear structure, can be attributed directly or

indirectly to the forces between atoms.19 Knowledge of ac-

curate interatomic potential energy surfaces are fundamen-

tal to the characterization and prediction of many properties

in all states of matter whether the forces are between atoms

or un-reacting molecules and fragments of molecules.9,20–26

Molecular description of condensed phase behaviour relies on

the full characterization of pairwise interactions as are proper-

ties necessary for interpretation of high resolution spectra and

scattering data. Many properties of macroscopic assemblies

(liquids and solids) of neutral atoms/molecules have also been

derived from the Lennard-Jones (6-12) potential of two iso-

lated atoms/molecules. Construction and optimization of em-

pirical potentials are also important for use in Monte Carlo or

molecular dynamics as well as computer simulations of bulk

material.

A schematic representation of the most familiar two body

interatomic potential (as initially proposed by Mie4) is shown

in Fig. 1a. It consists of an analytical form with an attrac-

tive part at large separations approaching a minimum in the

region of equilibrium separation, then becoming increasingly

repulsive as R decreases further and the electron density of

the two directly interacting atoms begin to overlap. Numer-

ous mathematical models have now been developed to ap-

proximate these complicated contributions of the attractive

and repulsive forces in the simplest of two body chemical and

intermolecular bonding.7 These previously described poten-

tial functions have now proliferated to analytical forms with

increasing numbers of parameters and accuracy, frequently

without physical significance.2,3,6,27,28 These approaches have

often provided a basis for models of pairwise interactions that

have raised issues with regard to the existence of a reduced

or universal potential for diatomic molecules.1,8 It has been

expected that a universal reduced potential would not exist

with any precision for all molecules in all states. However,

such potentials are still and will continue to be important de-

spite advances in quantum mechanical calculations because

of their tremendous conceptual and computational simplifica-

tion. Fundamental changes in our understanding of pairwise

potentials as representations of the simplest chemical and non-

covalent bonding thus have significant implications for mod-

eling of innumerable phenomena in more complex environ-

ments.

(a)

(b)

Fig. 1 (a) Dimensional (unscaled) E(R) potential for H2. Units are

Å for interatomic distance and cm−1 for the potential energy. (b)

Dimensionless (scaled) canonical potential Ẽα (z).

2 Methods

2.1 Potential Energy Curves and Dissociation Energies

The potential energy curves and determined equilibrium dis-

sociation energy, De, for H2 were obtained from reference 10.
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The corresponding information for H+
2 , LiH, HF, and Ar2 were

available, respectively, from references 29–32. For the com-

plexes Ar-HBr, OC-HF, and OC-Cl2, a one-dimensional po-

tential along the dissociative coordinate and the corresponding

De were obtained from data, respectively, in references 33–35.

2.2 Family of Canonical Transformations

For subsequent demonstration, we shall first recall the classi-

cal relations36–38 for diatomic molecules:

T (R) =−E(R)−RE ′(R) =−E(R)+RF(R) (1)

V (R) = 2E(R)+RE ′(R) = 2E(R)−RF(R) (2)

in which we make use of the force/potential relation: F(R) =
−E ′(R). Letting RM and FM satisfy F(RM) = FM where FM

denotes the maximum value of F(R) for Re < R with Re de-

noting the inter-nuclear separation at equilibrium.

A one parameter family of canonical transformations of

E(R) for R > Re (the attractive side of the potential), denoted

by Ẽα(z) for 0 < z < 1, was constructed by first defining Rα

such that F(Rα) = αFM , for any 0 < α < 1 and then defining:

Ẽα(z) :=
E(R)−E(Re)

E(Rα)−E(Re)
(3)

in which z and R are related through: z = (R−Re)/(Rα −Re).
The canonical potential eqn (3) could then be readily extended

to the repulsive side of the potential by taking z < 0.

What must be demonstrated for eqn (3) to be called canon-

ical is that given two different potentials E j(R), for j = 1,2,

where Ẽ1
α(z) = Ẽ2

α(z) for z− < z ≤ 0 and 0 ≤ z < 1 for fixed,

chosen 0 < α < 1 and a common value of z− (defined by the

portion of the repulsive-side of the potentials represented in

the canonical scaling).

2.3 Reverse Canonical Transformation

The transformation inverse to eqn (3) gave the canonical rep-

resentation of E(R):

E(R) = E(Re)+(E(Rα)−E(Re))Ẽα(z) (4)

for Re < R < Rα , and z is given above.

2.4 Implications Derived from the Canonical Transfor-

mation

From eqn (4) it followed that: F(R) = F̄α Ẽ ′
α(z), in which F̄α

denoted the Average Force over the interval Re < R < Rα de-

fined by:

F̄α :=
1

Rα −Re

∫ Rα

Re

F(R)dR =−
E(Rα)−E(Re)

Rα −Re

. (5)

Evaluating eqn (5) at R = RM give the important relation:

FM =

(

Ẽ ′
α(1)

α

)

F̄α . (6)

Eqn (6) implying that the ratio of the maximum force to the

average force was the same for all diatomic molecules in the

class for which the canonical transformation eqn (4) held.

Combining eqn (1) and (4) gave the canonical representation

for T (R):

T (R) = E(Re)− (E(Rα)−E(Re))Ẽα(z)

− (Re + z(Rα −Re))F̄α Ẽ ′
α(z). (7)

2.5 Generalized Canonical Transformation

The canonical transformation eqn (3) was generalized to ex-

tend its range of validity 0 < α0 < α < 1 to smaller values of

α0. One such generalization was defined by:

Ẽα(z;γ) :=
E(zγRα +(1− zγ)Re)−E(Re)

E(Rα +(γ −1)(Rα −Re))−E(Re)
(8)

where 0 < γ . Clearly, eqn (8) reduces to eqn (3) for γ = 1.

2.6 Reverse Generalized Transformation

The transformation inverse to eqn (8) gave:

E(R) = E(Re)+(E(Rα +(γ −1)(Rα −Re))−E(Re))

× Ẽα

(

1

γ

(

R−Re

Rα −Re

)

;γ

)

(9)

F(R) =−
(E(Rα +(γ −1)(Rα −Re))−E(Re))

γ(Rα −Re)

× Ẽ
′

α

(

1

γ

(

R−Re

Rα −Re

)

;γ

)

. (10)

2.7 Dyadic Generalized Canonical Force Transformation

A canonical force transformation was derived for R > Re by

making use of the dyadic sequence {R0, R1, . . .} defined by:

R0 := Rm and for j = 1,2, . . .,

F(R j) =
Fm

2 j
(11)

where Fm = F(Rm) is the maximum value of F(R) for R > Re.

Then for j ≥ 1 and R j−1 ≤ R ≤ R j:

F̃j(z) :=
F(zR j +(1− z)R j−1)−F(R j−1)

F(R j)−F(R j−1)
(12)

was defined for 0 ≤ z ≤ 1. From eqn (11) and (12) it followed

immediately that:

F̃j(z) := 2−
2 jF(zR j +(1− z)R j−1)

Fm

. (13)
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The reverse transformation corresponding to eqn (13) took the

form:

F(R) =
Fm

2 j

(

2− F̃j

(

R−R j−1

R j −R j−1

))

,

for R j−1 ≤ R ≤ R j. (14)

For Re ≤ R ≤ R0, eqn (13) and (14) take the form:

F̃0(z) :=
F(zR0 +(1− z)Re)

Fm

, for 0 ≤ z ≤ l (15)

F(R) = FmF̃0

(

R−Re

R0 −Re

)

. (16)

2.8 Power-Law Distribution

When R j−1 < R < R j, F(R) had the simple power-law form:

F(R) =
A j

RN j
(17)

which with the requirement, F(R j−1) = (Fm)/(2
j−1), implies

that eqn (17) took the form:

F(R) =
Fm

2 j−1

(

R j−1

R

)N j

. (18)

When the additional condition, F(R j) = (Fm)/(2
j), was im-

posed yielded the relation:

N j =
log(2)

log(R j/R j−1)
. (19)

Hence, given R j and R j−1, N j was determined from eqn (19).

2.9 Application to Estimating De

Estimations for De where evaluated from the Dyadic Canoni-

cal Force Transformation eqn (12) and the usual relationship:

De =
∫ ∞

Re
F(R)dR. Expanding this relationship and appealing

to eqn (13) - (18):

De =
∫ Rm

Re

F(R)dR+
k

∑
j=1

∫ R j

R j−1

F(R)dR

+
∫ ∞

Rk

F(R)dR (20)

≈ Fm

[

(Rm −Re)F̂0 +
k

∑
j=1

(R j −R j−1)

2 j
(2− F̂j)

+
Rk(Rk−1/Rk)

Nk

(Nk −1)2k−1

]

(21)

was derived where

F̂j :=
∫ 1

0
F̃j(z)dz, for j = 0,1, . . . . (22)

The last term in eqn (21) assumed that the power-law be-

havior eqn (17) gave a good approximation to the tail dis-

tribution of the force F(R) for R > Rk−1 and then integrat-

ing eqn (18) over the interval Rk < R < ∞. The exponent Nk

in eqn (21) was determined from eqn (19) with j = k. The

numbers F̂j in eqn (21) were canonical in that they are com-

puted from the canonical force distribution F̃j(z) through eqn

(22). In the applications below, the canonical parameters F̂j

were computed from the force distribution corresponding to

H2 and used to estimate the dissociation energy De for all

other molecules considered. The values of F̂j are 0.734, 0.420,

0.535, 0.547, 0.553, 0.557, 0.557, 0.568, and 0.562; respec-

tively for j = 0, . . . ,8. It was noted that the canonical param-

eters F̂j were quite close in value for j = 2, . . . ,8 reflective

of the fact that the dyadic canonical force distributions F̃j(z)
were nearly identical curves for 0 ≤ z ≤ 1 indicative of the

highly regular pattern by which the force was reduced from its

maximum modulus by increasing factors of 1/2. Indeed, in

estimation of De for the class of molecules discussed below,

the canonical values F̂j for j = 2, . . . ,8 was replaced by their

average at the cost of a very small additional error.

3 Results and discussion

In order to demonstrate a general canonical transformation

in pairwise interatomic interactions, we will first formulate

an explicit force-based approach that maps potentials to their

canonical form and to their corresponding force distributions.

Construction of this canonical dimensionless potential from

pairwise interatomic potentials in a wide class of diatomic

molecules is enabled via an explicitly defined scaling trans-

formation, guided by the associated force distribution. These

involve the derivation of eqn (3) and (8). Figure 1a shows the

dimensional unscaled potential curve for H2. The correspond-

ing dimensionless scaled canonical potential calculated from

equation (3) is given in Fig. 1b.

As discussed above, eqn (3) or the more general eqn (8) are

to be viewed as a canonical potential for a class of molecules.

However, it must be demonstrated that for given 0 < α < 1,

eqn (3) or (8) are constructed for any pair of molecules within

the chosen class to agree within an acceptable level of ac-

curacy. Figure 2 shows the dimensionless potential Ẽ4(z;γ)
constructed up to R4 (the point where the maximum attrac-

tive force of each molecule is reduced by a factor of 1/16) for

strongly bound (Fig. 2a) and weakly bound (Fig. 2b) inter-

atomic interactions. For each system, the parameter γ is in-

terpolated at the point z = 0.5 to select the precise portions of

the unscaled potential curves identified in the dimensionaless

scaling. The relative error in the canonical potential and force

curves was calculated for the studied species relative to the

H2 molecule. The relative error between two functions on the

interval (a,b) is given by
∫ b

a | f (x)− g(x)|dr/
∫ b

a |g(x)|dx. The
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(a)

(b)

Fig. 2 (a) Dimensionless potential Ẽ4(z;γ) for: H2 (solid curve), HF

(�), H+
2 (♦), and LiH (©). (b) Dimensionless potential Ẽ4(z;γ) for:

H2 (solid curve), Ar2 (△), OC-HF (�), OC-Cl2 (©), and Ar-HBr

(♦).

average absolute error in the canonical potential is 14 parts in

104 over the range of experimentally available data, which is

approximately twice the value for the corresponding RKR ap-

proach.9 This is not unexpected as determination of the force

from the RKR potential is explicit, whereas the current case

involves direct determination of the gradient.

We emphasize that the canonical transformation eqn (3) is

based upon a remarkably simple construction. Indeed, eqn

(3) is an elementary affine transformation of the portion of

the dimensional potential curve E(R) between Re and R to a

dimensionless counterpart. The challenge required to make

this process canonical is to identify the portions of the dimen-

sional potential curves for a large class of molecules that trans-

form to coincident dimensionless counterparts via this affine.

The key to identifying these canonical portions of the dimen-

sional potential curves is held by the associated dimensional

force distributions. More specifically, if Fm is the maximum

(in absolute value) of the force for Re < R, then canonical por-

tions of dimensional potential curves are defined by Re < R̂

where F(R̂)/Fm is constant across molecules in the chosen

class. This is a most important issue in this current work as it

is the force that selects canonical portions of potential curves.

An important consequence of the canonical transforma-

tion appears in eqn (6), implying that the ratio of the maxi-

mum force to the average force is the same for all diatomic

molecules in the class for which the canonical transformation

holds.

Further applications of this generalized canonical approach

involve the power-law distribution of the maximum attractive

force that permits estimation of De in the systems studied. Fig-

ure 3 shows a plot of the unscaled force curve for H2 molecule.

The equilibrium bond length, Re, which occurs when the force

is zero, is indicated with the black dotted line. The maximum

attractive force, −|Fm|, located at Rm is represented with the

red dotted lines. The blue, green, orange, and brown dotted

lines locates, respectively, the position R j (j = 1,2,3,4) where

the maximum force is reduce by a factor of 2− j. Table 1 gives

the prediction of De for the studied molecules and the % error

relative to accurately known values. As shown in Table 1, all

predictions deviate less than 0.5%. Whether the source of this

residue error lies fundamentally in the model, in the accuracy

of experimentally determined frequencies including neglect of

non-Born-Oppeheimer corrections or computational inaccura-

cies has yet to be evaluated. Moreover, once the explicit trans-

formation is determined for the reference molecule, H2, no

adjustable parameters are needed for predicting the presented

data for the other systems in Table 1. It is pertinent to note that

an error of 0.5% or less in the weakly bound complexes De is

comparable to the best experimental determinations.

−4.0

−3.0

−2.0

−1.0

0.0

1.0

2.0

1.0 1.5 2.0 2.5 3.0 3.5

F
 (

cm
−

1 /Å
) 

×
10

4

R (Å)

Re Rm

−|Fm|
R1

−2−1|Fm|

R2

−2−2|Fm|

R3

−2−3|Fm|

R4

−2−4|Fm|

Fig. 3 Unscaled force curve for H2, illustrating the power-law

distribution of the maximum attractive force, Fm.
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Table 1 Prediction of the dissociation energies, De, for the studied molecules.

H2 H+
2 LiH HF Ar2 Ar-HBr OC-HF OC-Cl2

De (cm−1) true 38293.017 22532.1 20286.8 49361.6 99.5 175.99 1309.65 544.2

De (cm−1) est 38322.8 22576.5 20306.5 49250.0 99.46 175.83 1313.78 546.8

% error 0.08 0.20 0.10 -0.23 -0.04 -0.09 0.32 0.48

Re (Å) 0.7414 1.0582 1.595 0.917 3.761 4.247 3.598 4.741

Fm (cm−1/Å) 37484.92 14266.71 11824.4 54453.9 80.32 133.8 975.92 397.44

Rm (Å) 1.134 1.599 2.259 1.246 4.166 4.632 3.998 5.233

R1 (Å) 1.788 2.595 3.426 1.852 4.882 5.432 4.793 5.959

R2 (Å) 2.121 3.201 3.997 2.192 5.388 5.967 5.319 6.523

R3 (Å) 2.397 3.741 4.375 2.437 5.915 6.54 5.894 7.121

R4 (Å) 2.651 4.237 4.625 2.607 6.469 7.104 6.545 7.837

R5 (Å) 2.893 4.693 4.783 7.11 7.355 8.449

R6 (Å) 3.132 7.793 8.263 9.189

R7 (Å) 9.271

4 Conclusions

We have demonstrated for the selected molecules that there is

a transformation to a canonical potential with an absolute er-

ror of 14 parts in 104, throughout the range of experimentally

determined bound potentials and with no adjustable parame-

ters. The development of the power-law distribution provides

a new approach to estimating equilibrium dissociation ener-

gies that should prove particularly effective for weakly bound

interactions. The concept of the derived canonical approach

should provide the basis for extensive modeling of pairwise

interactions and for widespread applications in more complex

systems with larger vibrational dimensions.
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