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Detecting temperature fluctuations at equilibrium

Purushottam D. Dixit
Department of System Biology, Columbia University∗

Gibbs and Boltzmann definitions of temperature agree only in the macroscopic limit. The ambi-
guity in identifying the equilibrium temperature of a finite sized ‘small’ system exchanging energy
with a bath is usually understood as a limitation of conventional statistical mechanics. We interpret
this ambiguity as resulting from a stochastically fluctuating temperature coupled with the phase
space variables giving rise to a broad temperature distribution. With this ansatz, we develop the
equilibrium statistics and dynamics of small systems. Numerical evidence using an analytically
tractable model shows that the effects of temperature fluctuations can be detected in equilibrium
and dynamical properties of the phase space of the small system. Our theory generalizes statistical
mechanics to small systems relevant to biophysics and nanotechnology.

INTRODUCTION

Equilibrium properties of a macroscopic system ex-
changing energy with a bath can be described by a single
intensive paramter, its temperature, with remarkable ac-
curacy; independently of the chemical nature of the bath
and system-bath interactions owing to weak coupling be-
tween the system and the bath. On the other hand, it
is unlikely that a bath couples weakly to a system with
small number of degrees of freedom; consequently, small
systems including biophysical polymers (1) and nano-
magnets (2) show considerable deviations from the tra-
ditional statistical mechanical description (3). Mathe-
matically, no inverse temperature β exists such that the
exponential canonical ensemble distribution accurately
predicts equilibrium properties of a small system solely
dependent on its Hamiltonian. Alternatively, Gibbs’ def-
inition of temperature which depends on the typical value
of energy and the Boltzmann’s definition of tempera-
ture which depends on the mean value of energy differ
substantially from each other in the case of small sys-
tems systems (4, 5). Traditionally, this ambiguity is in-
terpreted as an inevitable statistical uncertainty in pa-
rameter estimation or a limitation of statistical mechan-
ics (4, 6–9).

In this communication, instead of treating the ambigu-
ity in identifying a unique temperature as a limitation,
we let go of the notion of a unique temperature, espe-
cially for small systems. We identify the ambiguity as
a consequence of a broad distribution peq(β). Further-
more, we identify the broad temperature distribution as
the r̄−marginalization of the joint equilibrium distribu-
tion peq(r̄, β) of the stochastic variable (r̄(t), β(t)) where
r̄ is the phase space of the system.

Using maximum entropy arguments, we first estimate
the joint equilibrium distribution peq(r̄, β) by introduc-
ing two new intensive parameters in the hyperensemble.
We then show how our theory reduces to traditional sta-
tistical mechanics of macroscopic systems in the suitable
limit. We illustrate a connections with non-extensive sta-
tistical mechanics of Tsallis (10, 11) and our theory at

thermodynamic equilibrium. Then, we propose Fokker-
Planck and Langevin equations for the time evolution
of the instantaneous distribution p(r̄, β; t). Finally, us-
ing realistic all atom molecular dynamics simulations, we
present numerical evidence to support our framework and
discuss its limitations.

THEORY

Consider a small system as above. Due to possible non-
weak coupling between system and the bath, the equilib-
rium phase space distribution of the system peq(r̄) will
depend on the nature of system-bath interactions (12–
14). Let us work with the ansatz that the non-canonical
behavior arises because the temperature of the system
fluctuates (9, 11, 15). The joint equilibrium distribution
is simply

peq(r̄, β) = peq(r̄|β)× peq(β). (1)

In Eq. 1,

peq(r̄|β) = eβ(F (β)−H(r̄)) (2)

is the usual Boltzmann distribution and peq(β) needs
to be determined. Here, F is the free energy and H
is the temperature independent Hamiltonian of the sys-
tem. Since there are no conservation laws for tempera-
ture, Gibbs’ ensemble picture is inapplicable. We resort
to an equally valid alternative. We employ the maximum
entropy (maxEnt) framework (16, 17). We maximize the
entropy of the joint distribution p(r̄, β) = p(r̄|β) × p(β)
subject to suitable constraints. The entropy of the joint
distribution is given by

S [p(r̄, β)] = −
∑

r̄,β

p(r̄, β) log p(r̄, β) (3)

= −
∑

β

p(β) log p(β) +
∑

β

s(β)p(β) (4)
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where

s(β) = −
∑

r̄

p(r̄|β) log p(r̄|β), (5)

p(β) =
∑

r̄

p(r̄, β) (6)

is the r̄−marginal of p(r̄, β), and p(r̄|β) is given by Eq. 2.
When determining peq(β) the choice of constraints is

important. Since the temperature of the system is not
fixed, we choose 〈β〉 as a constraint. Also, while the en-
tropy of the composite macroscopic system comprising
the system and the surrounding bath is maximized, the
entropy of the small system itself not. Consequently, we
choose the average entropy 〈s(β)〉 as an additional con-
straints and maximize S [p(r̄, β)] using Lagrange multi-
pliers. The constraint of average entropy is a common in
statistical physics and Bayesian statistics of hyperensem-
bles. See (18–21) for different motivations behind this
choice. After maximization, we find that the equilibrium
distribution peq(β) is estimated by

peq(β) =
eλs(β)−ζβ

Z(λ, ζ)
(7)

In Eq. 7,

Z(λ, ζ) =

∫

eλs(β)−ζβdβ (8)

is a generalized partition function and λ and ζ are La-
grange multipliers that determine the shape of peq(β). If
entropy s(β) is a unitless number, then λ is unitless and
ζ has the units of 1/β. The physical interpretation of
these Lagrange multipliers will become clearer below.

The joint equilibrium distribution peq(r̄, β) =
peq(r̄|β)× peq(β) is

peq(r̄, β) =
eβF (β)−βH(r̄)+λs(β)−ζβ

Z(λ, ζ)
(9)

Thus, instead of describing a thermally equilibrated small
system with one intensive parameter, its inverse temper-
ature β, our framework requires two intensive parameters
λ and ζ whose meaning will become clear below.

Connections to traditional statistical mechanics

Assume that the entropy s(β) is monotonically de-
creasing in β, a reasonable assumption for systems with
monotonically increasing density of states. A straightfor-
ward calculation shows that the maximum of peq(β) is sit-
uated at β = β0 where β0 is such that ζ/λ = −c(β0)/β0.
Here,

c(β0) =
ds(β)

dβ

∣

∣

∣

∣

β=β0

(10)

is the heat capacity of the system when interacting with
an ideal gas at inverse temperature β0.

In the limiting case when λ → ∞ and ζ → ∞ such
that their ratio is constant, non-negligible contribution
to peq(β) comes only from near β = β0 and peq(β) ≈
δ(β− β0) where δ(x) is the Dirac Delta function. This is
exactly the traditional canonical ensemble picture where
the system is assigned the temperature of the surround-
ing thermal bath. It is clear that the magnitudes of λ
and ζ dictate the breadth of the peq(β) distribution and
hence the deviation from canonical ensemble. The ratio
λ/ζ dictates the most likely tempearture of the system.

Connection to non-extensive statistical mechanics

Systems that do not obey the conventional distribu-
tions from statistical mechanics are sometimes enter-
tained within a framework called non-extensive statis-
tical mechanics (10). Though not commonly invoked for
small systems at equilibrium, here, we will demonstrate
that non-extensive statistical mechanics can be arrived at
by marginalization over temperature in a hyperensemble.
Consider a system whose entropy scales as logarithm

of temperature, s(β) = s0 log β, and the internal energy
scales proportional to the temperature, U(β) = U0/β,
when coupled to a bath of ideal gas particles at in-
verse temperature β. These are excellent assumptions for
bound systems where density of states increases mono-
tonically with energy. Examples include ideal gas in a
container and a collection of harmonic oscillators. From
Eq. 7, we have

peq(β) =
e−βζβλs0ζλs0+1

Γ(λs0 + 1)
. (11)

Eq. 11 is a Gamma distribution also known as the gen-
eralized χ−squared distribution. Interestingly, a gamma
distributed inverse temperature is very commonly used
in a superstatistical explanation of non-extensive statis-
tics (22). Marginalizing over gamma distributed inverse
temperature in Eq. 1 results in the so called “Tsallis
statistics” for the phase space. We have

peq(r̄, β) =
eβ(U(β)−s(β)/β)−βH(r̄)+λs(β)−ζβ

Z(λ, ζ)
(12)

=
eU0−β(H(r̄)+ζ)+(λ−1)s0 log(β)

Z(λ, ζ)
. (13)

Integrateing over β, we have

peq(r̄) ∝ (1− β0(q − 1)H(r̄))
1

q−1 . (14)

Eq. 14 is the q−generalized canonical ensemble distribu-
tion in Tsallis statistics where

q =
s0 − λ

s0 − λ− 1
and β0 =

λ− s0 + 1

ζ
. (15)

In the framework of non-extensive statistical mechan-
ics, one arrives at Eq. 14 by maximizing Tsallis’ q entropy
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with respect to p(r̄) by constraining an unnatural escort
expectation of energy (10).

When deriving peq(r̄) by maximizing the non-extensive
Tsallis entropy, one needs to constrain unnatural expec-
tation values known as escort expectation values (23).
In contrast, in this work, we derive it from a super-
statistical distribution Eq. 9 and additional assumptions
about peq(β) and system behavior. In our derivation,
the gamma distribution peq(β) arises in a context specific
manner i.e. through the logarithmic dependence of the
entropy on the inverse temperature and by constraining
average inverse temperature. Therefore, starting from
the extensive Gibbs-Shannon entropy, maxEnt can act
as a predictive framework for constructing non-extensive
effective entropies of which the Tsallis entropy is a par-
ticular example.

Previously, non-extensive entropies have been criti-
cized from an Occam’s razor point of view (16, 24–26)
when compared to the Gibbs-Shannon entropy. Our work
suggests that non-extensive entropies may arise as ‘ef-
fective entropies’ when considering extensive entropies
in a hyperensemble. Nevertheless, there is a potential
loss of information when marginalizing over the temper-
ature β in the hyperensemble that is inherent to con-
structing these effective entropies. We believe that the
above demonstration argues in favor the extensive Gibbs-
Shannon entropy, albeit in a hyperensemble, even when
the observable phase space may show non-extensive be-
havior.

Stochastic Dynamics

For simplicity of notation, let us consider a one dimen-
sional system. The simplest time evolution of the in-
stantaneous distribution p(r, β; t) of the extended phase
space that relaxes to a prescribed equlibrium distribu-
tion peq(r, β) can be modeled by an over damped Smolu-
chowski equation. We have

∂p(r, β; t)

∂t
= −

(

1

γr

∂

∂r
[fr · p] +

1

γβ

∂

∂β
[fβ · p]

)

+ Dr
∂2p

∂r2
+Dβ

∂2p

∂β2
(16)

where the ‘forces’ fr and fβ are defined as

fr =
∂

∂r
log peq(r, β) and fβ =

∂

∂β
log peq(r, β). (17)

By construction, Eq. 16 will relax to the equilibrium dis-
tribution peq(r, β) if Dr = 1/γr and Dβ = 1/γβ . Note
that the statistical properties of (r(t), β(t)) can also be
estimated by an overdamped Langevin equation (Brown-
ian dynamics) that is equivalent to Eq. 16. The Langevin
equation reads

ṙ = Drfr +
√

2Drηr

β̇ = Dβfβ +
√

2Dβηβ (18)

Here, ηr and ηβ are usual uncorrelated Gaussian random
variables with unit variance.
Given the coupled nature of r(t) and β(t), we do

not expect r(t) to be purely diffusive on the so called
‘free energy landscape’ which is the negative logarithm
of the β−marginalized equilibrium distribution of r(t).
This non-diffusive behavior is automatically captured by
Eq. 16 in addition to predicting the equilibrium proper-
ties of r(t). In contrast, traditional statistical mechani-
cal approaches only estimate free energy landscape. The
non-diffusive dynamics is modeled independently of the
equilibrium properties, for example, by assuming inho-
mogeneous diffusion coefficients (27) or dynamically fluc-
tuating free energy landscapes (28).

Linear analysis

It is instructive to study a linear system before ana-
lyzing realistic molecules. Consider a one dimensional
harmonic oscillator interacting with a thermal bath. If
the deviations from a canonical distribution are negligi-
ble, we can treat Eq. 18 in the linear regime by expanding
fr and fβ to the first order in r and β. In the linear ap-
proximation, the joint equilibrium distribution peq(r, β)
will be described by a joint normal distribution. The
simplest coupled system of overdamped Langevin equa-
tions for r(t) and β(t) that relaxes to to a joint normal
distribution is given by

ṙ ≈ l11r + l12β + ηr (19)

β̇ ≈ l21r + l22β + ηβ (20)

We have assumed that the variables r and β are appro-
priately scaled by absorbing the diffusion constants Dr

and Dβ , lij are the scaled linear expansion coefficients
of fr and fβ , and ηr and ηβ are the usual uncorrelated
Gaussian noises. Integrating over β(t) and substituting
in ṙ, we get

ṙ = l11r + l12e
l22t

∫ t

0

ds · l12 · e−l22s

+ l12e
l22t

∫ t

0

ds · ηβ · e−l22s + ηr (21)

⇒ r̈ = (l11 + l22) ṙ + (l12l21 − l11l22) r

+ (l12ηβ − l22ηr) + η̇r (22)

The time derivative of white noise η̇r is a purple noise
which has quadratically increasing power spectrum. The
dynamics of temperature fluctuations are governed by the
linear terms l12, l21, l22, and the white noise ηβ . These
terms also appear in the effective Langevin equation for
r(t). The linear analsysis suggests that one can infer the
of dynamics of β(t) by observing the dynamics of r(t).
The dynamics of r(t) is governed by a much richer

equation than the usual overdamped Langevin equation.
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APPENDIX I: MD SIMULATIONS

A harmonic dumbbell oscillator consisting of two
Lennard-Jones particles was immersed in a bath of 333
TIP3 (31, 32) water molecules. NVT molecular dynam-
ics simulations were run with NAMD (33) at 300K with
a box size of 19.12Å. The CHARMM (34) forcefield was
used to describe the interaction between the harmonic os-
cillator particles and surrounding water molecules. The
spring constant for the dumbell was chosen to be k =
0.25 kcal/mol·Å2, the ǫ parameter was set at ǫ = −20.0
kcal/mole and the size parameter was set at r = 1Å.
The systems were minimized for 2000 steps followed by
an equilibration of 1 nanosecond and a production run of
2 nanosecond. The integration time step was 0.25 fem-
toseconds and the trajectory was saved every 2.5 fem-
toseconds.

APPENDIX II: FITTING LANGEVIN

DYNAMICS TO DATA

The coupled Langevin equation corresponding to
Eq. 16 where the equilibrium distribution peq(r, β) is
given by Eq. 24 is given by

(

r(t+ dt)
β(t+ dt)

)

≈
(

r(t)
β(t)

)

+ dt

(

Drfr
Dβfβ

)

+
√
2dt

(

ηr
√
Dr

ηβ
√

Dβ

)

(29)

Here, ηr and ηβ are uncorrelated Gaussian random vari-
ables with unit variance, dt is a small time step, Dr and
Dβ are diffusion coefficients for the phase space coordi-
nate r and the temperature β.
From the MD simulation, we first estimated the auto-

correlaion function C(τ). The Langevin equation can be
scaled in time by multiplying the diffusion constants and
dividing the time step dt by the same number. In order
to ensure smooth integration, we first set the integration
time step to a very small value; dt = 5 × 10−8. Every
pair (Dr, Dβ) of diffusion constants predicted an auto-
correlation function that had two inherent time scales
manifested in a double exponential decay. We man-
ually scanned the (Dr, Dβ)−space to match the MD-
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autocorrelation function. We found that Dr = 1 and
Dβ = 50 gave reasonable fits (red curve).

We also wrote down a 1-d Langevin equation analogous
to Eq. 29,

r(t+ dt) ≈ r(t) +Drfrdt+
√

2Drdtηr (30)

where fr = d
dr log peq(r) (see Eq. 26). This equation

had only one diffusion constant Dr. A one dimensional
scan of Dr suggested that the autocorrelation function
predicted using the 1-d Langevin equation always had a
single exponential decay. We found the best fit to the
autocorrelation function at Dr ≈ 50 (blue curve).
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