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The Jahn-Teller effect in the presence of partial isotopic substitution: the B̃1E" state of 

NH2D and NHD2
† 

Ashim Kumar Sahaa, Gautam Sarmaa,b, Chung-Hsin Yanga,c, Bas van de Meerakkera, David H. 

Parkera and Colin M. Westernd 

Abstract 

Rotationally resolved resonance enhanced multiphoton ionisation spectra of the B̃1E" state of 

NH2D are presented and analysed. The analysis indicates a small (34.9 cm–1) lifting of the 

vibronic degeneracy of the zero point level, approximately equal in sign but opposite in 

magnitude to the splitting observed in NHD2 in previous work. This observation is consistent 

with previous measurements on systems with partial isotopic substitution subject to a mild 

Jahn-Teller effect. A model is developed to calculate the splitting induced by asymmetric 

isotopic substitution of a degenerate electronic state, based on a harmonic force field with 

linear and quadratic Jahn-Teller terms added. The force field is developed in internal co-

ordinates to allow the same parameters to be used to calculate the pattern of vibronic levels 

for all four isotopologues. The lifting of the degeneracy of the zero point level on asymmetric 

substitution comes from the quadratic Jahn-Teller effect; the linear term does not lift the 

degeneracy. 

Introduction 

The Jahn-Teller effect is an important consideration in understanding the structure and 

spectroscopy of degenerate electronic states. If strong (also known as a static Jahn-Teller 

effect) the geometry of the molecule changes to break the symmetry. We are focussing here 

on the dynamic Jahn-Teller effect, where the energy shifts are smaller, typically less than the 

zero point energy, and thus where the symmetry of the molecule is essentially maintained (or 

at least gives the best starting point for modelling.) To interpret spectra additional terms in 

the effective Hamiltonian are required to account for the Jahn-Teller effect giving shifts and 

splittings in both the vibrational and rotational energy levels. These terms are reasonably well 

understood, (see for example a review by Barckholtz and Miller1) though examples of full 

rotational analysis are relatively rare in the literature. In this paper we look at the additional 

complications introduced in the presence of partial isotopic substitution. This breaks the 

symmetry of the vibrational and rotational terms, but must leave the electronic symmetry 

unbroken. To understand the resulting energy level pattern requires additional terms above 
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a Dept of Molecular and Laser Physics, Radboud University Nijmegen, IMM-FNWI, Nijmegen, The Netherlands 
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the standard vibrational or rotational Hamiltonian and this paper seeks to understand these 

by a combination of experimental measurements on a reasonably well understood system 

and theoretical considerations of the simplest linear and quadratic terms in the potential 

 The system looked at here is the electronically degenerate B̃1E" state of ammonia for 

which the B̃1E" –X̃1A1' transition gives strong resonance enhanced multiphoton ionization 

(REMPI) spectra and is a prototypical example of a system with a mild Jahn-Teller effect. It is 

also an important transition in its own right, as it has become a standard system for probing 

rotational states of ammonia in the laboratory, as for example in a recent study by Tkac et al2 

on collisions and in cold molecule work such as that by Twyman et al3. 

The B̃1E" state is planar and the degeneracy arises from the 3px,y Rydberg orbital in 

the plane of the molecule, and so the Jahn-Teller effect is relatively weak, giving vibrational 

energy level shifts4 of the order of 100 cm–1. The rotational structure can be understood in 

terms of a standard symmetric top with two additional terms in the rotational Hamiltonian (ζ 

and q)5 arising from a significant residual electronic angular momentum. This electronic 

angular momentum (almost one unit) also means the state shows a significant Zeeman effect. 

The rotational and vibrational structure is reasonably well understood for both NH3 and ND3, 

but partially isotopically substituted species have not been investigated in any detail. In a 

previous paper6 we looked at resonance enhanced multiphoton ionisation spectra of NHD2. 

Formally this molecule has C2v symmetry, and is thus an asymmetric top with no degenerate 

vibronic states possible but, as discussed above, the degeneracy is only lifted at the vibrational 

and rotational level. Our analysis of observations indicated that the zero point level was best 

understood in terms of two closely spaced vibronic states with the symmetries A2 and B1 that 

correlate with E" in D3h. The separation is only 35.1 cm–1, so the additional terms (ζ and q) 

present in the symmetric top Hamiltonian for NH3 and ND3 are required to model the 

rotational structure, but transformed to perturbation terms mixing the two states. The terms 

mixing the vibronic states are only of the order of magnitude of rotational terms, but because 

the states are so close together the spectra cannot be effectively modelled without them. 

 There have been few comparable studies in the literature; perhaps the most closely 

related is work by Yu et al7 on the X̃2E1" state of C5H4D and C5D4H. These spectra were 

modelled as simple asymmetric tops, with the Jahn-Teller terms accounted for using 

perturbation theory working through to anomalous values of the rotational constants. The 

splittings of the zero point levels were approximately equal in magnitude (~9 cm–1) but 

opposite in sign for the two isotopologues. A similar pattern of splittings was observed by 

Melnik et al8, 9 in the X̃2E state of CH2DO and CD2HO though the rotational analysis was more 

complicated than that considered here due to the presence of significant spin-orbit coupling. 

Other related work is discussed below. There has been correspondingly little theoretical work 

on asymmetrically isotopically substituted Jahn-Teller systems though there is one 
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particularly relevant recent paper by Iwahara et al10. This paper showed that vibronic levels 

of a degenerate electronic state remain degenerate upon arbitrary isotopic substitution, even 

in the presence of a linear Jahn-Teller effect. For the current work, this implies we must 

consider both linear and quadratic Jahn-Teller terms. 

 In the current paper we present a set of spectra of the B̃1E" state of NH2D to 

complement our earlier spectra of NHD2, and then look at relating the Jahn-Teller effects in 

all four isotopologues by developing a simple model for the force field in internal coordinates 

that can be applied without adjustment to all four species. 

Experimental 

Spectra of the B̃1E" –X̃1A1' transition in NH2D were recorded using resonance enhanced 

multiphoton ionization spectroscopy (REMPI) in a molecular beam, using the method 

described previously6. This gave rotationally resolved spectra with an effective rotational 

temperature of 3 – 90 K, that could be varied by adjusting the expansion conditions.  

Rotational Analysis 

The spectra taken covered 7 members of the bending progression (v2), starting with the origin 

band. Typical spectra of the first 6 bands are shown in Figure 1. All the bands showed clear 

rotational structure, and the observed linewidths (~0.9 cm–1) are probably limited by the laser 

system, and there was no indication of rotationally or vibrationally dependent predissociation 

at this resolution. 
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Figure 1 MPI spectra of the B̃1E" –X̃1A1' transition in NH2D. In each panel, the upper trace is 
the experimental spectrum and the lower trace is a simulation using the Hamiltonian and 
parameters described in the text. 

The theory required for the rotational analysis is developed in our previous paper6 and 

is only briefly summarised here. The basic model is two distinct vibronic states, for each of 
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which a standard asymmetric top Hamiltonian in a IIIr representation is used as a starting 

point: 

      222
4

122
2

1
rot

ˆˆˆˆˆˆ
zz JCJJBAJJBAH  

 (1) 

For the purposes of this paper   and   are used to label the two vibronic states, and two 

additional terms in the Hamiltonian are required to take account of the residual electronic 

angular momentum, both of which introduce terms acting between the two states. The 

largest of these is the equivalent of the Coriolis term in symmetric tops: 

zzLJCH ˆˆ2ˆ
cor   (2) 

where we have introduced an effective electronic angular momentum operator that has 

electronic matrix elements: 

0ˆ  zL ,  zL̂  (3) 

The overall matrix elements are therefore -2CζK. The other term is analogous to l doubling in 

symmetric tops, and can be written as: 

  2222

2
1

q
ˆˆˆˆ'ˆ
  LLJJiqH  (4) 

where  abba JJJJiJJ ˆˆˆˆ2ˆˆ 22  
 and the electronic operator 22 ˆˆ

  LL is discussed below. This 

has matrix elements: 

           KKJJKKJJiqKJHKJ 11211',,ˆ2,,
2
1

q   (5) 

           KKJJKKJJiqKJHKJ 11211',,ˆ2,,
2
1

q   (6) 

Note that the matrix elements are imaginary, and it is not possible to make a simple 

adjustment in phase to make all matrix elements real. The equations above are used to 

calculate the energy levels of the excited state by setting up and diagonalising a (complex) 

Hamiltonian matrix containing, for a given J and rovibronic symmetry, all possible values of K 

for both vibronic components. To complete the model equal two photon transition moments 

from the ground state to each of the two excited states is assumed and, as discussed in the 

previous paper, interference between these two has a significant effect on the pattern of 

observed transitions. The calculations were carried out using the PGOPHER program11, 12. The 

ground state constants were taken from Fusina et al13. 

 The B̃1E" – X̃1A1' transition involves a change in geometry from pyramidal to planar, so 

the transition shows a progression in ν2, the umbrella mode. In the upper state members of 

this progression alternate between E" and E' symmetry for even and odd v2 respectively, and 

the selection rules mean that the lower state of the electronic transition alternates between 
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the upper and lower tunnelling component in the ground state. As this results from levels 

symmetric and antisymmetric with respect to the plane of symmetry of the molecule, which 

persists for NH2D and NHD2, the same pattern of transitions is observed for all four 

isopologues. In NH2D the    levels alternate between A2 (even v2) and B2 (odd v2) and the 

  levels alternate between B1 and A1 vibronic symmetry. 

 Given this model the assignment of the observed spectra was reasonably 

straightforward, given the guidance of the fits for NHD2. Table 1 shows four alternative fits to 

the pair of states making up the origin band. These follow the pattern in the previous paper; 

fit I is the simplest model, assuming two non-interacting asymmetric top states. This gives a 

reasonable fit, but is clearly worse than the other models which allow for interaction between 

the states. Fit IV is the most flexible model, adding the two interactions discussed above and 

allowing A, B and C for both components to float independently. This is clearly a better fit 

than fit I as the average error drops by a factor of two from 0.53 cm–1 to 0.24 cm–1, but there 

is significant correlation between the values of C between the two states, as indicated by the 

large error bars. Fits II and III show two alternative approaches to reducing this correlation; 

fit II fixes the Coriolis term at a value derived from a simple rigid rotor model (see Table 1 of 

Yang et al6) and fit III instead constrains the two C values to be identical. Both these fits are 

as good as fit IV. The quality of the fits is similar to the corresponding fits in NHD2, and as in 

that case we choose to recommend fit III, as the parameters are all well determined and none 

are fixed.  

 Table 2 shows the results of using fit style III on the other observed bands in NH2D. 

Experimental spectra and simulations are shown in Figure 1. More details of each fit, including 

line listings, are available as supplementary data. The overall quality of the fits is good, with 

the average errors somewhat smaller than the experimental linewidth of ~0.9 cm–1. The fits 

for v2 = 4 and 5 were slightly worse than the others, with some lines out of position by of the 

order of the linewidth. These probably reflect interactions with other vibrational states of the 

B̃ state; such interactions have been seen5 in ND3 and the level of vibrational excitation is such 

that these are to be expected. The analysis was stopped at v2 = 5; some peaks were seen in 

the region of v2 = 6, but a complete analysis was not possible because of two complicating 

factors. Firstly the origin band of the C' state14 is in this region and secondly the interference 

between the two transition moments has become sufficiently large that transitions to one of 

the components becomes very weak. These factors combined meant it was not possible to 

produce a convincing analysis of the observed spectra for v2 = 6. 

Table 3 shows the corresponding constants in NHD2; this is essentially the same as in Yang et 

al6 but a better set of ground state constants has been used for these fits. (The changes are 

minor – mainly a 0.17 cm–1 shift in the band origins.) Comparing these tables indicates very 

similar trends in for both species – a sensible trend in all of the constants apart from q, which 
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is not always well determined. Both species show a consistent difference between A and B 

for the two components, with the average for the origin band close to the value predicted 

from a simple rigid rotor model. The splitting between the two components of the origin band 

is very close for the two states (34.86 cm–1 for NH2D against 35.11 cm–1 for NHD2) but opposite 

in sign, with the A2 component at lower energy for NH2D and the B1 component lower for 

NHD2. The similar pattern of results gives further confirmation of the rotational analysis for 

these two species. 

Table 1 Rotational constantsa from alternative fits to the rotational structure of the origin band of the B̃1E" – 
X̃1A1' transition in NH2D. 

 Estimatedb Fit I Fit II Fit III Fit IV 

  A2 B1 A2 B1 A2 B1 A2 B1 

Origin  59259.78(20) 59294.29(24) 59259.58(10) 59294.44(10) 59259.58(10) 59294.44(10) 59259.57(11) 59294.46(12) 

A 10.42 9.564(25)    10.744(45)   9.856(26)     10.780(21)    9.856(26)    10.780(21)   9.872(44)    10.791(29)   

B 6.40 6.756(37)    6.663(70)    6.766(20)     6.455(34)     6.766(20)    6.455(35)    6.753(31)    6.443(42)    

C 3.96 2.986(36)    5.11(15)     3.949(20)     3.956(39)     3.953(18)    4.102(292)   3.790(321)   

2Cζ –6.51 0c -6.51b -6.520(63)   -6.881(660) 

q'  0c 0.681(44)     0.681(44)    0.676(47)    

σ  0.53 0.23 0.23 0.24 

nobs  28 18 28 18 28 18 28 18 

a Units are cm–1;  figures in brackets are standard deviations in units of the least significant figure. 
b Estimated from simple rigid rotor model – see Table 1 of Yang et al6. 
c Fixed 

Table 2 Rotational constantsa for the B̃1E" – X̃1A1' transition in NH2D. 

  v2 = 0 v2 = 1 v2 = 2 v2 = 3 v2 = 4 v2 = 5 

A2 Originb/cm–1 59259.58(10) 60092.551(72) 60957.622(80) 61848.198(96) 62759.25(15) 63685.87(26) 

 A /cm–1 9.856(26)    9.413(12)     8.978(20)     8.449(24)     7.995(27)    7.662(64)    

 B /cm–1 6.766(20)    6.531(15)     6.346(16)     6.089(18)     5.810(28)    6.214(66)    

 nobs 28 22 26 24 28 26 

B1 Originb/cm–1 59294.44(10) 60125.044(71) 60988.109(86) 61875.263(74) 62782.87(16) 63707.14(20) 

 A /cm–1 10.780(21)   10.135(12)    9.443(17)     9.300(22)     8.884(21)    7.76(13)     

 B /cm–1 6.455(35)    6.210(13)     5.948(26)     5.768(19)     5.646(28)    5.376(49)    

 nobs 18 22 16 16 22 18 

 C /cm–1 3.953(18)    3.9666(97)    4.021(14)     4.077(20)     4.031(31)    4.073(23)    

 2Cζ /cm–1 -6.520(63)   -6.545(34)    -6.639(46)    -6.810(76)    -6.555(83)   -6.57(10)    

 q /cm–1 0.681(44)    0.678(14)     0.657(31)     0.589(52)     0.341(76)    0.96(11)     

 σ /cm–1 0.23 0.15 0.17 0.17 0.39 0.43 

a Figures in brackets are standard deviations in units of the least significant figure 
b Error bars are from the fit; a systematic error of up to of 2 cm–1 in the band origins is also possible. 
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Table 3 Rotational constantsa for the B̃1E" – X̃1A1' transition in NHD2. 

  v2 = 0 v2 = 1 v2 = 2 v2 = 3 v2 = 4 v2 = 5 v2 = 6 

A2 Originb 59349.390(77) 60109.154(46) 60896.063(56) 61704.737(37) 62531.037(47) 63370.514(53) 64221.66(24) 

 A 8.377(16)     7.9686(57)    7.572(13)     7.0956(85)    6.700(13)     6.3268(66)    6.001(45)    

 B 5.112(15)     5.0152(91)    4.9135(81)    4.7491(64)    4.5855(87)    4.5045(93)    4.427(62)    
 nobs 25 31 29 42 25 28 7 

B1 Originb 59314.282(69) 60077.029(58) 60866.747(58) 61678.418(38) 62507.766(53) 63350.601(65) 64205.74(20) 

 A 7.653(11)     7.3133(79)    6.999(11)     6.6633(55)    6.328(11)     6.026(11)     5.651(46)    

 B 5.556(11)     5.3790(80)    5.2264(88)    5.0487(63)    4.917(13)     4.7773(96)    4.678(61)    

 nobs 30 22 28 37 33 34 10 

Both C 3.167(12) 3.1596(68) 3.2191(48) 3.2353(47) 3.2527(63) 3.2793(56) 3.190(70) 

 2Cζ -5.264(50)  -5.283(30) -5.273(21) -5.333(18)  -5.405(20) -5.388(23) -5.39(14) 

 q 0.481(22)   0.407(16)  0.353(21)  0.3116(97)  0.309(28)  0.188(38)  0.30(12)  

 σ 0.18 0.12 0.12 0.12 0.12 0.13 0.24 

a Units are cm–1; figures in brackets are standard deviations in units of the least significant figure 
b Error bars are from the fit; a systematic error of up to of 2 cm–1 in the band origins is also possible. 

 

The Jahn-Teller effect in NH3 

As indicated in the introduction the observation of equal and opposite splittings in the zero 

point level has been seen in other systems, so it is instructive to develop a model of the force 

field including the Jahn-Teller effect that can be used for all four isotopologues to explain this 

splitting. The B̃1E" state of NH3 has two Jahn-Teller active modes, the asymmetric stretch, ν3 

and the in plane bend, ν4, both with E' symmetry. (The other two modes are the symmetric 

(A1') stretch, ν1 and the umbrella mode, ν2 (A2")). The most complete information so far on 

the Jahn-Teller activity in these modes comes from the study of Allen et al4 based on a 

combination of IR-MPI double resonance spectroscopy and other methods. While the pattern 

of the levels of the Jahn-Teller active modes is not known in full, enough is known to give a 

good idea as to the likely pattern and magnitude of the effects. The model we are using here 

is two electronic states that are degenerate at all values of the vibrational co-ordinates, with 

the Jahn-Teller terms giving matrix elements between the two surfaces. The most significant 

extra term due to the Jahn-Teller effect is a term linear in the vibrational co-ordinates: 

 22

JT
ˆˆˆˆˆ
  LqLqkH  (7) 

Dimensionless normal coordinates, q, are used here. The 2ˆ
L  operators are taken to connect 

the components of the degenerate electronic state, which we label with Λ = ±1, approximately 

the electronic angular momentum of the states: 

11ˆ2 L  (8) 

The initial analysis of Allen et al4 has ω3 = 3314.1 cm−1, |k3| =  0.165, ω4 = 1625.5 cm−1, 

|k4| =  0.1905 which suggests that the linear term is significant for both ν3 and ν4. These 

parameters did not fully account for the observed levels, and an alternative analysis was 
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presented by Allen et al4 that accounted for more of the observed levels. This added an 

additional electronic state to the Hamiltonian, and a term linear in q3 mixing this with the B̃ 

state, though a similar fit was also possible using a quadratic Jahn-Teller term of the form: 

 2222
2

1
JT2

ˆˆˆˆˆ
  LqLqgH  (9) 

At the level of second order perturbation theory the two are equivalent, and we will use the 

latter approach here for simplicity. 

Converting to a C2v Picture. 

The Jahn-Teller terms above are expressed in terms of operators appropriate to D3h 

symmetry, but to apply these to the unsymmetrical isotopologues we must convert 

everything to states and operators that have the correct symmetry in C2v as well as D3h. For 

the electronic part the required transformation was discussed in the previous paper: 

 11
2

1
  (10) 

The   states introduced above in the rotational analysis essentially transform as x and y, as 

opposed to the Λ = ±1 states which transform as x ± iy.  For the Jahn-Teller term we require 

the matrix elements of 22 ˆˆ
  LL , which can be derived by simple substitution: 

1ˆˆ 22   LL   and 1ˆˆ 22    LL  (11) 

The other combinations of operators and signs give zero matrix elements. For the vibrational 

part we re-express the operator for a single Jahn-Teller mode in terms of Cartesian style 

components: 

yx qiqq ˆˆˆ 
 (12) 

which makes the linear Jahn-Teller term become: 

    2222

JT
ˆˆˆˆˆˆˆ
  LLqiLLqkH yx  (13) 

This is, of course equivalent to the earlier expression in full symmetry, but in this form the 

symmetry requirements of the xq̂  and 
yq̂ coordinates become clear. The term multiplying xq̂

is diagonal in the   basis, and must therefore correspond to a totally symmetric co-ordinate 

in C2v symmetry. It has the effect of adding or subtracting a simple linear term along the x 

normal co-ordinate. The term multiplying 
yq̂ is purely off-diagonal in the   basis, and must 

therefore have the symmetry of the product of the two electronic components. From the 

previous paper   has A2 symmetry and   has B1 symmetry for the electronic origin (which 

has E" symmetry in D3h), requiring 
yq̂ to have B2 symmetry so that the overall operator, 
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 22 ˆˆˆ
  LLqi y  is totally symmetric. Note that  22 ˆˆˆ

  LLqi y  will give purely imaginary matrix 

elements, but we can avoid this complication by multiplying one of the electronic basis 

functions by i. 

 Applying the same process to the quadratic Jahn-Teller effect yields a more 

complicated result: 

     222222
2

1
JT2

ˆˆˆˆ2ˆˆˆˆˆ
  LLqqiLLqqgH yxyx

 (14) 

Note that again the matrix element off-diagonal in electronic state are purely imaginary, so 

we can maintain purely real functions by applying the same phase factor as for the linear Jahn-

Teller effect. 

Modelling the Jahn-Teller effect in a Cartesian basis. 

Given the above we can exactly reproduce the Jahn-Teller energy level pattern in a Cartesian 

basis consisting of (harmonic) vibrations along x and y with associated quantum numbers vx  

and vy, rather than the two dimensional oscillator quantum numbers (v and l) that would more 

conventionally be used. Similarly the electronic basis can use the  functions mentioned 

above. Expressed in this format the Hamiltonian contains three types of terms: Firstly the 

conventional harmonic oscillator terms for each vibration (identical and diagonal in both 

electronic states): 

 2222
2

1
harm

ˆˆˆˆˆ
yyxx pqpqH   (15) 

a diagonal Jahn-Teller term: 

 22
2

1
JT

ˆˆˆˆ
yxx qqgqkH   (16) 

and a Jahn-Teller term connecting the two electronic states: 

yxy qqgqkH ˆˆˆˆ
JT   (17) 

Note that, as suggested above, a phase factor of i has been applied to  to make the above 

real. While not immediately obvious, all the eigenvalues of this Hamiltonian are doubly 

degenerate; see the supplementary notes for an explicit proof of this. Including the quadratic 

terms gives a more complicated picture, which is discussed further below. 

This picture can now be converted to the C2v symmetry required for NH2D and ND2H. A major 

change is that the frequencies associated with xq̂  and yq̂  are now different. The requirement 

that they have different symmetry in C2v introduced above means that they will correspond 

to different normal modes in the lower symmetry. (The specific forms for NH3 are discussed 

below, but one of the obvious separations corresponds to the division into N-H and N-D 
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stretches.) The standard harmonic part must now have two distinct vibrational frequencies, 

which we denote by with ωx and ωy: 

   22
2

122
2

1
harm

ˆˆˆˆˆ
yyyxxx pqpqH   (18) 

Similarly, two constants are now required to specify the linear Jahn-Teller effect, as there is 

no longer any requirement that the linear potential terms along the two normal modes are 

the same, but the operators involved are otherwise the same: 

xxx qkH ˆˆ
JT   (19) 

yyy qkH ˆˆ
JT   (20) 

The relationships  JTJT
ˆˆ HH  and  JTJT

ˆˆ HH  persist as both 

components of the electronic state have the same transformation between internal and 

normal co-ordinates, only differing in the Jahn-Teller terms, so the sign change in equation 

(16) is simply copied across. Interestingly, all levels remain doubly degenerate in the presence 

of the linear Jahn-Teller effect, even including the term (20) that mixes the two electronic 

states. This has been formally proved by Iwahara et al10, and can also be seen on inspecting 

the detailed form of the Hamiltonian matrices – see the supplementary notes. 

The above is in fact an oversimplification; the transformation between internal and normal 

co-ordinates will introduce Jahn-Teller terms to modes that do not have them for the 

symmetrical isotopologues. The only requirement is that they have the same symmetry in the 

sub-group. qx is necessarily totally symmetric (as it produces terms diagonal in electronic 

state), so any totally symmetric mode can acquire a Jahn-Teller term diagonal in electronic 

state. Similarly any vibrations with the same symmetry as qy can acquire a Jahn-Teller term 

off-diagonal in electronic state. For ammonia this mode mixing is worked out in detail below, 

and indeed occurs for the symmetric stretch, though there is no vibration with the same 

symmetry as qy so no additional off-diagonal terms are introduced. Importantly, though these 

result in one or more additional Jahn-Teller terms, the same logic still holds in that two 

identical matrices are generated and the degeneracy is not lifted by any linear terms. This 

degeneracy can even persist if the symmetry is lowered so that the qx and qy modes have the 

same symmetry, which is only possible for ammonia using a third isotope, say tritium to give 

an isotopologue with three different isotopes, NHDT. This is the result of Iwahara et al10, and 

was confirmed by numerical tests with the model below. 

A purely quadratic Jahn-Teller effect gives rather a different picture. The first point to note is 

that, even in D3h symmetry, some non-degenerate vibronic states are present, and the 

degeneracies reflects the vibronic symmetry. For example, the overall vibronic symmetry of 

states with one quantum of a degenerate mode excited is E" × E' = A1" + A2" + E", and three 
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levels are indeed seen. (If only linear terms are included then the A1" and A2" levels remain 

degenerate). In addition, the selection rules for the q2 operators of Δv = 0, ±2 means the 

quadratic terms give rise to effects in first order. This case is worked through in more detail 

in the supplementary notes. Symmetry requires that the vibrationless level in D3h is 

degenerate. 

For the partially substituted species the quadratic Jahn-Teller Hamiltonian includes terms 

diagonal in the electronic states: 

   22
2

122
2

1
JT

ˆˆˆˆˆ
yyyxxxyyyxxx qgqgqgqgH   (21) 

and off-diagonal: 

yxxy qqgH ˆˆˆ
JT   (22) 

We have introduced a slightly different notation here to simplify later equations. The first 

term is likely to be the most important, as it can give diagonal matrix elements in selected 

states.  Specifically, first order shifts in opposite directions to the vibrationless levels arise, 

giving an overall splitting of the zero point level of ½(gxx – gyy), and these will scale with v, 

giving effective harmonic frequencies of approximately ωx±gxx/4 and ωy−±gyy/4. The second 

term is likely to become important for excited state splittings, as can be seen by considering 

the matrix for one quantum in the degenerate mode: 

yyxxyxxy

xyyyxxyx

ggg

ggg

8
9

8
1

2
3

2
1

8
1

8
9

2
1

2
3

01

10

0110







 (23) 

yyxxyxxy

xyyyxxyx

ggg

ggg

8
1

8
9

2
1

2
3

8
9

8
1

2
3

2
1

10

01

1001







 (24) 

From this it is clear that in addition to the first order splittings (of order gxx – gyy) there will be 

second order shifts of the order of gxy
2/( gxx – gyy), which are likely to be significant as all three 

constants will be the same order of magnitude. As for the linear case, mode mixing will 

introduce additional potential terms, but all the degeneracies are lifted without them. 

Force Constant Analysis for the B̃1E" state of NH3 

To translate the Jahn-Teller effect to a change in geometry, and to transfer between the 

various isotopically substituted species requires knowledge of the internal co-ordinates for 

NH3 so we can derive a potential in terms that are independent of mass. For the purposes of 

this analysis we choose the simplest possible form for the potential, expressed in internal 

valence coordinates: 
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    2

umb2
12

3

2

2

2

1bend2
12

3

2

2

2

1stretch2
1  kkrrrkV  (25) 

δri is the change in bond length N-Hi from the equilibrium value. δθi is the change in the HNH 

bond angle not including bond N-Hi. δφ describes the out of plane bending motion; formally 

it is defined as the vector triple product of unit vectors along the N-H bonds as used by 

Hedberg and Mills15. We will ignore coupling between internal coordinates, and 

anharmonicity, as this is a reasonable match to the available information, and should be 

sufficient to understand the pattern of energy levels. Numerical tests with off-diagonal 

internal force constant terms (such as kδr1δθ1) set to ground state values confirm that, while 

there are shifts in levels there is no change in the overall pattern. A conventional harmonic 

force field analysis was set up in PGOPHER11, 12 based on the above; taking ν3 and ν4 as given 

above for NH3, and ν2 as 898.2 cm–1 (the 1-0 gap) and the rotational constants from the zero 

point level gives the parameters shown in Table 4. 

 Table 4 Parameters of a simple harmonic force field for the B̃1E" state of NH3 

rNH / Å 1.040 

kstretch / (aJ Å–2) 5.8684 

kbend / aJ 0.5172 

kumb / aJ 0.1850 

There is limited redundancy here given the lack of a Jahn-Teller analysis on ND3, but a test is 

available for the symmetric stretch, ν1. This is not known for the B̃ state, but the value for the 

C̃' state, which is expected to have similar bonding, is known to be14 3217.0 cm–1. The above 

constants predict 3143.7 cm–1, reasonable agreement considering anharmonicity and 

coupling between internal coordinates are being ignored. 

This force field analysis can be used to calculate the magnitude of the Jahn-Teller distortions; 

this is worked through in detail in the supplementary notes, and indicates bond length 

changes ~0.014 Å and bond angle changes of the order of 2.2°. This provides some insight into 

the source of the difference between the A and B constants for the two electronic states; a 

simple static picture would predict slightly different geometries for the two electronic states, 

with a corresponding change in rotational geometries. Changing one of the bond angles by 

2.2° as suggested above in fact gives a slightly larger change in rotational constants than the 

observed difference between the A and B values for the two states; the change of 0.014 Å 

bond length has rather a smaller effect. Given the Jahn-Teller distortion is dynamic, rather 

than static, we would not expect this to give a quantitative prediction, but it does suggest the 

shift comes from the Jahn-Teller effect. 
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Descent in Symmetry 

To apply the above to the mixed isotopologues we must specify symmetry co-ordinates that 

are appropriate for both D3h and C2v. From the character tables we can draw up the 

correlations shown in Table 5 and Table 6 between the operators and symmetries for the two. 

Following the previous paper the C2 axis is taken as x in C2v and the out of plane axis is z. This 

means that functions with B1 symmetry are anti-symmetric with respect to reflections in the 

plane of the molecule. 

Table 5 Correlation of Operators from D3h to C2v 

D3h E C2 σh σv 

C2v(Conventional) E C2(z) σ(yz) σ(xz) 

C2v(Axis choice used here)  C2(x) σ(xy) σ(xz) 

 

Table 6 Correlation of Symmetries from D3h to C2v 

D3h  A'1 A'2 E' A"1 A"2 E" 

C2v  A1 B2 A1 B2 A2 B1 A2 B1 

  ν1  
ν3x 

ν4x 

ν3y 

ν4y 
 ν2     

    x y  z   

Cs  A' A' A' A' A" A" A" A" 

 

Similarly, for the degenerate vibrations we can assign separate symmetries in C2v to the two 

components, if we make the right choice of components that gives co-ordinates with well-

defined symmetries in C2v. A possible choice, not unusual for systems with a C3 axis, for the 

stretching co-ordinates is: 

 3216
1

3 2 rrrS x   (26) 

 322
1

3 rrS y   (27) 
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Figure 2 Co-ordinate system used. H1 is D in NH2D and H in ND2H. The arrows show the S3x 
motion. 

With this choice of co-ordinates, shown in Figure 2, and N-H1 aligned along the x axis S3x has 

A1 symmetry and S3y has B2 symmetry. H1 is required to be the unique atom on NH2D and 

ND2H to maintain the required symmetry. We make a similar choice for the bending co-

ordinates, replacing δri with δθi: 

 3216
1

4 2 xS  (28) 

 322
1

4 yS  (29) 

For consistent symmetry properties δθi needs to be the change in the angle between the two 

bonds not involved in δri. For completeness, the non-degenerate symmetry co-ordinates are: 

 3213
1

1 rrrS    (A1 symmetry) (30) 

2S   (A2" symmetry) (31) 

The transformation between dimensionless normal coordinates and symmetry coordinates is 

given in the supplementary notes; we simply note here that they are essentially proportional, 

with a little mixing between the degenerate modes. 

Jahn-Teller Terms in internal coordinates 

The force field analysis also makes it possible to predict the patter of vibronic energy levels 

for each of the isotopologues. For this the Jahn-Teller terms need to be converted from 

(isotope dependent) dimensionless normal coordinates (k3ω3 and k4ω4) as used in (13) above 

to (isotope independent) internal coordinates. There is no unique way of doing this, 

particularly as the internal coordinates are redundant, but given that the degenerate 

stretching and bending modes are reasonably separate, we can take the form for the linear 

terms as: 

 

x 

y 

N H1 

H2 

H3 

r
1
 

r
2
 

r
3
 

θ
1
 θ

2
 

θ
3
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    22

3

22

33JT3
ˆˆˆˆˆˆˆ
  LLSiLLSkH yxJT  (32) 

with a similar term for q4. This is the analogue of equation (13). In terms of internal valence 

coordinates this becomes: 

      22

322
122

3216
1

3JT3
ˆˆˆˆ2ˆ
  LLrriqLLrrrkH JT  (33) 

The quadratic terms, equation (14) become: 

     22222

3

2

332
1

JT2
ˆˆˆˆ2ˆˆˆˆˆ
  LLSSiLLSSgH yxyxJT  (34) 

This has a rather complicated form when expanded out into internal co-ordinates – see the 

supplementary notes. To use the above forms, the harmonic force field part of the PGOPHER11, 

12 program was enhanced to take additional linear and quadratic potential terms expressed 

in internal coordinates, and subject them to the transformation between internal 

coordinates, Ri, and dimensionless normal co-ordinates, qi, computed as part of the standard 

force field analysis. Specifically, if we define the matrix relating the two as dint:  


j

jjii qR int

,d  (35) 

(dint is given for NH3 in the supplementary notes) then the potential energy expressed as a 

sum of terms linear in internal coordinates as: 


i

ii RV )1(
f  (36) 

can easily be recast in terms of normal coordinates by a simple matrix multiplication: 

   









j

jjj

j

j

j

ji

i

i

i j

jjii

i

ii qkqqRV int

,

)1(int

,

)1()1( dfdff  (37) 

so kjωj can be identified with elements of f(1)dint. Quadratic terms require a double 

multiplication: 

   
ji

jiji

ji

jijiji

T

ji

jiji qqqqRRV
,

,2
1

,
,

int

,

int

2
1

,

,2
1 gdfdf  (38) 

and elements of dintTfdint are thus required. The key additional feature in these 

transformations (not shown in the equations above) is that separate sets of force constants 

must be tracked, with one set for each of the possible associated electronic matrix elements. 

For example, for the linear terms, the multipliers of 22 ˆˆ
  LL  and 22 ˆˆ

  LL  must be kept 

separate and a separate set of multipliers is required for each state. In PGOPHER these are used 
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to calculate perturbation terms in the vibronic Hamiltonian that are added to the standard 

harmonic terms. 

To determine the required parameters a fit was performed to selected data from Allen 

et al4. The fit was directly to internal coordinate force constants – the conventional kstretch, 

kbend and kumb and the Jahn-Teller terms kJT3, kJT4 and gJT3. A harmonic force field calculation 

based on the first three gives the harmonic frequencies for the B state, and the 

transformation matrix, dint. The latter is used to transform the Jahn-Teller terms to the 

equivalent normal coordinate terms, k3ω3, k4ω4 and g3ω3 (= g33). These are used to set up a 

vibronic Hamiltonian matrix for the B state in a harmonic basis, using the operator forms given 

in equations (15)-(17) above, summed over all modes. The basis includes two (degenerate) 

electronic states, each with all vibrational levels with v1 ≤ 1, v2 ≤ 1, v3 ≤ 4 and v4 ≤ 5, sufficient 

for the energy levels to be converged to rather better than 1 cm–1. The required matrix 

elements of the normal modes are available in many places – see for example Papoušek and 

Aliev16. The Hamiltonian matrix is diagonalised to produce energies to compare with the 

observed values above. A standard least squares fitting process using numerical derivatives 

by the PGOPHER program is used to produce the best fit values listed in Table 7 below, with the 

observed and calculated values given in  Table 2 of the supplementary notes. 

Table 7 Force field in internal coordinates for the B̃1E" state of NH3 

rNH / Å 1.040 

kstretch / (aJ Å–2) 5.4344 

kbend / aJ 0.3820 

kumb / aJ 0.1871 

kJT3 / (aJ Å–1) 0.1659 

kJT4 / (aJ Å–1) 0.0339 

gJT3 / (aJ Å–2) 0.3982 

Note that only the quadratic Jahn-Teller term associated with ν3 was floated (gJT3); floating 

the equivalent term for ν4 did not improve the fit, probably because no A symmetry levels are 

known for ν4. The only redundancy present in the fit is in the ν4 levels, so we do not have an 

independent measure of the reliability of the derived parameters.  

The normal coordinate parameters derived from these are given in the top rows of Table 8 to 

Table 11. Note that, because of the small mixing between S3 and S4, a small quadratic Jahn-

Teller term is present for ν4, even though we are taking the gJT4 term as zero. This mixing also 
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induces a small quadratic cross term with the equivalent operator forms coming out of the 
int

,

int
dfd ji

T
transformation a fairly obvious generalisation of equations (16) and (17): 

   yyyyxxxxyyxx qqgqqgqqqqgH 43434343434334

(34)

JT
ˆˆ'ˆˆ'ˆˆˆˆˆ   (39) 

  xyxyyxyxxyyx qqgqqgqqqqgH 43434343434334

(34)

JT
ˆˆ'ˆˆ'ˆˆˆˆˆ   (40) 

We have introduced a separate quantity, g'ij which is simply the multiplier of the operator 

jiqq ˆˆ ; in this case g34 = g'3x4x = –g'3y4y = –g'3x4y = –g'3y4x but this notation simplifies the 

presentation for the less symmetrical species where there are no constrains on the values. 

Note there is no factor of ½ in these equations as the operator form is strictly (for example)

 yyyyxxxx qqqqqqqqg 34433443342
1 ˆˆˆˆˆˆˆˆ  , which simplifies as above. Neither of the g4 or g34 

terms are significant, but are included for completeness. 

Comparing the parameters derived here with those of Allen et al4 shows some differences, 

with the linear Jahn-Teller terms rather larger in the current analysis. The differences arise 

from the different models used; the earlier work included an x44 anharmonicity term, but here 

this is forced to zero. The previous work included a linear vibrational (in q3) term mixing in a 

third electronic state but this can be shown to be equivalent to a quadratic Jahn-Teller effect 

in q3 using second order perturbation theory. We do not have enough experimental 

information to discriminate between the models, but they do confirm that, within a factor of 

two, sensible values are being used for the Jahn-Teller parameters. 

Predictions for other isotopologues. 

Given the force field and Jahn-Teller terms expressed in internal coordinates, it is now 

straightforward to repeat the process above for all the other isotopologues. The normal 

coordinate parameters for all four species are given in Table 8 to Table 11. 

Table 8 Calculated normal mode frequencies (/cm-1) the B̃1E" state of ammonia 

 ω1 ω2 ω3x ω3y ω4x ω4y 

NH3 3025.2 892.5 3188.0 1397.5 

NH2D 3089.2 829.2 2284.8 3187.7 1390.1 1166.4 

ND2H 2208.5 760.5 3141.8 2369.8 1027.8 1277.0 

ND3 2140.0 685.1 2368.5 1021.3 

 

Table 9 Calculated linear Jahn-Teller parameters (/cm-1) for normal modes of the B̃1E" state 
of ammonia 
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 k1ω1 k3xω3x k3yω3y k4xω4x k4yω4y 

NH3 - 937.5 428.0 

NH2D –615.3 624.6 935.1 397.1 393.0 

ND2H –403.4 806.0 838.8 360.3 374.6 

ND3 - 831.2 342.8 

Note that, as discussed above, in the less symmetrical species, a linear potential term is 

introduced into what is formally the symmetric stretch, ν1, but not the umbrella mode, ν2 as 

it has the wrong symmetry.  

Table 10 Calculated quadratic Jahn-Teller parameters (/cm-1) diagonal in electronic state for 
normal modes of the B̃1E" state of ammonia  

 ½g'11 ½g'3x3x  ½g'3y3y ½g'4x4x  ½g'4y4y g'13x g'14x  g'3x4x g'3y4y 

NH3 - 116.5 -116.5 0.1 -0.1 - - -8.2 8.2 

NH2D 49.9 46.0 -116.5 0.5 -0.1 -95.8 10.1 -9.7 7.0 

ND2H 19.7 86.6 -85.8 0.2 -0.5 -82.6 3.6 -7.5 14.0 

ND3 - 86.0 -86.0 0.3 -0.3 - - -10.9 10.9 

 

Table 11 Calculated quadratic Jahn-Teller parameters (/cm-1) off-diagonal in electronic state 
for normal modes of the B̃1E" state of ammonia 

 g'13y g'3x3y  g'3y4x g'13y g'3x4y g'4x4y 

NH3 - -233.0 8.2 - 8.2 -0.3 

NH2D 152.4 -146.4 15.4 -4.6 4.4 -0.5 

ND2H 82.3 -172.3 7.4 -7.0 14.0 -0.6 

ND3 - -172.0 10.9 - 10.9 -0.7 

For the quadratic terms, several small terms have been included for completeness; the 

biggest addition in C2v symmetry is likely to come from the g'11 and g'13y terms adding to g3.  

Table 12 Predicted vibrational energy levels of the B̃1E" state of ammonia 
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NH3 NH2D ND2H ND3 

(6160.4)a 00 E" (5582.8)a 00 A2 (5023.1)a 00 A2 (4426.2)a 00 E" 

  18.8 00 B1 -18.5 00 B1   

1294.0 41 A2" 1129.4 4y
1 B1 977.7 4x

1 B1 934.7 41 A1" 

1294.5 41 A1" 1142.7 4y
1 A2 992.7 4x

1 A2 934.7 41 A2" 

1489.0 41 E" 1416.9 4x
1 A2 1280.1 4y

1 A2 1094.0 41 E" 

  1433.1 4x
1 B1 1292.5 4y

1 B1   

2599.1 42 E" 2196.7 3x
1 B1 1976.0 4x

2 B1 1879.1 42 E" 

  2253.7 4y
2 A2 1991.8 4x

2 A2   

2764.9 31 A2" 2283.8 4y
2 B1 2053.1 11 B1 2006.3 31 A2" 

2782.3 42 E" 2334.2 3x
1 A2 2203.8 11 A2 2027.9 42 E" 

  2550.4 4x
14y

1 B1 2270.0 4x
14y

1 A2   

2947.8 42 A1" 2559.1 4x
14y

1 A2 2273.4 4x
14y

1 B1 2140.0 11 E" 

2982.1 42 A2" 2822.0 4x
2 A2 2361.1 3y

1 B1   

3025.2 11 E" 2830.4 4x
2 B1 2463.0 3y

1 A2 2155.3 42 A1" 

  2927.6 11 B1 2572.9 4y
2 B1 2192.3 42 A2" 

3223.5 31 A1" 3121.8 11 A2 2581.7 4y
2 A2 2354.3 31 A1" 

  3276.8 3y
1 B1 3163.3 3x

1 B1   

3395.5 31 E" 3379.4 3y
1 A2 3212.8 3x

1 A2 2568.4 31 E" 

        

a Zero point energy given in brackets 

Given the normal mode parameters the vibronic energy levels can be calculated for all 4 

isotopologues, and selected levels are listed above. A matrix diagonalization was required, as 

described above for NH3, with the basis sets slightly adjusted to ensure convergence, mainly 

requiring a higher limit in v1 for the C2v species. The notation used to label the vibrational 

states is such that nm implies m quanta in mode n. For the degenerate modes the quanta 
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along the x and y modes are given separately. The quantum numbers are based on the largest 

coefficients in the final wavefunctions; this normally gives a clear assignment, though for 

NH2D a level at 3289.7 cm−1 could also have been assigned to the 3y
1 A2

 level. 

To understand the pattern of levels produced by this model, it is helpful to consider the 

pattern of levels associated with just the stretching modes, and with terms involving bending 

omitted. Figure 3 shows the stretching levels for NH3 with the various possible combinations 

of Jahn-Teller terms. Note there are two stretching levels, one of which (the asymmetric 

stretch, v3 = 1) is notionally four fold degenerate, and this is split into two components by the 

linear Jahn-Teller effect and three by the quadratic Jahn-Teller effect. The other stretching 

level and the origin remain degenerate. Contrast this with the corresponding energy level 

diagram for NH2D in Figure 4, where there are now three stretching levels, each notionally 

doubly degenerate. The linear Jahn-Teller effect shifts all these levels, but does not lift the 

degeneracy; this has been discussed above as being a consequence of the form of the 

Hamiltonian, and is not specific to this case. The largest effect of the linear term is to increase 

the separation between the two N-H stretching levels, with smaller shifts of the other levels. 

The quadratic term does lift all the degeneracies, to a small amount for the origin level and 

rather larger for the other levels. Figure 5 shows the pattern of stretching levels for all four 

species, calculated including both linear and quadratic terms. The overall trend is of course to 

lower energies as modes switch from N-H to N-D stretches but the pattern associated with 

each set of bonds is similar, so the levels associated with the N-H bonds in NH2D is replicated 

in the N-D bonds in ND2H. The switch from N-H to N-D can also be seen in the detailed form 

of the normal coordinates – see table 3 in the supplementary notes. 

The only information that we can directly compare with experiment is the origin band, though 

it would be very informative to have spectra of the excited stretching levels. The key 

prediction is that the origin level should be split by a relatively small amount, with the sign of 

the splitting opposite for NH2D and ND2H. Our observations reflect this, with the splittings 

having the right relative sign (+34.8 and –35.1 cm–1) though about twice the magnitude of the 

calculated splittings (+18.6 and –18.5 cm–1). Given we have no information on the quadratic 

Jahn-Teller effect for the bending modes, and that the analysis above shows that the 

quadratic term is the key contributor to the splitting of the origin band, this is good 

agreement. Interestingly, the observation of equal and opposite splittings was seen in the two 

other studies that are directly comparable to this one by Yu et al7 on the X̃2E1" state of C5H4D 

(−8.9557 cm–1) and C5D4H (+9.1975 cm–1) and by Melnik et al8, 9 on the X̃2E state of CH2DO 

(−45.66 cm–1) and CD2HO (+43.44 cm–1). 

At this stage it is worth comparing the approach taken here with the approaches taken by 

previous workers in calculating this splitting. Perhaps the earliest consideration of this issue 

is in the interpretation of ESR data on the negative ions of benzene-d1 and cyclo-
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octatetraene-d1 by Carrington et al17. They suggested that kinetic energy considerations 

would give different zero point energies for different structures. This approach would 

obviously be appropriate where the different structures had significant barriers between 

them, but it is less clear that it would be appropriate for cases like the current one where the 

barriers are much less than the zero point energy. 

Later works undertook more detailed measurements and calculations. Scharf et al18 

considered various 1E1u Rydberg states of asymmetrically deuterated benzene. Unfortunately 

the experimental data available is low resolution, so the zero point splittings cannot be 

directly measured, but only inferred from different widths of vibronic bands. The 

experimental results showed a progression in only one of the four possible Jahn-Teller active 

modes, so only that mode was modelled in a way similar to that done here. The model was 

restricted to linear terms, and as the mode involved ring distortion ω and k for that mode 

were assumed unchanged on deuteration. The zero point splitting was accounted for by a 

single parameter, Ex−Ey, giving the difference in zero point energy in the other modes; in our 

notation this is equivalent to ½(gxx – gyy) summed over all the other modes. The derivation 

above shows this is equivalent to assuming the zero point splitting arises from a quadratic 

Jahn-Teller effect in these other modes. They produced estimates of this quantity based on a 

simple orbital model. The difference from our model stems partly from choice of definitions, 

in that they do not consider this difference in second derivatives to be a Jahn-Teller effect. 

Eiding and Domcke19 looked at partial isotopic substitution in the X̃2E1g and B̃2E2g states of 1,4-

C6H4D2
+. They modelled the energy levels including several Jahn-Teller active modes using an 

approach similar to that taken in this paper, but with one essential difference. The reference 

point taken for all the derivatives with respect to energy was the geometry of the neutral 

molecule, rather than the ion. (This approach was taken as the aim of that study was to 

calculate photoelectron spectra.) This meant that the first derivatives with respect to energy 

for symmetric modes was non zero even in the absence of the Jahn-Teller effect, giving terms 

comparable in magnitude to the linear Jahn-Teller terms. Values for these first derivatives for 

both the symmetrical and Jahn-Teller active modes were taken from derivatives of orbital 

energies from a Hartree-Fock calculation on the neutral molecule. Quadratic Jahn-Teller 

effects were not included, but the calculations did nevertheless predict non-zero zero-point 

splittings for the lower symmetry isotopologues. This does not contradict the result of 

Iwahara et al10 that linear terms do not give a zero-point splitting due to the use of a non-

equilibrium reference geometry as the transformation to the equilibrium geometry will 

introduce additional terms in the Hamiltonian that are effectively quadratic. 

The study by Yu et al7 on the X̃2E1" state of C5H4D and C5D4H used a similar approach to that 

used here, but only considered linear Jahn-Teller terms. In addition, in C5H5 the mode with 

the largest Jahn-Teller activity was thought to involve distortion of the carbon framework, so 
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they assumed deuterium substitution did not alter the Jahn-Teller parameters and so gave no 

zero point splitting in that mode. They suggested, following Scharf et al18 that there could be 

a zero point energy difference in the other modes, but did not attempt to calculate this, and 

the current work suggests there should not be any if only linear terms are included. They did 

not discuss quadratic Jahn-Teller effects in detail, though they pointed out that it was shown 

by Engelking and Lineberger20 using symmetry arguments that the quadratic Jahn-Teller effect 

must be zero in D5h symmetry. Iwahara et al10 discuss this specific case, and attribute the 

splitting of the zero point level to quartic potential terms. Higher terms would give five 

equivalent minima, and more recent calculations of Bearpark et al21 suggests that the barrier 

between them is only 3.6 cm–1. Bearpark et al21 did calculate zero point energies for different 

equilibrium structures with differences of the right order of magnitude to the observations, 

but they do not indicate which value should be compared to the experiment. It is anyway not 

clear that the approach they used, considering a single electronic surface, will give correct 

results, especially as they ignored anharmonic effects which must be important with such a 

surface given the low barrier (3.6 cm–1) in one mode. Melnik et al8, 9 looked at submillimeter 

spectra of the lowest vibrational level of the X̃2E state of CH2DO and CHD2O radicals. Their 

approach to the rotational energy level pattern was similar to that taken here, though made 

rather more complicated by the presence of a spin-orbit interaction. They describe a method 

of calculating the zero point splitting, based on calculating zero point energies at two different 

minima on the lowest potential energy surface with the unique atom on or off the symmetry 

plane. This gives promising results, predicting approximately equal and opposite splittings for 

CH2DO and CHD2O and of the correct order of magnitude, though rather sensitive to the ab 

initio method used. They do however comment that their method relies on a harmonic 

frequency model and ignores the upper surface and the coupling between them, and 

acknowledge that they may be relying on a cancelation of errors, as again the mild Jahn-Teller 

interaction implies a very anharmonic mode. 

It is also worth mentioning work on the ground state of CH4
+, for which significant work on 

partially deuterated isotopologues has been done22, 23 but this is less directly comparable as 

the starting model is minima with a large barrier between them, though with significant 

tunnelling between them and thus requiring a different theoretical approach. 
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Figure 3 Approximate energy level diagram for the stretching vibrational levels of the B̃1E" 
state of NH3. This was calculated using the parameters in Table 7, but with kJT4 = 0 and only 
including v4 = 0 levels in the basis. 

 
Figure 4 Approximate energy level diagram for the stretching vibrational levels of the B̃1E" 
state of NH2D. This was calculated using the parameters in Table 7, but with kJT4 = 0 and only 
including v4 = 0 levels in the basis. 

 
Figure 5 Correlation between stretching vibrational levels for different isotopologues of the 
B̃1E" state of ammonia. This was calculated using the parameters in Table 7, but with kJT4 = 0 
and only including v4 = 0 levels in the basis. 
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Rotational Constants. 

Given a model based on normal co-ordinates, it is also possible to predict the rotational 

constants for the origin levels by taking into account the variation of the rotational constants 

with vibrational co-ordinate. The key quantity is the μαβ tensor, essentially the inverse of the 

moment of inertia tensor, with the diagonal terms the rotational constants. For a summary 

of the theory and notation see the review by Mills24. There are many possible terms, of which 

we discuss the three largest here. We start with the term involving the second derivative of 

this μαβ tensor: 

 



rs

sr

sr JJqq ˆˆˆˆ,  (41) 

Here α and β label the principal axes, r and s the normal modes and  sr ,

  is the second 

derivative with respect to normal co-ordinates r and s: 

 

sr

sr

qq ˆˆ

2

,








  (42) 

which can in turn be calculated from the first derivative of the moment of inertia tensor with 

respect to the normal co-ordinates. For r = s this term has matrix elements diagonal in 

vibrational state proportional to v+½ and is one of the conventional contributions to the 

vibrational dependence of the rotational constants. 

 The vibrational angular momentum also contributes to this vibrational dependence; 

the relevant term is:  

 




  JBe
ˆˆ2  (43) 

where ̂ is the vibrational angular momentum: 

 



 



rs

sr

s

r
sr pq ˆˆˆ

,  (44) 

This does not directly contribute to the rotational constants as the Coriolis coupling constant, 

ζrs, is zero if r = s, but second order perturbation theory does give a term containing JJ ˆˆ , 

and thus a vibration state dependent contribution to the rotational constants, another 

conventional contribution to the vibrational constants. 

 The final conventional contribution involves the first derivative of the μαβ tensor: 

 




r

r

r JJq ˆˆˆ  (45) 

where  
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r

r

q̂






  (46) 

As this contains a single vibrational operator it has selection rules Δv = ±1, and thus no 

diagonal contribution. In conventional theory it becomes significant when combined with 

cubic anharmonic potential terms, and thus gives a vibrational contribution in second order. 

In the current analysis we are ignoring anharmonicity, but the Jahn-Teller potential terms also 

have selection rules Δv = ±1, and so provide a similar contribution in second order. 

 To calculate all the above contributions all that is required are the Coriolis coupling 

constants and the derivative of the moment of inertia tensor with respect to the normal co-

ordinates. Both of these are readily available from the normal co-ordinate analysis. Rather 

than attempting to derive general expressions for the variation of rotational constants with v 

using perturbation theory we choose to use a simpler numerical approach as follows: 

 For each rotational constant, for which the effective operator is 
 JJ ˆˆ  we set up 

the matrix of 
 

 
rs

sr

sr qq ˆˆ,
 (from 41) and 

 
 

r

r

r q̂  (from 45) evaluated in the harmonic basis 

described above used to calculate the vibronic energy levels. Transforming this matrix using 

the eigenvectors from the energy level calculations then gives the corrections to the 

rotational constants as the diagonal elements. For the Coriolis terms, eq (43) a slightly 

different approach is required. For each principal axis, α, we set up the matrix of  


  JBe
ˆˆ2  

in the same harmonic basis, and again transform this using the eigenvectors from the energy 

level calculations. The corrections to a rotational constant, Δμαβ, for a given level i are then 

calculated using second order perturbation theory: 

   










ji ji

jiij

EE

MM
 (47) 

where M(α) is the transformed matrix and the energies, Ej, are the exact vibronic energy levels 

as in Table 12. This formula can fail for near degenerate levels, so the program excludes states 

from the sum where |Ei – Ej| < 1 cm–1 and Mij is non zero, and displays these separately. This 

test does not exclude any contributions in the current calculations. 

The above is expressed in terms of a general tensor element μαβ, though symmetry is 

sufficiently high for all the off-diagonal terms (α≠β) to be zero, though the ab term gives a 

term between the   and   components. In the absence of the Jahn-Teller effect, the sum 

of the terms described above gives essentially the same result as the harmonic formula for 

the vibrational dependence of the vibrational constants24. Table 13 below gives the calculated 

and observed values for the rotational constants of the zero point levels. 
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Table 13 Calculated rotational constants (/cm-1) for zero point levels of the B̃1E" state of 
ammonia 

 NH3 NH2D ND2H ND3 

 A2 B1 A2 B1 A2 B1 A2 B1 

A 10.695 10.378 10.690 10.378 7.821 8.395 5.316 5.163 

B 10.378 10.695 6.459 6.426 5.315 5.160 5.163 5.316 

C 5.180 5.180 3.969 3.910 3.124 3.156 2.588 2.588 

½(A+B) 10.537     5.239 

½(A–B) 0.317     0.153 

Observed Valuesa 

A    9.856 10.780 8.377 7.653   

B 10.4844 6.766 6.455 5.112 5.556 5.25581 

C 5.1565 3.953 3.167 2.59701 

q 0.8868 0.681 0.481 0.4729 

a Observed values are from this paper and ref 5. 

Perhaps the most striking feature of the table is that even for the symmetrical isotopologues 

the A and B rotational constants are different, in contradiction to what is expected for a 

symmetric top. In fact the rotational Hamiltonian used already allows for this through the 

term in q. This can be seen if the standard asymmetric top Hamiltonian is re-expressed in a 

form close to the symmetric top form: 

     
        2

2
122

2
12

2
1

222
2

122
2

1

222

rot

ˆˆˆˆ

ˆˆˆˆˆ

ˆˆˆˆ

cba

cbaba

cba

JBACJJBABA

JCJJBAJJBA

JCJBJAH







J

 (48) 

Applying the inverse of transformation (10): 

   
2

1
1;

2

1
1  (49) 

the terms in rotĤ  giving matrix elements diagonal in vibronic state are simply the standard 

symmetric top terms, as A–B for the   component is equal to B–A for the   component 
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and the term in 22 ˆˆ
ba JJ   vanishes. However rotĤ does give matrix elements between the two 

components: 

    22

rotrotrot
ˆˆ

2

1ˆˆ
2

1
1ˆ1   JJAAHHH  (50) 

We have used A+ for the A rotational constant for the   component, and so on and

ba JiJJ ˆˆˆ  . Comparing this with the corresponding matrix element of the term in the 

symmetric top Hamiltonian: 

 2222 ˆˆˆˆ
  LJLJq  (51) 

allows the identification q = ½(A+ – A–). Note that this term will also give a term mixing the 

  and   components, but we do not work through this here. 

Comparing the calculated and observed values for q for NH3 and ND3 reveals a factor of more 

than 2 between them. There are two factors that make this disagreement unsurprising. One 

is that our knowledge of the Jahn-Teller terms is incomplete; in this case it is the linear Jahn-

Teller term that dominates q. Secondly there can also be a significant electronic contribution 

to this term, and indeed the previous paper explained the term in q entirely as a rotational-

electronic effect. The numbers here suggest both contributions may be significant. This is 

confirmed by looking at the mixed isotopologues, where changes of the right order of 

magnitude in the rotational constants are predicted, but not with the right direction. There is 

no simple way of calculating the electronic effects, though the order of magnitude is expected 

to be similar to the vibrational terms in this case. The overall conclusion on the rotational 

structure is that small (~10%) differences between the rotational constants for the two 

components of the electronic state are to be expected, with significant contributions from 

interactions both within the electronic state and with other electronic states. 

Conclusions 

The model developed to analyse the rotational structure in the B̃1E" state of NHD2 has been 

successfully applied to NH2D, and confirms the validity of the model, and that for cases of a 

mild Jahn-Teller effect the formal lifting of the degeneracy by partial isotopic substitution 

leaves significant terms in the Hamiltonian mixing the two components of the state that must 

be included for a satisfactory simulation of the rotational structure. The observation of 

approximately equal but opposite splittings in the zero point level for complementary isotopic 

substitution (here NH2D compared to NHD2) seen before in the literature is further reinforced 

here. We present a method of calculating this from the Jahn-Teller parameters from any one 

isotope, though we are limited from quantitative agreement here by a lack of a full knowledge 

of the required Jahn-Teller parameters. This limitation also applies to our calculation of the 

rotational constants, which are affected by the Jahn-Teller effect. 

Page 28 of 30Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



29 
 

Our analysis confirms the result of Iwahara et al10 that the zero point splitting must 

come from quadratic or higher Jahn-Teller effects and a linear term is not sufficient to break 

the symmetry. This is not clear from previous literature analysis of such splittings, which have 

concentrated on Jahn-Teller active modes that would not be expected to change on isotopic 

substitution. More recent studies have also concentrated on using properties derived from 

ab initio calculations on only the lowest of the pair of surfaces to predict this splitting, but it 

is difficult to have confidence that ignoring the other surface will give correct results, 

especially given the separation is rather less than the zero point energy. It would be 

interesting to use ab initio methods to explore both surfaces for this and related cases, though 

care is likely to be required to avoid artefacts arising from the closely spaced surfaces.  

Acknowledgements 

Work on this project in Nijmegen was supported by the NWO-CW ECHO project 700.58.029 

of the Dutch National Science Foundation. 

References 

 

1. T. A. Barckholtz and T. A. Miller, Int. Rev. Phys. Chem., 1988, 17, 435-524. 
2. O. Tkac, A. K. Saha, J. Onvlee, C.-H. Yang, G. Sarma, C. K. Bishwakarma, S. Y. T. van de 

Meerakker, A. van der Avoird, D. H. Parker and A. J. Orr-Ewing, Physical Chemistry 
Chemical Physics, 2014, 16, 477-488. 

3. K. S. Twyman, M. T. Bell, B. R. Heazlewood and T. P. Softley, The Journal of Chemical 
Physics, 2014, 141, 024308. 

4. J. M. Allen, M. N. R. Ashfold, R. J. Stickland and C. M. Western, Mol. Phys., 1991, 74, 
49-60. 

5. M. N. R. Ashfold, R. N. Dixon, N. Little, R. J. Stickland and C. M. Western, J Chem Phys, 
1988, 89, 1754-1761. 

6. C. H. Yang, G. Sarma, A. K. Saha, D. H. Parker and C. M. Western, Physical Chemistry 
Chemical Physics, 2013, 15, 6390-6399. 

7. L. A. Yu, D. W. Cullin, J. M. Williamson and T. A. Miller, J Chem Phys, 1993, 98, 2682-
2698. 

8. D. Melnik, J. Liu, R. F. Curl and T. A. Miller, Mol. Phys., 2007, 105, 529-540. 
9. J. L. D. G. Melnik, M.-W. Chen, T. A. Miller and R. F. Curl, J Chem Phys, 2011, 135, 

094310-094326. 
10. N. Iwahara, T. Sato, K. Tanaka and L. F. Chibotaru, EPL (Europhysics Letters), 2012, 100, 

43001. 
11. C. Western, PGOPHER, a Program for Simulating Rotational, Vibrational and Electronic 

Structure, http://pgopher.chm.bris.ac.uk. 
12. C. Western, PGOPHER version 8.0, University of Bristol Research Data Repository 

doi:10.5523/bris.huflggvpcuc1zvliqed497r2, 2014. 
13. L. Fusina, G. Dilonardo, J. W. C. Johns and L. Halonen, J. Mol. Spectrosc., 1988, 127, 

240-254. 
14. J. M. Allen, M. N. R. Ashfold, C. L. Bennett and C. M. Western, Chem. Phys. Lett., 1988, 

149, 1-9. 
15. L. Hedberg and I. M. Mills, J. Mol. Spectrosc., 1993, 160, 117-142. 
16. D. Papoušek and M. R. Aliev, Molecular Vibrational Rotational Spectra, Elsevier 1982. 
17. A. Carrington, H. C. Longuet-Higgins, R. E. Moss and P. F. Todd, Mol. Phys., 1965, 9, 

187-190. 
18. B. Scharf, R. Vitenberg, B. Katz and Y. Band, J Chem Phys, 1982, 77, 2226-2234. 
19. J. Eiding and W. Domcke, Chem Phys, 1992, 163, 133-147. 

Page 29 of 30 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



30 
 

20. P. C. Engelking and W. C. Lineberger, The Journal of Chemical Physics, 1977, 67, 1412-
1417. 

21. M. J. Bearpark, M. A. Robb and N. Yamamoto, Spectrochimica Acta A, 1999, 55, 639–
646. 

22. H. J. Wörner and F. Merkt, J Chem Phys, 2007, 126, 154304. 
23. M. Grütter, H. J. Wörner and F. Merkt, J Chem Phys, 2009, 131, 024309. 
24. I. M. Mills, in Molecular Spectroscopy – Modern Research, eds. K. Rao and C. Mathews, 

Academic Press1972, vol. 1, p. 115. 

 

 

Page 30 of 30Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t


