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Methods recently introduced to improve the efficiency of protein structure prediction simulations by adding a restraint potential
to a molecular mechanics force field introduce additional input parameters that can affect the performance. Here we investigate
the changes in the energy landscape as the relative weight ofthe two contributions, force field and restraint potential,is system-
atically altered, for restraint functions constructed from calculated nuclear magnetic resonance chemical shifts. Benchmarking
calculations were performed on a 12-residue peptide, tryptophan zipper 1, which features both secondary structure (aβ -hairpin)
and specific packing of tryptophan sidechains. Basin-hopping global optimization was performed to assess the efficiency with
which lowest-energy structures are located, and the discrete path sampling approach was employed to survey the energy land-
scapes between unfolded and folded structures. We find that inclusion of the chemical shift restraints improves the efficiency
of structure prediction because the energy landscape becomes more funnelled and the proportion of local minima classified as
native increases. However, the funnelling nature of the landscape is reduced as the relative contribution of the chemical shift
restraint potential is increased past an optimal value.

1 Introduction

Significant progress has been made on improving the com-
putational efficiency of protein structure prediction simula-
tions by making direct use of nuclear magnetic resonance
(NMR) observables. One approach is based on molecular
fragment replacement using sequence homology, combined
with databases of structures and experimental NMR observ-
ables, and methods for predicting the observables given a
structure.1–4 An alternative approach that does not require se-
quence homology involves a conformational search of the en-
ergy landscape obtained by combining a biomolecular force
field with a restraint potential that biases the search towards
structures consistent with some reference observables.5,6 Here
we consider only restraint potentials that introduce an energy
penalty as a function of the difference between reference and
calculated NMR chemical shifts; such terms were introduced
for the refinement of structures determined by NMR,7,8 in
order to make good use of these precise and readily avail-
able spectroscopic observables. More recently, chemical shift
restraint potentials together with molecular mechanics force
fields and more extensive conformational searches have been
employed to predict the native structures of various proteins in
studies using Monte Carlo,9 molecular dynamics10 and basin-
hopping global optimization11 simulations. In each study, sig-
nificant improvements in the quality of the predictions were
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obtained over unrestrained simulations. The overall approach
depends upon the link between biomolecular chemical shifts
and three-dimensional structure (see Ref 12 and references
therein).

In the current work, we analyse the changes in the energy
landscape as the relative weight of the two contributions, force
field and restraint potential, is systematically altered. We em-
ploy order-parameter-free visualizations of the landscape via
disconnectivity graphs.13,14 The aim is to gain insight into
how the efficiency of structure prediction varies using such
an approach and, hence, might be optimized in future appli-
cations. Due to the bias introduced by the restraint poten-
tial, we do not consider thermodynamics or dynamics. Our
test system is tryptophan zipper 1 (PDB15 code 1LE016), a
12-residue peptide that features both secondary structure(a
β -hairpin) and specific packing of tryptophan sidechains, yet
remains computationally tractable in terms of the total amount
of sampling required. We consider the region of the landscape
relevant for folding from extended (rather than partially un-
folded10) structures, and use basin-hopping global optimiza-
tion17–19 and discrete path sampling20–22as the search meth-
ods. The calculated chemical shifts and restraint energies
are obtained using the CamShift methodology,23 which also
provides analytical gradients with respect to the atomic co-
ordinates and is therefore amenable to these search methods,
which are based on efficient geometry optimization.
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2 Methods

2.1 The potential

The energies and gradients were calculated using a molecular
mechanics force field in combination with a restraint poten-
tial based on NMR chemical shifts. The CHARMM22/CMAP
dihedral-potential-corrected all atom force field24–26 with
the FACTS implicit solvation model27 were used to ensure
protein-like behaviour of the polypeptide chain. The re-
straint potential was obtained via a Fortran implementation11

of the CamShift program and methodology.23 CamShift pre-
dicts the1Hα , amide1H, 13Cα , 13Cβ , carbonyl13C, and amide
15N chemical shifts of a given protein structure using cal-
culations based on polynomial functions of the interatomic
distances (and therefore allows analytic gradients to be ob-
tained straightforwardly). The terms in the CamShift function
that we included here account for the influence of backbone,
sidechain and nonbonded atoms, aromatic rings via point-
dipole terms, and an improved description of backbone dihe-
dral angles.

The overall CamShift penalty function is a sum of soft-
square harmonic wells applied atom by atom to the difference
between the chemical shift predicted for that atom in the cur-
rent structure and a corresponding reference shift representing
the target conformation.10 The form of this function penalises
statistically significant deviations in chemical shift (harmonic
region), whilst also allowing a margin of error in the shifts(flat
bottom region) and not allowing large deviations to dominate
the overall potential (hyperbolic tangent region).

A parameterα determines the relative weight of the two
contributions:

Etot = α ECS+(1−α)EFF, (1)

with 0 ≤ α ≤ 1, ECS the CamShift restraint energy, andEFF

the energy from CHARMM22/CMAP and FACTS. An equiv-
alent expression exists for the gradients. We note thatECS is a
dimensionless quantity, whereasEFF has units of kcalmol−1.
This form for the total energy differs from previous work,9–11

in whichEtot = α ECS+EFF for α ≥ 0.

The CHARMM22 potential was symmetrized with respect
to feasible permutations of identical atoms,28 as was CamShift
for the relevant atoms in ARG, GLU, ASP, TYR and PHE
residues. The two hydrogens in GLY residues are not per-
mutable here because CamShift treats them slightly differ-
ently. To avoid the unphysical complication of pairs of struc-
tures with similar but non-identical energies for exchangeof
these two hydrogens, only the conformations with the spatial
order matching the native structure were retained.

2.2 Basin-hopping global optimization

Since the main aim of including “experimental” restraints is
to improve the computational efficiency of protein structure
prediction, we performed global optimization simulationsus-
ing the basin-hopping approach,17–19 as implemented in the
GMIN program,29 in order to identify putative lowest-energy
minima.

To obtain statistics, 10 independent simulations were per-
formed for each landscape. Each run was started from a dif-
ferent conformation with no native contacts, taken from a pre-
liminary high-temperature basin-hopping simulation. Forthe
production runs,kBT in the Metropolis criterion30 was fixed
at 2.5 energy units, and 100 000 basin-hopping steps were
performed. Each step involved perturbing a randomly cho-
sen set of backbone and sidechain dihedral angles by an an-
gle selected at random up to the maximum step size, either
clockwise or anticlockwise. The maximum step size, initially
40◦, was dynamically adjusted to maintain a Metropolis ac-
ceptance ratio of approximately 0.3. Local minima were con-
verged to a root-mean-square gradient of 10−3 Å−1 after each
basin-hopping step, and 10−6 Å−1 during the refinement of the
50 lowest-energy structures, using a slightly modified version
of the limited-memory Broyden-Fletcher-Goldfarb-Shannoal-
gorithm.31,32

2.3 Discrete path sampling

To explore the energy landscapes more widely, from un-
folded to folded conformations, we employed the discrete
path sampling framework20–22 to generate kinetic transition
networks. Each network was set up with an initial discrete
path20 (connected sequence of minima and the intervening
transition states) between an unfolded and a folded confor-
mation, and then expanded to improve the ensemble of fold-
ing paths and refine the overall kinetics. Discrete paths were
identified using an iterative missing connection procedure33

based on Dijkstra’s shortest path algorithm,34 as implemented
in theOPTIM program.35 Transition state candidates were ob-
tained using the doubly-nudged36 elastic band method,37–39

and then converged tightly to a root-mean-square gradient
of 10−6 Å−1 using hybrid eigenvector-following.37,40,41Paths
were refined iteratively using various procedures implemented
in thePATHSAMPLE program,42 to reduce the overall num-
ber of transition states in a path,43,44 to find alternative routes
that avoid high energy barriers,44 and to remove artificial frus-
tration from under-sampling.44 The resulting landscapes were
visualized using disconnectivity graphs.13,14
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3 Results and Discussion

We investigate the energy landscapes for tryptophan zipper1
(PDB code 1LE016), a 12-residue de novo peptide that read-
ily forms a β -hairpin in water, stabilized by two cross-chain
TRP–TRP interactions. The sequence is SER–TRP–THR–
TRP–GLU–GLY–ASN–LYS–TRP–THR–TRP–LYS, and in
our simulations we employed standard, zwitterionic capping
groups at the termini, following the work of Hoffmann and
Strodel.11

We consider the landscapes defined by four values of the
parameterα: 0, 0.3, 0.5 and 0.7. Higher values were found
in preliminary work to have insufficient contribution from the
force field to distinguish protein-like structures from unphysi-
cal ones. For each value ofα, we performed basin-hopping
global optimization and also assembled a kinetic transition
network using discrete path sampling, as described in Section
2. The general input parameters in the basin-hopping runs
were held constant across the different landscapes, at values
chosen using shorter, preliminary simulations. In each case,
the initial unfolded conformation used as the “reactant” end-
point in the discrete path sampling was obtained by locally
minimizing a fully extended structure with the prevailing over-
all potential. For non-zero values ofα, the folded confor-
mation (the “product” endpoint) was the appropriate putative
global minimum from preliminary global optimization runs at
each value ofα. Forα = 0, the product endpoint was initially
taken as the locally minimized PDB structure (with standard
capping groups), since the true global minimum in this case
is a more difficult target, as discussed below. The set of ref-
erence chemical shifts used throughout to represent the target
conformation was calculated using CamShift for the unopti-
mized PDB structure with standard capping groups. This con-
formation is illustrated inFig. 1, using PyMOL.45

For the basin-hopping results on each landscape (defined by the
value of α; all other CamShift parameters10,23 held constant), we
consider the lowest-energy structure found in each of the 10inde-
pendent runs and analyse these in terms of energies and structural
order parameters that characterise the folded state. The order param-
eters we consider are the number of native backbone hydrogenbonds
(denoted O1, maximum 4), using the default geometrical definition
of a hydrogen bond from the CHARMM program;26,46and the num-
ber of distances between centres of mass of neighbouring pairs of
TRP sidechains (in terms of structure not sequence) that match the
PDB structure to within a tolerance of±0.5Å for the two closest
pairs and±1.0Å for the other (denoted O2, maximum 3). These
order parameters are also used, one at a time, to add information to
the disconnectivity graphs by colouring the branches according to the
values for the minima. The tolerances were selected by considering
the changes in the relevant distances and angles on minimization of
the PDB conformation using the CHARMM-only potential, and also
by observing consistent plateaux in the number of structures defined
as matching the reference as the values were increased, for each ki-
netic transition network. Reasonable changes in the tolerances do not
affect the conclusions.

We found that all the potentials (includingα = 0) supported un-

physical structures as stationary points with reasonably low energies,
but separated from corresponding physically reasonable structures by
high barriers. Examples include highly non-tetrahedral –CH2– and
–NH+

3 groups in sidechains. Such structures are kinetic traps and
cause unrealistic frustration in the network,47,48both at the sampling
stage and in the analysis. We removed such structures from our net-
works using a criterion based on the bond angle component of the
molecular mechanics energy for transition states, as this was found
to clearly distinguish the unphysical conformations, and is more gen-
eral than individual geometric criteria.

3.1 α = 0

Energies and order parameters for the lowest minima found inthe 10
independent basin-hopping runs are presented in Table 1. The runs
did not all produce the same lowest minimum, either in terms of en-
ergy or the structural order parameters, indicating that this system is
quite challenging for global optimization. The overall lowest-energy
structure has the hairpin and turn not quite as well-formed as in the
reference structure, and a non-native packing of the TRP sidechains
(all-atom root-mean-square deviation of 2.8Å from the PDB refer-
ence structure).

To highlight the presence of non-native structures lower inenergy
than native, the putative global minimum (run 9) and the lowest min-
ima from basin-hopping runs 2, 5, 7 and 10 were connected in tothe
landscape sampled between unfolded and native conformations, us-
ing subsequent applications of the discrete path sampling approach.
These five structures can be described as hairpin-like with some but
not all of the native hydrogen bonds present and either one orzero
native TRP–TRP contacts, and are the five lowest in energy of the
set of 10 from the global optimization. The lowest-energy minima
from the remaining runs are more than five energy units above the
overall lowest and are structurally distinct from hairpins(some pos-
sess helical turn sections); we chose not to connect them to the main
kinetic transition network here to simplify the presentation, though it
should be noted that the force field supports these structures at lower
energies than native conformations.

Disconnectivity graphs showing the resulting landscape are pre-
sented in Fig. 2. The kinetic transition network contains 74007 con-
nected minima and 88 838 transition states. The colouring byorder
parameter shows that native structures lie above the putative global
minimum for this potential as discussed above, are not prevalent (they
comprise fewer than 3% of the minima), and can be separated byhigh
downhill barriers of up to 24 energy units. These results areall con-
sistent with the global optimization runs.

Short, constant-temperature molecular dynamics simulations were
run using CHARMM26,46for various minima from the lowest-energy
part of the landscape shown in Fig. 2, after an initial heating phase
that did not form part of the subsequent analysis. These structures,
which include the putative global minimum, were found to be reason-
ably stable for at least 3 ns in terms of the structural order parameters
for backbone hydrogen bonding and TRP–TRP interactions. Whilst
there are fluctuations away from the original order parameter values,
and the trajectories leave the original basins of attraction, there are
no substantial periods of time throughout which the order parame-
ter values of the starting minima are lost. Furthermore, none of the
snapshots from these trajectories are classified as native via the order
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Fig. 1 The reference structure of tryptophan zipper 1. Left: view from below, highlighting the backbone hydrogen bonds (tryptophan
sidechain atoms are grey). Right: side view, highlighting the interactions of the tryptophan sidechains (backbone atoms are grey). Other
sidechains are not shown

Table 1 Analysis of the lowest-energy minimum found in each of the 10independent basin-hopping global optimization runs for four values
of α. The total energies given are relative to the lowest found for each landscape, and the CamShift energies (ECS) are the values of the
restraint potential, not including the factor ofα. The structural order parameters are the number of native backbone hydrogen bonds (denoted
O1, maximum four), and the number of distances between centres of mass of neighbouring pairs of TRP sidechains that matchthe PDB
structure to within a tolerance of±0.5Å for the two closest pairs and±1.0Å for the other (denoted O2, maximum three)

Run 1 2 3 4 5 6 7 8 9 10
α = 0

Etot (relative) 6.70 1.58 5.90 9.47 3.04 7.20 1.83 8.58 0.00 0.998
O1 (out of 4) 0 3 0 0 3 0 2 0 2 3
O2 (out of 3) 1 1 0 1 0 0 1 0 1 1

α = 0.3
Etot (relative) 0.0865 1.64 0.00 1.10 0.787 0.321 1.44 1.83 1.66 0.547

ECS 3.71 4.88 2.54 2.24 2.97 3.80 9.31 2.03 4.13 2.99
O1 (out of 4) 4 4 4 4 4 4 4 4 4 4
O2 (out of 3) 3 3 3 2 3 3 2 2 3 2

α = 0.5
Etot (relative) 1.21 1.39 0.239 0.684 2.28 0.892 1.75 0.831 0.604 0.00

ECS 1.59 2.80 1.51 2.16 3.89 1.72 1.14 1.31 1.46 1.79
O1 (out of 4) 4 4 4 4 4 4 4 4 4 4
O2 (out of 3) 2 1 3 3 2 2 2 2 3 2

α = 0.7
Etot (relative) 2.91 0.00 2.96 4.77 3.28 2.10 1.51 5.32 4.95 1.97

ECS 0.693 0.401 0.851 1.55 0.917 0.842 0.598 2.86 0.947 0.654
O1 (out of 4) 4 4 4 3 4 4 4 2 4 4
O2 (out of 3) 0 2 1 1 1 3 3 1 2 1
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Fig. 2 Disconnectivity graphs forα = 0. The vertical axes are the total energy, relative to the lowest-energy minimum. Left: full graph, with
the branches coloured according to the number of native backbone hydrogen bonds in the corresponding local minimum, with blue
representing the maximum (four). Right: magnification of the low-energy region. Here, only the minima with four native backbone hydrogen
bonds are coloured, and the colour scheme now displays the number of distances between centres of mass of neighbouring pairs of TRP
sidechains that match the PDB structure (tolerances given in the text). Red: one. Green: two. Blue: three
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parameters.

3.2 α = 0.3

Energies and order parameters for the lowest minima found inthe
10 independent basin-hopping runs are presented in Table 1.Inclu-
sion of the restraint potential significantly improved the success rate
in locating native-like structures to 60%, according to thetwo order
parameters. Consensus is again not reached at the level of anindi-
vidual minimum; this is the case for all the values ofα considered
here. All 10 runs located native hairpin structures, but four of these
did not manage to fully pack the TRP sidechains in a native manner.
This result may be due to limitations of the geometrical moveset em-
ployed here, or because of the particular sensitivity of1Hα and13C
chemical shifts to backbone dihedral angles.49

Disconnectivity graphs13,14 showing the landscape from the dis-
crete path sampling simulations are presented in Fig. 3. There are
45 426 connected minima and 61 208 transition states. Native-like
structures are lowest in energy, occupying a significant fraction of
the landscape interspersed with near-native minima. The downhill
barriers to native structures are also lower than forα = 0.

3.3 α = 0.5

The success rate forα = 0.5 was lower than forα = 0.3, at 30 %.
Again, all 10 runs located the correct hairpin structure, but there are
more runs that correctly predicted only one or two out of the three
pairs of TRP–TRP distances in the order parameter (Table 1).

Disconnectivity graphs showing the landscape are presented in
Fig. 4. There are 44 152 connected minima and 59 159 transition
states. Although native hairpin structures are numerous and low in
energy, only 22 % of them also possess the fully correct packing of
the TRP sidechains.

3.4 α = 0.7

Although the values of the CamShift restraint potential (ECS) are now
on average the smallest, these runs did not perform as well asα = 0.3
and 0.5 in terms of locating native-like structures, thoughthey are
better thanα = 0 (Table 1). The success rate is 20 %, but now two
out of 10 runs did not locate the full set of native backbone hydrogen
bonds within the fixed number of basin-hopping steps. The predic-
tion of the TRP sidechain packing is also the poorest of the non-zero
values ofα.

Disconnectivity graphs are presented in Fig. 5. There are 35689
connected minima and 51 182 transition states. Many of the minima
are native hairpin structures of comparable, low energy. Among these
hairpins, only 36 % also have correctly packed TRP sidechains, and
they are not well separated in energy from partially folded conforma-
tions, thus hindering the search for the global minimum.

3.5 Overall Trends

Given the composition of the total energy [Etot = α ECS+ (1−
α)EFF], and the relative magnitudes of the two parts in this case
(|EFF| ∼ 300kcalmol−1 and|ECS| ∼ 30), the range of energies de-
creases asα increases. By the timeα reaches 0.7, the contribution of

neither the force field nor CamShift is sufficient to distinguish clearly
between native and partially folded structures. The form ofthe en-
ergy landscape changes from frustrated, with high barriersbetween
native-like structures (α = 0), to funnelling (α = 0.3 and 0.5), to
frustrated again, with many competing structures of similar energy
(α = 0.7). The number of stationary points also decreases asα in-
creases. More importantly, the proportion of minima classified as
native according to structural order parameters for backbone hydro-
gen bonding and TRP–TRP sidechain packing is significantly higher
when CamShift is included.

The values of the restraint potential,ECS, for the lowest-energy
minima are not negligible, even for structures classified asnative,
though they decrease asα increases. The non-negligible values are
therefore probably due to competition between CamShift andthe
force field. In general, this issue will be affected by the relative or-
ders of magnitude of the two sets of energies and gradients, and some
extra adjustment to the weighting may be necessary.11 However, for
this system at least, it was not necessary to obtain conformations with
restraint energies very close to zero. Whilst it would be possible to
reduce the value of the restraint potential by increasing the margin
of error allowed between the calculated and reference shifts (Section
2.1), this change may also have the undesirable effect of reducing the
driving force towards native structures;9 the relevant CamShift toler-
ance parameter must therefore also be chosen with care9,11 (n= 0.5
was used throughout the current work). It has also been notedthat
predicted chemical shifts can be very sensitive to small changes in
protein structure.10

4 Conclusions

We have systematically explored the effects on the energy landscape
of adding a restraint potential term based on calculated andrefer-
ence NMR chemical shifts to the energy of a protein from a molec-
ular mechanics force field. Our test molecule is the tryptophan zip-
per 1 peptide (1LE0), the force field is CHARMM22/CMAP24–26

with the FACTS implicit model of solvation,27 and CamShift23 (re-
coded11 in Fortran) provided the restraint potential and calculated
chemical shifts. The general aim of including such restraint terms is
to improve the efficiency and accuracy of structure prediction sim-
ulations, by incorporating experimental information about the target
conformation. This approach is most useful when the force field sup-
ports an unphysically large number of local minima, and/or does not
have the native state as the global minimum. We therefore performed
basin-hopping global optimization simulations and assembled kinetic
transition networks using discrete path sampling, for a series of to-
tal energy functions with increasing contributions from the restraint
potential, controlled by a mixing parameterα.

The results show that locating a native-like structure for this sys-
tem is relatively difficult without any restraint terms but,as ex-
pected, this situation can be improved significantly by incorporating
restraints from CamShift. We postulate that this improvement arises
because the proportion of minima classified as native, according
to structural order parameters for backbone hydrogen bonding and
TRP–TRP sidechain packing, is significantly higher when CamShift
is included, and also because the organization of the energylandscape
changes. Of the values tested,α = 0.3 was found to give optimal per-
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Fig. 3 Disconnectivity graphs forα = 0.3. The vertical axes are the total energy, relative to the lowest-energy minimum. Left: full graph,
with the branches coloured according to the number of nativebackbone hydrogen bonds in the corresponding local minimum, with blue
representing the maximum (four). Right: magnification of the low-energy region. Here, only the minima with four native backbone hydrogen
bonds are coloured, and the colour scheme now displays the number of distances between centres of mass of neighbouring pairs of TRP
sidechains that match the PDB structure (tolerances given in the text). Red: one. Green: two. Blue: three
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with the branches coloured according to the number of nativebackbone hydrogen bonds in the corresponding local minimum, with blue
representing the maximum (four). Right: magnification of the low-energy region. Here, only the minima with four native backbone hydrogen
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formance in terms of both the basin-hopping statistics and the struc-
ture of the observed landscape, which is the most funnelling. Differ-
ent systems may have different optimal values ofα; however, an ad-
vantage of the form of the total energy function employed here where
the force field component is weighted by(1−α) is that the range of
α values is bounded (0≤ α ≤ 1, compared withα ≥ 0 in previous
work9–11). There is a computational overhead associated with the
CamShift potential that must also be considered: the average CPU
time required per basin-hopping step is longer by a factor ofaround
2.5 when CamShift is included compared with CHARMM22/CMAP
only, increasing slightly withα.

It was also found that including CamShift improves the efficiency
of locating the native secondary structure (backbone hydrogen bond-
ing pattern) to a greater extent than the native sidechain packing. It
therefore seems likely that, for difficult cases, structureprediction
could be achieved efficiently via a hierarchical procedure with al-
ternating phases. The secondary structure could first be optimized
using a potential including restraint terms, followed by a period of
refinement of the tertiary structure and local sidechain packing with
the force field only and an appropriate geometrical move set,such
as group rotations,50,51 in which sets of atoms are rotated as rigid
bodies about chosen axes.
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