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Neural network iterative diagonalization method to

solve eigenvalue problems in quantum mechanics
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Department of Chemistry, Brookhaven National Laboratory,
Upton, NY 11973-5000, USA

(May 3, 2015)

Abstract

We propose a multi-layer feed-forward neural network iterative diagonalization method

(NNiDM) to compute some eigenvalues and eigenvectors of large sparse complex symmet-

ric or Hermitian matrices. The NNiDM algorithm is developed by using the complex (or

real) guided spectral transform Lanczos (cGSTL) method, thick restart technique, and

multi-layered basis contraction scheme. Artificial neurons (or nodes) are defined by a set

of formally orthogonal Lanczos polynomials, where the biases and weights are dynamically

determined through a series of cGSTL iterations and small matrix diagonalizations. The

algorithm starts with one random vector. The last output layer produces wanted eigen-

values and eigenvectors near a given reference value via a linear transform diagonalization

approach. Since the algorithm uses the spectral transform technique, it is capable of com-

puting interior eigenstates in dense spectrum regions. The general NNiDM algorithm is

applied for calculating energies, widths, and wavefunctions of two typical molecules HO2

and CH4 as examples.

1E-mail:hgy@bnl.gov
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1 Introduction

The eigenvalue problem is one of the most important topics in quantum mechanics. It

often results from numerically solving Schrödinger equations in electronic structure, spec-

troscopy, and quantum scattering studies.1–6 In those fields, secular equations are formed

by either a Hermitian Hamiltonian Ĥ or its extended one H̃ = Ĥ− iW in a basis set. Here

−iW is a negative imaginary potential (NIP)7 used to impose proper scattering boundary

conditions. Although H̃ is non-Hermitian, its matrix representation is complex symmet-

ric. It gives complex eigenvalues4,7–9 as zn = En − iΓn/2. Such an eigenstate is called a

resonance with an energy of En and a width of Γn (or lifetime τn = h̄/Γn). Resonance

wavefunctions are defined by eigenvectors. Of course, a Hermitian Hamiltonian always

gives real eigenvalues, i.e., energies En.

For many-body systems, it is challenging to solve the eigenvalue problem of the system

owing to the huge dimension of the matrix.10–14 In practice, one often uses an iterative diag-

onalization method,2,15–26 in which only the Hamiltonian-vector products are required with-

out explicitly constructing the Hamiltonian matrix. The high efficiency of an iterative diag-

onalization algorithm is attributed by the sparseness of matrix. Currently, there are many

highly efficient iterative algorithms to calculate eigenvalues. Among them the two most

powerful approaches are the Lanczos- and Chebyshev-based algorithms.10,16,21,22,27–29,29–33

Those low storage algorithms21,29–32 are very powerful to calculate eigenvalues in just us-

ing a single long iteration. Nevertheless, if both eigenvalues and eigenvectors are required,

those methods have to restart the iteration to extract eigenvectors as a long iteration

excludes saving large intermediate vectors. In order to improve the efficiency, the itera-

tive algorithms are often combined with other techniques such as the filter diagonalization

method,34,35 the restart approach,36,37 and the spectral transform method.38 The latter

two techniques aim to do a short iteration to converge the results so that the working units

for vectors are limited. There are several Lanczos-based spectral transform algorithms, e.g.,
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see Refs. [2, 10, 39–45]. Recently, we also developed an efficient complex guided spectral

transform Lanczos method for studying molecular bound and resonance states.46

On the other hand, the neural network method47–51 has recently become a powerful

technique in many fields, especially, in biosciences since the neural network was introduced

by McCulloch and Pitts47 in 1943. It has many attractive merits such as the extreme

flexibility and multi-dimensional representation. The flexibility is attributed by the arti-

ficial multi-layer neural network structure48,50 with arbitrary hidden layers49 and the use

of transform functions.52 The multi-dimensional representations are also very compact

so that neural network functions can interpolate high dimensional targets efficiently and

accurately. The applications of neural network in chemical physics have grown quickly

since early 1990s, e.g., see the recent excellent review.51 For instance, one popular appli-

cation is to fit high dimensional potential energy surfaces (PES) and electronic densities

in electronic structure calculations.51,53–55 In order to persist the permutation symmetry

among identical atoms, Jiang and Guo56 recently developed a permutationally invariant

(PI) neural network PES method by employing a set of PI basis functions.57–59 In addition,

a few neural network-based methods have been developed for computing eigenvalues and

eigenvectors of matrices.60–64 For the eigenvalue problems in quantum mechanics, neural

network functions are commonly used as a basis set for solving Schrödinger equations.63,64

It is not surprising because of the merits of the flexibility and high dimensional represen-

tation of neural network functions. Manzhos and co-workers64 showed that a small set of

neural network functions are able to well converge the vibrational states of H2O. However,

one has to optimize the non-linear parameters appearing in the neural network functions.

So far, neural network based eigensolvers are still rather limited.60–62 In this work, we

will explore the combination of iterative diagonalization approach with a neural network

structure for developing a new eigensolver, named the neural network iterative diagonal-

ization method (NNiDM). The NNiDM algorithm aims to calculate both the eigenvalues
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and eigenvectors of complex symmetric or Hermitian matrices. It will be presented in

Sec. 2. Some numerical examples will be illustrated in Sec. 3. Finally a short conclusion

is summarized in Sec. 4.

2 Theory

In this section, we describe the neural network iterative diagonalization method. It is

mainly developed from our recently developed complex guided spectral transform Lanczos

(cGSTL) method46 with the help of the thick restart technique37 and multi-layered basis

contraction approach.13,24,45,65 The presentation will begin with a concise review on an

artificial feed-forward neural network method that connects to this work. Without explic-

itly saying, the algorithm is illustrated with a complex symmetric matrix or an extended

Hamiltonian H̃. For Hermitian matrices or Hamiltonian Ĥ, some necessary but straight-

forward modifications are discussed in Sec. 2.2.2. Generally, we use two types of vectors

|ψi) and |ψj >. The vectors |ψj > are used for a Hermitian matrix or Hamiltonian Ĥ.

They have the normal normalization condition < ψj|ψj >= 1. On the other hand, the vec-

tors |ψi) are employed for a complex symmetric matrix or extended Hamiltonian H̃. They

obey the c-product normalization condition7,8 (ψi|ψi) =< ψ∗i |ψi >= 1, namely without the

complex conjugation (∗) in integrals.

2.1 Artificial neural network

There are many types of neural networks in the literature.50,51,66 A typical feed-forward

neural network51 is shown in Fig. 1. It is formed by four layers of artificial neurons (also

called nodes).48 The first and last layers are the input and output layers respectively. The

middle ones are the hidden layers.49 Each layer consists of one or a few nodes. They are

represented by a node function yl
i, where the superscript l and subscript i refer to the

layer and node indices. In the first input layer the y0
i functions describe the information

4
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about input raw data (e.g. geometries) whereas the node function in the last layer gives the

wanted properties such as potential energy surfaces, electronic densities, and wavefunctions.

In the feed-forward neural network, the lth nodes are only determined from the previous

(l−1)th nodes by transforming a shifted linear combination of node functions yl−1
k , namely,

yl
i = f l

i (x
l
i) (1)

with

xl
i = bl,l−1

i +
N l−1∑

k=1

wl,l−1
i,k yl−1

k (2)

where the expansion coefficients wl,l−1
i,k are the weights from the kth node in layer l − 1

to the ith node in layer l. The shifting parameter bl,l−1
i is a bias for the ith node in layer

l from layer l − 1. N l−1 is the node number in layer l − 1. In Eq. (1) f l
i is a transform

function for the ith node in layer l. Currently, the most widely used functions are linear (x),

Gaussian (exp(−x2)), and sigmoidal functions, e.g., f(x) = [1+exp(−x)]−1 and hyperbolic

tangent (tanh(x)). The transform functions with biases are used to confine the range of

node functions so that they are well behavior.

Indeed a feed-forward neural network structure defines just a function linking the in-

put data and target. Such a function may have no physical meaning but a mathematical

form. This function can be evaluated by using a layer-by-layer propagation. In particu-

lar, it associates with many (often non-linear) parameters including the biases, weights,

layer number, and node number in each layer. Therefore, a neural network function is

ultra-flexible. It is also a multi-dimensional representation according to the nested neural

network structure. For instance, the neural network function in Fig. 1 is written as

R = f 3
1 (x3

1) = f 3
1{b3,2

1 +
4∑

k=1

w3,2
1,kf

2
k [b2,1

k +
3∑

j=1

w2,1
k,jf

1
j (b1,0

j +
2∑

i=1

w1,0
j,i y

0
i )]}. (3)

Finally the parameters in a neural network function can be determined by using an

optimization method.50 But one should pay more attention to the flexibility that may

5
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cause a overcomplete representation of data. Therefore, a testing and learning procedure

is often adapted in optimization calculations.50,51,66

2.2 Neural network iterative diagonalization method

Our proposed neural network iterative diagonalization algorithm is illustrated in the ar-

chitecture in Fig. 2, where each node in the first input layer and (m) hidden layers is

described by a complex formally orthogonal Lanczos polynomial, i.e., Ll
i at node i in layer

l. N l is the number of nodes of the lth hidden layer. kl refers to the size of thick restart

block in layer l (see below for details). In addition, the output M nodes are the calculated

eigenstates including both eigenvalues zn and eigenvectors (or wavefunctions) |ψn(zn)). All

parameters involved in the neural network will be determined on-the-fly during a series

of recurrences. No non-linear optimization is required similar to the molecular dynamics

optimization approach.

2.2.1 Network structure and node functions

Before discussing how to construct the nodes in Fig. 2, let’s first define a complex guided

spectral transform function F (H̃) of H̃. It is expressed in a series of complex formally

orthogonal Lanczos (cFOL) polynomials (L̃i(H̃)),46,67

F (H̃) =
LC∑

j=1

Aj(Eref )L̃j(H̃), (4)

where the cFOL polynomials are obtained using the Lanczos-type recurrence

β̃j+1L̃j+1 = H̃L̃j − α̃jL̃j − β̃jL̃j−1, (5)

with

L̃0(H̃) = 0 and L̃1(H̃) = 1.

Here (α̃j, β̃j) are the pre-defined Lanczos coefficients calculated with H̃ and a random initial

vector |ψ̃1). They are calculated using a complex-symmetric Lanczos recursion,4,8, 9, 32,42,68–70

β̃j+1|ψ̃j+1) = H̃|ψ̃j)− α̃j|ψ̃j)− β̃j|ψ̃j−1), (6)

6
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with

β̃1 = 0, |ψ̃0) = 0. (7)

Therefore, α̃j = (ψ̃j|H̃|ψ̃j) and β̃j+1 = (ψ̃j+1|H̃|ψ̃j) are the mean value and recursion

coefficient of vector |ψ̃j), respectively. Those Lanczos coefficients need be calculated only

once.

In Eq.(4) Aj(Eref ) are the expansion coefficients for a reference value Eref . This value

specifies the pivot of desired eigenstates. Normally, the expansion order LC is small about

tens. The expansion coefficients are determined by the guidance of an analytical function

such as the retarded Green function38,44,46 (G+(Eref ) = (H̃ −Eref )
−1), exponential10,39,41

and hyperbolic tangent71 functions. For more details how to obtain the coefficients, the

reader can refer to Refs. [2,46] and references therein since they are well documented in the

literature. Using the guided spectral transform function is mainly to (1) avoid the difficulty

of analytical function-vector products; (2) dilate the spectrum near the reference value so

that the wanted eigenstates can be quickly converged; and (3) transform the eigenvalues

of interest into the largest or smallest ones in the transformed spectrum. For convenience,

in this work, a single spectral transform function F (H̃) is used in all calculations.

Now, the neural network iterative algorithm to construct node functions can be written

in a matrix form as

F (H̃)Ll
N l−1 = Ll

N lTl
N l−1 = Ll

N l−1T
l
N l−1 + βl

N lLl
N leT

N l−1 (8)

starting with

L1
1 = L0

1 = 1 and L1
0 = 0, (9)

where eT
K = [0, 0, · · · , 1] is a unit vector in the Kth dimension. The superscript ”T” refers to

the matrix transpose. Ll
K = [Ll

1,Ll
2, · · · ,Ll

K ] is a matrix with a size of K (K ≤ N l) for the

lth layer node functions. The Tl
K matrices are given by a complex symmetric tridiagonal

7
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matrix

Tl
K =




αl
1 βl

2

βl
2 αl

2 βl
3 0

βl
3

. . . . . .

0
. . . . . . βl

K

βl
K αl

K



, for l = 1 (10)

or a symmetric stripped tridiagonal one

Tl
K =




αl
1 βl

2

αl
2 0 βl

3

0
. . .

... 0
αl

kl βl
kl+1

βl
2 βl

3 · · · βl
kl+1 αl

kl+1 βl
k+2

βl
kl+2 αl

kl+2 βl
kl+3

0 βl
kl+3

. . . . . .

. . . . . . βl
K

βl
K αl

K




, for l = 2, · · · ,m (11)

where kl is the size of restarted block for layer l. All βl
1 are zero.

For the first hidden layer (l = 1), the elements in the Tl
K matrix in Eq. (10) are indeed

Lanczos coefficients. They are produced using the complex guided spectral transform

Lanczos method46

βl
j+1|ψl

j+1) = F (H̃)|ψl
j)− αl

j|ψl
j)− βl

j|ψl
j−1), (12)

where αl
j and βl

j are the complex mean value and residual of the jth vector with respect to

the spectral transform function F (H̃) respectively. They are written as

αl
j = (ψl

j|F (H̃)|ψl
j), β

l
j+1 = (ψl

j+1|F (H̃)|ψl
j). (13)

The recursion in Eq. (12) starts with an random initial vector, i.e., |ψl=1
1 ) = |φ0).

However, for other hidden layers (l = 2, 3, · · · ,m), the iterations depend on the out-

comes of proceeding layer (l − 1) as usual. The first kl sets of (αl
j, β

l
j) are determined by

(see Eq. (24) below for details)

αl
j = λl−1

j , (14)

βl
j+1 = βl−1

N l−1PK′j, j = 1, 2, · · · , kl , (15)

8
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where λl−1
j and Pj are the largest (or smallest, which depends on the spectral transform

function F (H̃)) kl eigenvalues and eigenvectors of the Tl−1
K′=N l−1−1 matrix from the (l − 1)

layer, that is,

Tl−1
K′ Pl−1 = Pl−1Λl−1 (16)

with diag(Λl−1) = [λl−1
1 , λl−1

2 , · · · , λl−1
kl ]. Here one should notice that Pl−1 is a K ′ × kl

matrix with (Pl−1)TPl−1 = I. By using the thick restart technique,37 the other elements

in the Tl
K′ matrix in Eq. (11) are again determined by the complex spectral transform

Lanczos method but starting with a given vector |ψl
kl+1) = |ψl−1

N l−1) at step kl + 1. They

can be expressed as

βl
kl+2|ψl

kl+2) = F (H̃)|ψl
kl+1)− αl

kl+1|ψl
kl+1)− |ϕl

kl), (17)

βl
j+1|ψl

j+1) = F (H̃)|ψl
j)− αl

j|ψl
j)− βl

j|ψl
j−1), j ≥ kl + 2, (18)

with

αl
kl+1 = (ψl

kl+1|F (H̃)|ψl
kl+1) (19)

and

|ϕl
kl) =

kl∑

i=1

βl
i+1|ψl

i), (20)

where |ψl
i) are the rotated Lanczos eigenvectors,

|ψl
i) =

N l−1−1∑

j=1

Pl−1
ji |ψl−1

j ). (21)

Accordingly, we have the node functions for layer l (= 2, · · · ,m)

Ll
i =

N l−1−1∑

j=1

Pl−1
ji Ll−1

j , i = 1, · · · , kl, (22)

Ll
kl+1 = Ll−1

N l−1 . (23)

The polynomial Ll
kl+1 adapts the last node function in the proceeding layer. Such a node

is shown in red in Fig. 2. Also displayed in blue are the nodes obtained by Eq. (22) as they

are obtained by a linear combination of a subset of the functions in the proceeding layer

9
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via a diagonalization approach. All other node functions in hidden layers are obtained via

a Lanczos-type recursion as shown in Eq. (8).

To better understand the algorithm, let us multiply Eq. (8) by the Pl matrix from the

right side. Then we have

F (H̃)Ll
N l−1P

l = Ll
N l−1T

l
N l−1P

l + βl
N lLl

N leT
N l−1P

l

= Ll
N l−1P

lΛl + Ll
N l [βl

N leT
N l−1P

l] (24)

that exactly defines the first kl iterations for the (l + 1) layer together with the node

functions Ll+1
kl+1 = [Ll

N l−1P
l,Ll

N l ] and the leading (kl + 1) × (kl + 1) block of Tl+1
K in

Eq. (11). Importantly, the operation above works as a filter projection because P is a

rectangular matrix with |Pl(Pl)T | ≤ I. As a result, the components outside the range

of interest (approximately estimated by those selected eigenstates in Eq. (16)) are largely

damped. Therefore, the layered iteration structure can enhance the efficiency of eigenstate

calculations.

Finally, the last output layer nodes (eigen-pairs) are obtained by diagonalizing the

perturbed matrix46

H̃
′
λ = H̃ + λs(−iW ), λs ≥ −1 (25)

in a set of well converged basis set {|ψ′1), |ψ′2), · · · , |ψ′k)} with k ≥M . They are eigenvectors

of the unperturbed Hamiltonian, namely

H̃|ψ′n) = z
′
n|ψ

′
n), and |ψ′n) = Lm

n |φ0) . (26)

Then the matrix representation of H̃
′
λ is written as

H̃
′
λ = Dz − iλsW (27)

with

Wij = (ψ
′
i|W |ψ′j) (28)

10
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and the diagonal matrix diag(Dz) = (z
′
1, z

′
2, · · · , z′k). Therefore, the eigenvalue trajecto-

ries of desired states can be calculated by adjusting the NIP strength parameter λs. An

optimal true eigenstate is defined by a cusp point.7,8 Since the basis size is small, those

diagonalizations can be done quickly. Here we have used the orthonormal property of

Lanczos vectors or polynomials. The relationship is expressed as

|ψl
j) = Ll

j|φ0) and Tr(Ll
iLl

j)φ0 = δij. (29)

As Ll
j are polynomial functions of Hamiltonian, they commute, i.e. [Ll

j, H̃] = 0. Further-

more, no trajectory searching is required for a Hermitian matrix or Hamiltonian as its

eigenstates are independent of any NIP.

In short, the neural network iterative diagonalization algorithm is constructed by using

some small matrix diagonalizations (having the kl dimensions of restarted blocks) and two

layered Lanczos iterations. The nested Lanczos recursion is used to carry out the spectral

transform of the original matrix or Hamiltonian. The algorithm starts with a random

vector, and the parameters in the neural network are determined dynamically without any

non-linear optimization. The hidden layer propagation will stop at the node Nm of layer

m if all the state residuals satisfy with the condition,

|βm
NmPNm−1,j| ≤ ε, for j = 1, 2, · · · ,M + q , (30)

where ε is a small criterion (saying 10−8) and q (usually less than four) is a number of

additional states to be converged. Those states are employed to secure the convergence

of wanted states in the trajectory optimization procedure. In particular, the NNiDM

only requires the Hamiltonian-vector products so that it is very efficient for large sparse

matrices. Therefore, the neural network iterative diagonalization method is general and

problem-independent. As the core memory can be shared among the hidden layers, roughly,

the requirement of core memory is determined by the storage of (N l
max + 2) vectors. N l

max

is the maximum value of N l, and the number two refers to the two Lanczos vectors used to

11
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perform the guided spectral transform Lanczos in the inner layer iterations. That is, the

memory requirement is limited in the algorithm. The NNiDM is also very simple to use.

The input information only includes a few parameters N l
max, q, M , and Eref in addition

to the calculations of matrix-vector products.

2.2.2 Orthogonality and modifications for Hermitian matrix

It is well known that the Lanczos vectors will lose their orthogonality after tens iterations

due to the machine precision.27,72 This can be prevented by using full reorthogonalization

procedures such as that in the Arnoldi algorithm.16 Alternatively, in this work, we use

the selective and partial reorthogonalization (PRO) method of Simon.73 It is a semi-local

method. In the PRO approach, the new Lanczos vector is only reorthogonalized against

those vectors with respect to which it is not orthogonal, within a numerical tolerance ε

(about 10−12). The PRO Lanczos algorithm is written (dropping out the layer index) as73

β
′
j+1|ψ

′
j+1) = F (H̃)|ψj)− αj|ψj)− βj|ψj−1)− |f ′j) (31)

and

βj+1|ψj+1) = β
′
j+1|ψ

′
j+1)−

∑

k∈O(j)

β
′
j+1(ψk|ψ′j+1)|ψk)− |fj), (32)

where O(j) = {k; |ωj+i,k| > ε} is a set of indices for applying the reorthogonalization

procedure. The values ωj,k (k = 1, · · · , j−1) are the overlap matrix elements ωj,k = (ψj|ψk)

of the Lanczos vectors. In the PRO method, explicit calculations of the overlap matrix is

avoided. Instead they are obtained via the following simple recurrence,73

ωk,k = 1, for k = 1, · · · , j

ωk,k−1 = εk, for k = 2, · · · , j

βk+1ωj+1,k = βk+1ωj,k+1 + (αk − αj)ωj,k + βkωj,k−1 −

βjωk+1,k + (ψj|fk)− (ψk|fj), for 1 ≤ k < j

ωj,k+1 = ωk+1,j (33)
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Here ωk,0 = 0 and εk = (ψk|ψk−1). In Eqs. (31) - (33), the vectors |f ′j) and |fj) account

for the local roundoff errors at the jth step. In practice we have taken the local roundoff

errors as zero since they are much smaller than ε. The PRO Lanczos method was used by

us2,41,74,75 for quantum reactive scattering calculations. The outcome is highly satisfying.

The algorithm can not only avoid the spurious state problem but also resolve the degenerate

states if any.

Until now the neural network iterative algorithm has been described for complex sym-

metric matrices. Actually the NNiDM protocol is also true for Hermitian Hamiltonian

after some simple modifications. The essential modifications are as follows:

(1) The normalizations (ψj|ψk) are replaced with < ψj|ψk >.

(2) All vectors |ψl
j) in the Lanczos iterations and eigenvector constructions are replaced

with |ψl
j >.

(3) All quantities are determined by the Hamiltonian Ĥ instead of H̃.

For instance, the cGSTL algorithm in Eq. (12) is changed to a real guided spectral trans-

form Lanczos recurrence14,45

βl
j+1|ψl

j+1 >= F (Ĥ)|ψl
j > −αl

j|ψl
j > −βl

j|ψl
j−1 >, (34)

and the Lanczos eigenvectors in Eq. (21) are replaced with

|ψl
i >=

N l−1−1∑

j=1

Pl−1
ji |ψl−1

j > . (35)

As a result both the Tl
K matrices in Eqs. (10) and (11) are real symmetric for the Hermitian

cases. Since the changes are straight-forward, it won’t be repeated here.

2.3 Practical implementation with layered basis contraction

Although the neural network iterative method only requires Hamiltonian-vector products,

the product calculations strongly rely on the choice of basis set and/or coordinates that

determine the structure and sparseness of Hamiltonian matrix. In this subsection we will

13

Page 13 of 41 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



discuss a method on how to efficiently carry out the Hamiltonian-vector products for high

dimensional problems. Here, we will focus on the calculations of vibrational spectroscopy

(and/or quantum scattering dynamics via resonance states) of polyatomic molecules. For

large polyatomic molecules beyond four atoms, the resulting direct product basis set is usu-

ally too huge to be feasible for directly doing the Hamiltonian-vector actions in such a basis

set. In order to overcome this difficulty, many basis contraction methods10–14,24,45,65,76–79

have been proposed. In particular, the multi-layered basis contraction schemes13,24,65 are

very attractive. In this work, we will use our recently developed multi-layer Lanczos it-

eration approach45 by extending it to the extended Hamiltonian H̃. Since the approach

has been well documented for the Hermitian Hamiltonian, only a brief description will be

presented here. The reader can see Ref. [45] for more details.

The molecular vibrational Hamiltonian of system is represented in a set of orthog-

onal polyspherical coordinates.80–84 For a molecule with N atoms, it has (3N − 6) in-

ternal variables as shown in Fig. 3. They are defined by (N − 1) radial coordinates

(R = {r1, r2, · · · , rN−1}) and (2N − 5) angular variables (Q) including (N − 2) polar

angles {θi} and (N −3) azimuthal angles {ϕj} of the radial vectors in the body-fixed (BF)

frame. Then the Hamiltonian with the total angular momentum J = 0 is written as24,83

H̃ = T̂R(R) + H̃Q(Q;R)− iWR (36)

with

H̃Q(Q;R) = T̂Q(Q;R) + V (Q,R)− iWQ, (37)

where −iWR and −iWQ are the R− and Q−dependent NIPs. Usually WQ is null as

molecules often dissociate only along the R coordinates. V (Q,R) is the potential energy

surface of the system. T̂R(R) is the kinetic energy operator in the radial coordinates. It is

given by a summation of one dimensional (1D) Hamiltonian ĥ(ri), i.e.,45

T̂R(R) =
N−1∑

i=1

[ĥ(ri)− V0(ri)], (38)

14

Page 14 of 41Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



ĥ(ri) = − h̄2

2µir2
i

∂

∂ri

r2
i

∂

∂ri

+ V0(ri). (39)

Here V0(ri) is a 1D reference potential in ri with its associated reduced mass µi. T̂Q(Q;R)

is the kinetic operator in the angular coordinates. Generally, it can be partitioned as

T̂Q(Q;R) =
N−1∑

i=1

1

2µir2
i

T̂
(i)
Q (Q), (40)

where T̂
(i)
Q (Q) are R-independent. That is, T̂Q only parametrically depends on R through

pre-factors without any crossed partial derivative terms between the two coordinate groups.

The H̃−vector products are carried out in a contracted grid/diabatic basis functions

in which the Lanczos vector |vk) is expressed as

|vk) =
∑
m,α

Ck
m,αfm(Q;R0,R

V
0 )|Rα >, (41)

where |Rα >= ΠN−1
i=1 |rαi

> refer to the direct-product PO-DVR (potential optimized-

discrete variable representation) basis functions in R with α being a collective DVR index.

The 1D PO-DVRs are calculated using the lowest eigenstates of the Hamiltonian ĥ(r) in

Eq. (39). The direct-product basis functions are further contracted by discarding those PO-

DVRs where the minimum potential energies in their corresponding Rα sectors are larger

than a threshold value (Vth). In addition, fm(Q;R0,R
V
0 ) (associated with eigenvalues E0

m)

are the vibrationally diabatic basis functions in Q. They will be calculated as discussed

below.

By using this kind of basis set, the action of H̃ on vector |vk) is written as

H̃|vk) =
∑

n,β

∑
m,α

{
< Rβ|T̂R(R)|Rα > δnm + [E0

m − iWR(Rα)]δnmδβα

+(fn|∆ĤQ(Rα)|fm)δβα

}
Ck

m,αfn(Q;R0,R
V
0 )|Rβ >, (42)

with

< Rβ|T̂R(R)|Rα > =
N−1∑

i=1

{
< rβi

|ĥ(ri)|rαi
> −V0(rαi)δβiαi

}
× ΠN−1

j 6=i δβjαj
, (43)

(fn|∆ĤQ(Rα)|fm) =
N−1∑

i=1

∆Iαi0(rαi)(fn|T̂ (i)
Q |fm) + (fn|∆V (Q;Rα)|fm), (44)
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and

∆V (Q;Rα) = V (Q;Rα)− V (Q;RV
0 ), (45)

∆Ii0(ri) =
1

2µir2
i

− 1

2µir2
i0

, (46)

where ∆Ii0(ri) are the diagonal pre-factor matrix elements in DVR. (fn|∆V (Q;Rα)|fm)

are the potential residual matrix elements whereas (fn|T̂ (i)
Q |fm) are the R−independent

matrix elements of the kinetic energy operators in Q.

In Eq. (41) the diabatic basis functions fm are formed by the lowest eigenstates of a

reference reduced-dimension Hamiltonian H̃0
Q(Q;R0,R

V
0 ) in Q, namely

H̃0
Q(Q;R0,R

V
0 )fm(Q;R0,R

V
0 ) = E0

mfm(Q;R0,R
V
0 ), (47)

with

H̃0
Q(Q;R0,R

V
0 ) = T̂Q(Q;R0) + V (Q;RV

0 )− iWQ, (48)

where R0 are the radial references in the kinetic energy operator. Usually, they are constant

as {ri0}. RV
0 are the references in the potential energy surface, and may be dependent of

Q for a better reference potential.85 The eigenvalue problem in Eq. (47) will be solved by

using the neural network iterative diagonalization method. Here, we need both eigenvalues

and eigenvectors so that the NNiDM is favorite.

In the NNiDM calculations, the required H̃0
Q(Q;R0,R

V
0 )−vector products are per-

formed in a non-direct product FBR (finite basis representation) basis set {|l >} that is

used to properly deal with the singularities in polar angles.24,83 By using a Lanczos vector

|v′k) =
∑

l C
k
l |l > in FBR, the Hamiltonian-vector action is written as

H̃0
Q|v

′
k) =

∑

l

N−1∑

i=1

Ck
l

1

2µir2
i0

T̂
(i)
Q (Q)|l > +

∑

l′

∑

l

∑
γ

U†
l′γ[V (Qγ;R

V
0 )− iWQ(Qγ)]UγlC

k
l |l

′
>,

(49)

where U is the collocation matrix between the FBR and DVR ({|γ >}) basis sets, i.e.

|γ >=
∑

l

Uγl|l > . (50)
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Here, l and γ are the collective FBR and DVR indices with a dimension of 2N − 5,

respectively. In terms of Eq. (50), we have the dual representation

fm(Q;R0,R
V
0 ) =

∑

l

Plm|l >=
∑
γ

Xγm|γ >, m = 1, 2, · · · , Ndiab (51)

Xγm =
∑

l

UγlPlm, (52)

for the diabatic basis functions. Plm and Xγm are the eigenvector coefficients of fm in FBR

and DVR respectively. The DVR representation is good for basis contraction.45

Although the detailed formulae of T̂
(i)
Q and U depend on the definition of Q, usually,

the T̂
(i)
Q −|l > products are analytically computed on-the-fly in FBR. They are very simple

and easy as discussed below. In practice, the last potential term in Eq. (49) is often carried

out using a series of small sequential matrix-vector products in one-by-one degree via a

pseudo-spectral transformation technique.86–88 For penta-atomic molecules, both T̂ (i) and

U with their actions on vectors are given in Ref. [45].

Generally, for polyatomics with N atoms, according to the convention of the orthogonal

polyspherical coordinates in Fig. 3, the Q-dependent kinetic operator parts in Eq. (40) are

given by14

T̂
(i)
Q (Q) = ĵ2

i , i = 1, · · · , N − 2, (53)

T̂
(N−1)
Q (Q) =

N−2∑

i=1

ĵ2
i +

N−2∑

i<k=1

(2ĵiz ĵkz + ĵi+ĵk− + ĵi−ĵk+), (54)

where ĵi, ĵiz and ĵi± are the angular momentum, its Z projection and the ladder operators

respectively.89 Without external field, a molecule always persists the inversion symmetry

(labeled by its parity p). Therefore, a symmetrically adapted FBR (SA-FBR) is usually

employed in the angular coordinates. For instance, it is taken as14,82

|l >=





1√
2(1+δ0n)

{|j1j2n > +(−1)p|j1j2 − n >} , for tetra-atomics

1√
2(1+δ0nδ0mδ0k)

{|j1j2j3j4nmk > +(−1)p|j1j2j3j4 − n−m− k >} , for hexa-atomics

(55)
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with the orthonormal spherical harmonic basis functions |jm >, i.e.,89

< θϕ|jm >= Θm
j (θ)

1√
2π
eimϕ, (56)

where Θm
j (θ) are the normalized associated Legendre polynomials. These functions are the

common eigenstates of both ĵ2 and ĵz, namely,

ĵ2|jm > = j(j + 1)h̄2|jm >, (57)

ĵz|jm > = mh̄|jm > . (58)

For the ladder operators, we have the relationship,

ĵ±|jm >= [j(j + 1)−m(m± 1)]1/2h̄|jm± 1 > . (59)

Therefore the TQ-FBR basis products can be easily computed by using Eqs. (57)-(59). The

detailed expressions are given in Refs. [82] for tetra-atomics, [83] for penta-atomics, and

[14] for hexa-atomics etc.

Furthermore, the corresponding collocation matrix in Eq. (49) is given by

U =

{
CST1DΘ

(n)
θ2

Θ
(n)
θ1
, for tetra-atomics

CST3DΘ
(n+m+k)
θ4

Θ
(k)
θ3

Θ
(m)
θ2

Θ
(n)
θ1
, for hexa-atomics

(60)

where CST1D and CST3D is the one- and three-dimensional cosine/sine transformation

in the corresponding azimuthal angles while the Θ
(k)
θ are the one-dimensional collocation

matrices in θ. They are defined by the normalized associated Legendre polynomials in

Eq. (56).82,83,90

In summary, two sequential neural network iterative diagonalizations are carried out

for computing vibrational energies and wavefunctions of polyatomic molecules. One is

used to obtain the vibrationally diabatic basis functions fm with the reduced-dimensional

Hamiltonian H̃0
Q(Q;R0,R

V
0 ). The other is employed to solve the whole eigenvalue problem

of system with H̃ but in a compact contracted basis set. The use of the contracted basis

set can substantially reduce the requirement of core memory in addition to speeding up the
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calculations. The two NNiDM calculations are done sequentially so that they can share

the same core memory. Usually, the memory requirement is determined by the calculations

of the diabatic functions fm.

3 Applications

In this section we will discuss two applications of the neural network iterative diagonaliza-

tion method to calculate the bound and resonance states of HO2 and the vibrational states

of CH4. Our main goal is to illustrate the applicability for different types of molecules and

the performance of the algorithm.

3.1 Bound and resonance states of HO2

HO2 is a benchmark molecule with a deep potential well for quantum dynamics calcula-

tions.32,46,91–93 In this application, it is employed to study the bound and resonance states

of HO2, and mainly to examine the accuracy and efficiency of the NNiDM algorithm. In

the calculations, we adapted the same atom-diatom Jacobi coordinates, potential energy

surface (DMBE IV),94 basis set and parameters as in previous works.32,46 Some results are

listed in Table 1, together with a comparison with previous theoretical results based on

the same potential energy surface. They are in good agreement. Therefore, the NNiDM is

an accurate method.

More interesting is the performance of the NNiDM algorithm. Figure 4 shows a com-

parison of convergence for calculating the 400 (M) lowest bound and resonance states of

HO2 with q = 1. A typical error evolution is displayed in Fig. 4(a) for a given maximum

node number N l
max = 1000. One can see that the 400 eigenstates can be well converged

with five hidden layers. The total number of F (H̃)−vector products is about 2960, which

often determines the efficiency of the algorithm. In general, the smaller the maximum

node parameter N l
max is, the larger the hidden layers are needed to converge results. For
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instance, 28 hidden layers are required to obtain those 400 eigenstates. In contrast, the

number of F (H̃)−vector products gradually decreases with N l
max increasing as shown in

Fig. 4(b). But a large N l
max value demands more core memory. According to this numer-

ical study, the suggested parameter is N l
max ∈ [M/2,M ] for a good balance between the

efficiency and core memory requirement, where M is the number of wanted eigenstates.

The parameter q ≤ 4 (i.e. the number of additional restarted vectors) is enough. It is

mainly employed to take into account of the degeneracy of the highest and/or smallest

eigenstates of interest.

Three typical node functions Ll
j are shown in Fig. 5. They are strongly oscillating

in energy. However, the node functions roughly work as a step function having small

amplitudes toward high energies. The onset of step threshold of Ll
j slightly shifts upward

as their node numbers j increase. Therefore, the node functions can be considered as an

energy path that filters out those high energy components of vectors.

This numerical example also shows that the NNiDM algorithm is more efficient than

the most popular Chebyshev-based filter diagonalization (FD)92 and Lanczos-based FD32

methods according to the total number of Hamiltonain-vector products for converging the

same eigenstates. It is comparable with the cGSTL algorithm but only demands about

one third of core memeory required in cGTSL.46 Therefore, the NNiDM algorithm is very

attractive for studying large molecular systems. In the next subsection, we will give such

an example.

3.2 Vibrational states of CH4

Methane (CH4) is another benchmark molecule for the study of molecular spectroscopy,

for instance, see Refs. [45,95–98] and references therein. Although CH4 is a rigid five-atom

molecule, it is very challenging to accurately calculate its vibrational states due to the

strong couplings among the degenerate bend and stretch modes. In this subsection, we will

present an application to calculating the vibrational states of methane based on the recently
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refined WC potential energy surface97 of the ab initio SP(T8) surface of Schwenke and

Partridge.95 Here we will examine the performance of the NNiDM algorithm implemented

with the layered basis contraction approach.

In the calculations, the vibrational Hamiltonian is expressed in the orthogonal (4+1)

Radau coordinates, i.e., the ”Icd=2” set in the PetroVib program.83 As discussed in

Sec. 2.3 a combined FBR/DVR basis set is used. Ten PO-DVR functions are used for

each radial coordinate. The non-direct product FBR in the angular variables are formed

by the largest quantum number jmax = 28. The symmetrically adapted SA-FBR/DVR

basis with respect to inversion symmetry is used. Those parameters give a primitive DVR

basis size of 3.96 × 107 (or a basis set of 5.65 × 106 FBR functions) in Q that leads to a

basis set of 3.96 × 1011 in total. 480 diabatic basis functions fm are employed. They are

calculated by the neural network iterative diagonalization method with N l
max = 800 and

q = 3. For the calculations of whole system, the used parameters are N l
max = 200 and

q = 3 for the M = 120 lowest vibrational states. The potential threshold value is set at

Vth = 3.25 eV in the full dimensional DVR basis contraction while the criterion used for the

DVR contraction of fm is ε = 10−8. Those parameters can well converge the vibrational

energies up to 6600 cm−1 within 0.05 cm−1. The reference radial coordinates in the kinetic

energy operators are 2.0524108 a0 for ri0 with its associated mass µi = 1.007825035 amu

relative to mC = 12.0 amu.

Table 2 lists the calculated energy levels of CH4 together with a comparison with ex-

perimental and previous theoretical results,97,99–105 where the energy levels are labeled as

”(v1v3)(v2v4)symmetry” following the polyads. v1(A1) and v3(F2) are the stretch modes

of CH4 while v2(E) and v4(F2) are the bend ones. As one can see, they are in excellent

agreement. The refined WC surface is very accurate up to about 5800 cm−1 (most likely

up to 7000 cm−1). As discussed by Wang and Carrington,97 those vibrational states hav-

ing a large difference with experiments should be checked experimentally. In the NNiDM
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calculations, the 480 vibrationally diabatic basis functions are obtained with four hidden

layers (800, 800, 800, 640) while the 120 eigenstates of CH4 are computed with five hidden

layers (200, 200, 200, 200, 160). It was found that the NNiDM algorithm shows a better

efficiency for the Hermitian matrices than that for the complex matrices in HO2 although

such a comparison is not fair owing to the difference of matrix structures. Importantly,

by incorporating with the layered basis contraction procedure, the neural network itera-

tive diagonalization method requires much less core memory than the two-layer Lanczos

algorithm.24 These results also imply that the NNiDM algorithm with the layered basis

contraction technique is capable of studying larger polyatomic molecules.

4 Conclusions

We have developed a novel neural network iterative diagonalization method (NNiDM) for

studying eigenvalues and eigenvectors of large sparse complex symmetric or Hermitian ma-

trices. The algorithm has a multi-layered feed-forward neural network structure where the

node functions are iteratively determined by the complex (or real) guided spectral trans-

form Lanczos (cGSTL) method46 and small matrix diagonalizations in terms of the thick

restart technique.37 The loss of orthogonality of Lanczos vectors is prevented by using the

partial reorthogonalization (PRO) method of Simon.73 The construction of node functions

starts with a random vector, and only requires the action of matrix or Hamiltonian on

vectors without any non-linear optimization. The NNiDM is capable of computing interior

eigenstates in dense spectrum regions with the help of the guided spectral transform tech-

nique.38,41,46 In particular, the NNiDM algorithm is a universal eigensolver for complex

symmetric or Hermitian matrices.

By extending the multi-layer Lanczos iteration approach45 to the complex matrix or

extended Hamiltonian systems, we also described a general method on how to efficiently

evaluate the action of Hamiltonian on vectors in orthogonal polyspherical coordinates for
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studying the vibrational spectroscopy and quantum scattering of polyatomic molecules.

Since the calculations are carried out in a set of contracted basis functions via a reduced-

dimensional manner, it allows us to investigate large polyatomic systems. The approach

in Sec. 2.3 is suitable for any polyatomic molecule. But the computational ability will

be limited by the calculations of the vibrationally diabatic basis functions fm having a

dimension of 2N − 5 in spite of that this value is much smaller than the full dimension

3N − 6. Therefore, future work would be very helpful to overcome this bottleneck.

The NNiDM algorithm has been applied for calculating energies, widths, and wave-

functions of two typical molecules HO2 and CH4 for numerical demonstrations. Results

show that it is an efficient algorithm like other advanced iterative diagonalization methods

but this algorithm also produce eigenvectors easily with the help of limited core memory

requirement. Therefore, the neural network iterative diagonalization method is very at-

tractive if both eigenvalues and eigenvectors are needed as in the layered basis contraction

scheme, for instance, the CH4 example. Compared with the two-layer Lanczos method,24

the NNiDM algorithm only requires about one third of core memory without the loss of

efficiency. Thus, this new alogrithm is very useful for studying the eigenstates of larger

molecules. In addition, the key parameter N l
max (the maximum node number in layer l) is

suggested as a value between M/2 and M for optimizing both the efficiency and the core

memory requirement, where M is the number of wanted eigenstates. Within this range,

the performance of the NNiDM algorithm is less sensitive.
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[18] H. Köppel, L.S. Cederbaum, and W. Domcke, J. Chem. Phys. 1982, 77, 2014.

[19] C. Iung and C. Leforestier, J. Chem. Phys. 1995, 102, 8453.

[20] C. Iung, C. Leforestier, and R.E. Wyatt, J. Chem. Phys. 1993, 98, 6722.

[21] V.A. Mandelshtam and H.S. Taylor, J. Chem. Phys. 1995, 102, 7390.

[22] V.A. Mandelshtam and H.S. Taylor, J. Chem. Phys. 1997, 106, 5085.

[23] P. Pendergast, Z. Darakjian, E.F. Hayes, and D.C. Sorensen, J. Compt. Phys. 1994,

113, 201.

[24] H.-G. Yu, J. Chem. Phys. 2002, 117, 8190.

[25] X.-G. Wang and T. Carrington Jr., J. Chem. Phys. 2004, 121, 2937.

[26] R.E. Wyatt, Adv. Chem. Phys. 1989, 73, 231.

[27] C. Lanczos, J. Res. Nat. Bur. Stand. 1950, 45, 255.

[28] D. Xie, R. Chen, and H. Guo, J. Chem. Phys. 2000, 112, 5263.

[29] R. Chen and H. Guo, J. Chem. Phys. 1996, 105, 1311.

[30] R. Chen and H. Guo, J. Compt. Phys. 1997, 136, 494.

[31] H.-G. Yu and S.C. Smith, Ber. Bunsenges. Phys. Chem. 1997, 101, 400.

[32] H.-G. Yu and S.C. Smith, Chem. Phys. Lett. 1998, 283, 69.

[33] S.K. Gray and G.G. Balint-Kurti, J. Chem. Phys. 1998, 108, 950.

26

Page 26 of 41Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



[34] D. Neuhauser, J. Chem. Phys. 1990, 93, 2611.

[35] M.R. Wall and D. Neuhauser, J. Chem. Phys. 1995, 102, 8011.

[36] D. Calvetti, L. Reichel, and D.C. Sorensen, Electr. Transact. Numer. Anal. 1994, 2,

1.

[37] K. Wu and H. Simon, SIAM J. Matrix Anal. Appl. 2001, 22, 602.

[38] T. Ericsson and A. Ruhe, Math. Comput. 1980, 35, 1251.

[39] F. Webster, P.J. Rossky, and R.A. Friesner, Comp. Phys. Comm. 1991, 63, 494.

[40] H. Kono, Chem. Phys. Lett. 1993, 214, 137.

[41] H.-G. Yu and G. Nyman, J. Chem. Phys. 1999, 110, 7233.

[42] C. Leforestier, K. Yamashita, and N. Moiseyev, J. Chem. Phys. 1995, 103, 8468.

[43] B. Poirier and J. Carrington Jr., J. Chem. Phys. 2002, 116, 1215.

[44] R.E. Wyatt, Phys. Rev. 1995, E51, 3643.

[45] H.-G. Yu, J. Chem. Phys. 2015, 142, 044106.

[46] H.-G. Yu, J. Chem. Phys. 2014, 141, 244114.

[47] W. McCulloch and W. Pitts, Bull. Math. Biophys. 1943, 5, 115.

[48] F. Rosenblatt, Psych. Rev. 1958 65, 386.

[49] M. Minsky and S.A. Papert, Perceptrons (MIT Press, Cambridge MA, 1969).

[50] S. Haykin, Neural Networks and Learning Machines 3rd Edn (Pearson, New York,

2009).

[51] J. Behler, J. Phys.: Condens. Matter 2014, 26, 183001.

27

Page 27 of 41 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



[52] W.A. Little, Math. Biosci. 1974, 19, 101.

[53] T.B. Blank, S.D. Brown, A.W. Calhoun, and D.J. Doren, J. Chem. Phys. 1995, 103,

4129.

[54] S. Manzhos, X.G. Wang, R. Dawes, and T. Carrington Jr., J. Phys. Chem. A 2006,

110, 5295.

[55] S. Manzhos and T. Carrington Jr., J. Chem. Phys. 2006, 125, 084109.

[56] B. Jiang and H. Guo, J. Chem. Phys. 2013, 139, 054112.

[57] B.J. Braams and J.M. Bowman, Int. Rev. Phys. Chem. 2009, 28, 577.

[58] J.N. Murrell, S. Carter, S.C. Farantos, P. Huxley, and A.J.C. Varandas, Molecular

Potential Energy Functions (Wiley, Chichester, 1984).

[59] A.J.C. Varandas and H.-G. Yu, Mol. Phys. 1997, 91, 301.

[60] N. Samardzija and R.L. Waterland, Biol. Cybern. 1991, 65, 211.

[61] A. Cichocki and R. Uberhauen, Biol. Cybern. 1992, 68, 155.

[62] Z. Yi, Y. Fu, and H.J. Tang, Comput. Math. Appl. 2004, 47, 1155.

[63] I.E. Lagaris, A. Likas, and D.I. Fotiadis, Comp. Phys. Comm. 1997, 104, 1.

[64] S. Manzhos, K. Yamashita, and T. Carrington Jr., Chem. Phys. Lett. 2009, 474, 217.

[65] U. Manthe, J. Chem. Phys. 2009, 130, 054109.

[66] C.M. Bishop, Neural Networks for Pattern Recognition (Oxford University Press,

Oxford, 1996).

[67] M.H. Gutknecht, SIAM J. Matrix Anal. Appl. 1992, 13, 594.

28

Page 28 of 41Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



[68] O. Kolin, C. Leforestier, and N. Moiseyev, J. Chem. Phys. 1988, 89, 6836.

[69] S. Dallwig, N. Fahrer, and C. Schlier, Chem. Phys. Lett. 1992, 191, 69.

[70] H.-G. Yu, J. Chem. Phys. 2005, 122, 164107.

[71] H.-G. Yu and G. Nyman, J. Chem. Phys. 1999, 110, 11133.

[72] C.C. Paige and M.A. Saunders, SIAM J. Numer. Anal. 1975, 12, 617.

[73] H.D. Simon, Math. Comput. 1984, 42, 115.

[74] H.-G. Yu and G. Nyman, Chem. Phys. Lett. 1998, 298, 27.

[75] G. Nyman, Int. J. Quantum Chem. 2014, 114, 1183.

[76] X.-G. Wang and T. Carrington Jr., J. Chem. Phys. 2002, 117, 6923.

[77] A. Leclerc and T. Carrington Jr., J. Chem. Phys. 2014, 140, 174111.

[78] D. Lauvergnat and A. Nauts, Spectrochimica Acta A 2014, 119, 18.
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Table 1: A comparison of computed highest bound states (357-361) and lowest lying res-

onances of HO2 with the total angular momentum J = 0 and odd O-O exchange parity.

Energies En are relative to the asymptote H + O2. Γn are the widths of resonances, where

the numbers in parentheses are the power of 10. All units are in eV.

KP91 MGT92 YS32 This work
n En Γn En Γn En Γn En Γn

357 0.09031 0.09040 0.090407
358 0.09121 0.09150 0.091503
359 0.09228 0.09263 0.092631
360 0.09421 0.09448 0.094480
361 0.09656 0.09706 0.097059

0.098056 1.841(-4) - - - - - -
362 0.099152 6.387(-6) 0.099075 2.8(-5) 0.099177 3.454(-5) 0.099189 3.153(-6)
363 0.099661 6.151(-5) 0.09972 3.2(-5) 0.099896 2.687(-5) 0.099908 1.604(-5)
364 0.100274 8.227(-4) - - 0.100376 5.571(-4) 0.100956 6.184(-4)
365 0.102036 9.471(-5) 0.10189 8.6(-5) 0.101886 7.214(-5) 0.101907 4.361(-5)
366 0.103760 1.527(-5) 0.103717 1.56(-5) 0.103758 1.671(-5) 0.103761 1.168(-5)
367 0.104668 2.334(-5) 0.104622 3.2(-5) 0.104857 6.096(-5) 0.104862 4.399(-5)
368 0.107208 1.066(-4) 0.106964 7.6(-5) 0.106997 5.051(-5) 0.107005 3.022(-5)
369 0.110424 1.779(-4) 0.11034 1.14(-4) 0.110754 1.427(-4) 0.110770 5.101(-5)
370 0.112204 9.403(-4) 0.11214 7.4(-4) 0.112588 3.611(-4) 0.112582 6.896(-4)
371 0.114299 6.209(-5) 0.11391 1.8(-4) 0.114234 1.020(-4) 0.114264 4.404(-5)
372 0.115788 6.300(-7) 0.11561 2.6(-7) 0.115654 1.200(-6) 0.115572 5.308(-7)
373 - - 0.11872 2.30(-3) 0.117880 3.558(-3) 0.118760 2.717(-3)
374 0.118964 1.060(-5) 0.11878 1.56(-5) 0.119039 1.254(-5) 0.119037 3.084(-6)
375 0.120778 3.827(-5) 0.12058 3.6(-5) 0.120751 3.763(-5) 0.120750 4.893(-5)
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Table 2: A comparison of vibrational energy levels En in cm−1 with previous theoretical

results97 calculated on the same WC potential energy surface and experimental values.99–105

∆WC/∆expt are the differences between this work and WC/experiments.

label This work WC97 ∆WC Expt99–105 ∆expt

(00)(01)F2 1310.47 1310.47 0.01 1310.76 -0.29
(00)(10)E 1533.47 1533.47 0.00 1533.33 0.14
(00)(02)A1 2587.00 2586.99 0.01 2587.04 -0.04
(00)(02)F2 2613.84 2613.83 0.01 2614.26 -0.42
(00)(02)E 2624.45 2624.44 0.01 2624.62 -0.16
(00)(11)F2 2830.21 2830.20 0.01 2830.32 -0.11
(00)(11)F1 2845.97 2845.96 0.01 2846.07 -0.10
(10)(00)A1 2917.23 2917.18 0.05 2916.48 0.75
(01)(00)F2 3019.53 3019.43 0.10 3019.49 0.04
(00)(20)A1 3063.78 3063.77 0.01 3063.65 0.13
(00)(20)E 3065.31 3065.30 0.01 3065.14 0.17
(00)(03)F2 3870.59 3870.57 0.02 3870.49 0.11
(00)(03)A1 3908.84 3908.82 0.02 3909.20 -0.36
(00)(03)F1 3920.26 3920.24 0.02 3920.51 -0.25
(00)(03)F2 3931.01 3930.99 0.02 3930.92 0.09
(00)(12)E 4101.49 4101.46 0.03 4101.39 0.10
(00)(12)F1 4128.72 4128.69 0.03 4128.76 -0.04
(00)(12)A1 4132.63 4132.60 0.03 4132.86 -0.24
(00)(12)F2 4142.70 4142.67 0.03 4142.86 -0.17
(00)(12)E 4151.23 4151.21 0.02 4151.20 0.02
(00)(12)A2 4161.91 4161.89 0.02 4161.85 0.06
(10)(01)F2 4224.24 4224.19 0.06 4223.46 0.78
(01)(01)F2 4319.10 4319.00 0.10 4319.21 -0.11
(01)(01)E 4322.17 4322.07 0.10 4322.18 -0.00
(01)(01)F1 4322.44 4322.34 0.10 4322.59 -0.15
(01)(01)A1 4322.81 4322.71 0.10 4322.70 0.11
(00)(21)F2 4348.65 4348.62 0.04 4348.72 -0.06
(00)(21)F1 4363.62 4363.59 0.03 4363.61 0.01
(00)(21)F2 4378.97 4378.94 0.03 4378.95 0.02
(10)(10)E 4436.02 4435.97 0.05 4435.12 0.90
(01)(10)F1 4537.62 4537.52 0.10 4537.55 0.07
(01)(10)F2 4543.91 4543.81 0.10 4543.76 0.15
(00)(30)E 4592.16 4592.13 0.03 4592.03 0.13
(00)(30)A2 4595.39 4595.36 0.02 4595.27 0.12
(00)(30)A1 4595.66 4595.63 0.02 4595.50 0.15
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(continued)

(00)(04)A1 5122.42 5122.33 0.09 5121.34 1.08
(00)(04)F2 5143.79 5143.70 0.09 5143.36 0.42
(00)(04)E 5167.85 5167.76 0.08 5167.16 0.69
(00)(04)F2 5210.75 5210.67 0.07 5211.29 -0.54
(00)(04)E 5229.09 5229.02 0.07 5228.91 0.18
(00)(04)F1 5230.89 5230.82 0.07 5230.78 0.11
(00)(04)A1 5241.08 5241.02 0.07 5239.98 1.10
(00)(13)F2 5370.96 5370.86 0.09 5376.95 -5.99
(00)(13)F1 5390.12 5390.03 0.09 5393.69 -3.57
(00)(13)E 5425.08 5424.98 0.11 5424.66 0.42
(00)(13)F2 5429.83 5429.73 0.10 5429.58 0.25
(00)(13)F1 5437.58 5437.49 0.09 5436.79 0.79
(00)(13)F2 5444.82 5444.73 0.09 5445.12 -0.30
(00)(13)F1 5463.23 5463.13 0.09 5462.92 0.31
(10)(02)A1 5494.00 5493.92 0.07 5486.44 7.56
(10)(02)F2 5522.38 5522.32 0.07 5517.17 5.21
(10)(02)E 5534.61 5534.54 0.06 5532.18 2.43
(01)(02)F2 5588.23 5588.12 0.11 5587.98 0.25
(01)(02)A1 5604.87 5604.75 0.12 5606.32 -1.45
(00)(22)A1 5613.22 5613.11 0.12 5616.42 -3.20
(00)(22)E 5613.64 5613.56 0.08 5618.27 -4.63
(01)(02)F2 5615.28 5615.16 0.12 5623.01 -7.73
(01)(02)F1 5615.76 5615.64 0.11 5617.99 -2.23
(01)(02)E 5619.09 5618.99 0.10 5625.28 -6.19
(01)(02)F1 5626.23 5626.11 0.11 5632.10 -5.87
(01)(02)F2 5627.66 5627.55 0.11 5628.40 -0.74
(00)(22)F2 5642.57 5642.47 0.10 5640.66 1.91
(00)(22)E 5654.23 5654.14 0.09 5653.60 0.63
(00)(22)F1 5656.00 5655.90 0.09 5655.30 0.70
(00)(22)A2 5663.98 5663.89 0.08 5662.36 1.62
(00)(22)F2 5668.77 5668.68 0.09 5668.98 -0.21
(00)(22)A1 5681.92 5681.84 0.08 5682.44 -0.52
(00)(22)E 5691.34 5691.26 0.08 5691.42 -0.08
(10)(11)F2 5727.57 5727.50 0.07 5729.68 -2.11
(10)(11)F1 5745.84 5745.77 0.06 5756.05 -10.21
(20)(00)A1 5790.02 5789.72 0.30 5790.25 -0.23
(01)(11)F2 5822.48 5822.36 0.13 5826.65 -4.17
(01)(11)F1 5825.24 5825.13 0.11 5827.29 -2.05
(01)(11)E 5832.24 5832.10 0.13 5837.04 -4.80

34

Page 34 of 41Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



(continued)

(01)(11)A1 5834.93 5834.79 0.14 5831.40 3.53
(01)(11)E 5842.81 5842.70 0.11 5841.08 1.73
(01)(11)A2 5842.91 5842.81 0.11 5831.89 11.02
(01)(11)F2 5844.07 5843.96 0.11 5849.30 -5.23
(01)(11)F1 5847.14 5847.03 0.11 5845.89 1.25
(11)(00)F2 5860.84 5860.72 0.12 5819.72 41.12
(00)(31)F2 5867.52 5867.46 0.06 5867.66 -0.14
(00)(31)F1 5879.75 5879.69 0.06 5879.02 0.73
(00)(31)F2 5894.48 5894.41 0.07 5894.12 0.36
(00)(31)F1 5909.25 5909.18 0.07 5909.71 -0.46
(10)(20)A1 5940.19 5939.90 0.29 5971.52 -31.33
(10)(20)E 5953.33 5953.27 0.06 5974.59 -21.26
(02)(00)A1 5968.67 5968.27 0.40 5968.15 0.52
(02)(00)F2 6004.77 6004.43 0.33 6004.63 0.14
(02)(00)E 6044.18 6043.64 0.54 6043.80 0.38
(01)(20)F2 6054.54 6054.42 0.11 6054.64 -0.10
(01)(20)F1 6060.65 6060.55 0.10 6059.30 1.35
(01)(20)F2 6065.68 6065.58 0.10 6065.32 0.36
(00)(40)A1 6116.82 6116.74 0.08 6116.75 0.07
(00)(40)E 6118.60 6118.53 0.07 6118.62 -0.02
(00)(40)E 6124.12 6124.06 0.06 6124.17 -0.05
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Figure 1: A feed-forward neural network structure with an output result R = y3
1, where

the bias nodes are not shown.

Figure 2: Schematic structure for the multi-layered feed-forward neural network iterative

diagonalization method, where the input node is a unit formally orthogonal Lanczos (FOL)

polynomial, i.e., L0
1 = 1.

Figure 3: Orthogonal polyspherical coordinates formed by a set of Jacobi, Radau, and/or

orthogonal satellite vectors for a polyatomic molecule with N atoms. The body-fixed

Z−axis is chosen to be coincident with the rN−1 vector while the rN−2 vector lies in the

XZ plane with a positive X direction.

Figure 4: A plot of convergence for computing the 400 lowest-lying bound and resonance

states of HO2 using the neural network iterative diagonalization method: (a) the average

errors of those 400 states as a function of the number of F (H̃)−vector products with a

structure of five hidden layers (1000,1000,1000,1000,570), where the dashed lines divide the

layers; (b) the total number of F (H̃)−vector products needed to converge the 400 states

as a function of maximum number (N l) of nodes in each layer.

Figure 5: An amplitude plot of three typical node functions Ll
j at different layer l and

node number j for HO2, calculated as in Fig. 4(a).
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