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Discretizing an analytic function on a uniform real-space grid is often done via a straightforward
collocation method. This is ubiquitous in all areas of computational physics and quantum chem-
istry. An example in Density Functional Theory (DFT) is given by the external potential or the
pseudo-potential describing the interaction between ions and electrons. The accuracy of the col-
location method used is therefore very important for the reliability of subsequent treatments like
self-consistent field solutions of the electronic structure problems. By construction, the collocation
method introduces numerical artifacts typical of real-space treatments, like the so-called egg-box
error, that may spoil the numerical stability of the description when the real-space grid is too coarse.
As the external potential is an input of the problem, even a highly precise computational treatment
cannot cope this inconvenience. We present in this paper a new quadrature scheme that is able to
exactly preserve the moments of a given analytic function even for large grid spacings, while recon-
ciling with the traditional collocation method when the grid spacing is small enough. In the context
of real-space electronic structure calculations, we show that this method improves considerably the
stability of the results for large grid spacings, opening the path towards reliable low-accuracy DFT
calculations with reduced number of degrees of freedom.

I. INTRODUCTION

Real-space grid based techniques are very important
in disciplines like Quantum Chemistry, Computational
Physics and Applied Mathematics. A real space ap-
proach is mandatory in the solution of complex problem
of Partial Differential Equations, as well as for the treat-
ment of complex environments and non-trivial boundary
conditions. In this framework, the collocation method
is a straightforward procedure that is used to discretize
a known function, to express its values in the real-space
domain. This method represents the most straightfor-
ward and intuitive way to provide numerical coefficients
to discretize a computational problem. In this method,
a function f is represented via a set of point values

fk ≡ f(xk) , (1)

where xk are the sampling points of the simulation do-
main.
As any discretization method, function collocation in-

troduces an error on the numerical results. This error of
course decreases while increasing the number of points
used for the discretization, but its convergence ratio de-
pends of many factors. As an example, imagine that
the function f represents the charge density of a Poisson
Equation

∇2φ = −4πf , (2)

discretized on the points xk by the collocation method.
If the multipoles of the coefficients fk do not correspond

∗ luigi.genovese@cea.fr
† thierry.deutsch@cea.fr

with the ones of the original function f , a numerical so-
lution of the above equation will not produce a correct
discretization of the potential φ, even if the adopted Pois-
son Solver is very accurate. This happens in a number
of numerical treatment: the discrete multipoles (i.e. the
momenta of the coefficients fk) of the collocated func-
tions determine the accuracy of the final results.

In this paper we present a numerical quadrature for-
mula to obtain a set of coefficients fk which can be used
as a generalization of the collocation method for analytic
functions. This quadrature scheme is tailored to preserve
the values of the discrete multipoles of the coefficients,
to be fixed to the momenta of the original function, even
for discretization done on grids of large spacings. Such a
quadrature scheme involves the usage of the Interpolat-
ing Scaling Function (ISF) basis set.

Similar needs for quadrature formula have already
been presented in Ref. [1], in the context of the
grid-point discretization of functions expressed in the
Daubechies wavelets basis, within the so-called “Magic
Filter” method. Here we extend and generalize such con-
cept to the real-space discretization of any arbitrary func-
tions.

In the next section we will illustrate how this problem
appears in a Real-Space based DFT code, and we show
the importance of preservation of the monopole in this
context. We then quantify the discretization errors com-
ing from the collocation method, by explaining our need
for an alternative formula, and the properties that the
generalized collocation scheme should satisfy. Then we
will show the improvements related on the usage of this
new scheme with supporting results from the BigDFT
code, showing how the behavior of the results is stabi-
lized for large grid spacings, enabling us to perform low-
accuracy calculations with reduced number of degrees
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3

{Lk(x)}, if the approximation

f(x) ≃ fL(x) ≡
∑

k

Lk(x)f(xk) (7)

is reasonably accurate, the collocation method can be ap-
plied. This fact stems from the interpolating property of
the family {Lk(x)}. Indeed, an interpolating family is
constituted by a set of functions Lk, each one associated
to a point k of the grid, such that Lk(j) = δkj . From
Eq. (7), fL(xk) = f(xk) and the continuous representa-
tion of f(x) may be given by fL(x).
Given the interpolating property, it is also said that an

interpolating function family is dual to the Dirac deltas.
In other terms, denoting the above function by the bra-
ket notations, we have

|f〉 ≃ |fL〉 =
∑

k

|Lk〉〈δk|f〉 , (8)

where |δk〉 represents the Dirac distribution centered at
point xk, i.e. 〈δk|f〉 = f(xk). The above defined in-
terpolating property implies that the duality relation
〈δℓ|Lk〉 = δkℓ holds.

A. Polynomial exactness and discrete multipoles

The accuracy of the approximation (7) is of great im-
portance for a reliable computational treatment. Clearly,
such accuracy is intimately related to the family of in-
terpolation functions chosen. The interpolating function
families are normally constructed using a family of poly-
nomial functions. An interpolating family {Lk(x)} is said
to be of order m if any monomial function xp (denoted
with |p〉 in the following), with 0 ≤ p < m is exactly ex-
pressed by the interpolating family, for all x lying within
a given interval [a, b]. In other terms

∑

j=na,nb

xpjLj(x) = xp, ∀x ∈ [a, b], 0 ≤ p < m (9)

This is the concept of polynomial exactness. Note that
the index j runs over a set of grid points xj which might
lie outside the support [a, b]. We indicate by [na, nb] the
minimum interval of grid points needed to obtain the m-
polynomial exactness in the interval [a, b].

The collocation method is therefore meaningful for the
functions for which the projector operator

∑

k |Lk〉〈δk|
approaches the identity. The polynomial exactness is im-
portant in determining the accuracy of the interpolation:
a smooth function can reasonably be approximated by its
Taylor polynomial around a given point. The higher the
order of the polynomial exactness of the functions Lk,
the better the Taylor expansion of the original function
would be approximated by the function fL(x), therefore
the norm of the difference |f − fL| will be reduced in the
support [a, b] by O(hm).
It is easy to understand that this condition is meaning-

ful only when the grid spacing size h is smaller than the
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FIG. 2. Top panel: collocation of a Gaussian function of dif-
ferent standard deviation σ on a grid of spacing h = 1. All
Gaussians are centered in points which lie between two grid
spacings. It is easy to see that the collocated values are not
anymore reliable when the ratio h/σ grows above 1. This fact
can also be confirmed by the discrete multipoles of the collo-
cated function, as shown in the bottom panel. It is interesting
to see that all moments, including the ones which should be
zero by symmetry, exhibit the same (poor) convergence rate.

typical oscillations of the function |f〉 we want to repre-
sent. Evidence is shown in Fig. 2 for a Gaussian func-
tion of standard deviation σ, centered between two grid
points. When σ/h . 1, the collocation coefficients f(xk)
give a bad representation of the function, as their ampli-
tudes is suppressed everywhere by decreasing σ. No in-
terpolating family, even of very high order m, will there-
fore be able to faithfully represent the original function.
This situation seems unavoidable: as the expansion co-
efficients of the function |fL〉 are given in terms of the
scalar products 〈δj |f〉, the grid has to provide a reason-
able sampling of the function f such as to exhibit the
O(hm) convergence rate.
When the grid is small enough, one might think that

also the discrete multipoles, i.e.

Mp[fL] =
∑

j

xpjf(xj) , (10)
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follows the same convergence ratio, while approaching
their exact values given in terms of f . However, it is
easy to see that this is not the case. The reason is that
the dual function is always represented by a Dirac distri-
bution, and it is therefore independent of the quality of
the interpolating family.

As shown in Fig.2, the collocation method gives inac-
curate results for the discrete multipoles when σ . h. In
addition, their convergence ratio is of O(h), as the coef-
ficients f(xk) cannot depend on the interpolating func-
tions. At variance from the evaluation of other quantities
like function derivatives, increasing the order of the inter-
polating function will not change the convergence ratio
of the discrete multipoles of lower order.

B. The need of an alternative formula for

collocation

Being |f〉 an analytic function, the accuracy of the mul-
tipoles Mp[fL] is a quantitative evaluation of the accu-
racy of fL which is more severe from the one provided
by the function difference, as it cannot be modified by
varying the family of interpolating functions. We would
like to have a different quadrature formula, such that the
number of preserved discrete multipoles of the original
function is of the same order of the family of interpolat-
ing functions chosen, regardless of the value of the grid
spacing.

As pointed out in the previous section, we need to de-
fine an alternative set of dual functions 〈L̃j |, such that
the multipoles of the original functions are preserved up
to order m. In other terms, we search for a family of dual
functions such that

Mp[fL] =
∑

j

xpj 〈L̃j |f〉 = 〈p|f〉 , 0 ≤ p < m . (11)

It is easy to see that this condition can be obtained by
imposing the m-polynomial exactness of the dual set L̃k

for all x lying in the support χ[f ] of the original function.

In other terms, if the set of L̃k is such that

∑

j

L̃j(x)x
p
j = xp , 0 ≤ p < m , x ∈ χ[f ] (12)

then the multipole preserving property would be guaran-
teed.

However, we would also like to generalize the colloca-
tion method, rather than to replace it by a new quadra-
ture formula. Firstly, we want to impose that for arbi-
trarily small grid spacings, L̃j |f〉 → f(xj). Moreover, a
notable advantage of the collocation method is its closure
with respect to function products. In other terms, given
two collocated functions, |f〉, |g〉, with collocation coeffi-

cients {fj}, {gj}, the product function should satisfy

|fg〉 =
∑

j

|Lj〉〈L̃j |fg〉

=
∑

j,k,ℓ

∫

dxL̃j(x)Lk(x)Lℓ(x)fkgℓ|Lj〉

=
∑

j

|Lj〉fjgj . (13)

This is possible only if the dual functions are such that
∫

dxL̃j(x)Lk(x)Lℓ(x) = δjkδjℓ , (14)

for all the points j, k, ℓ where the coefficients of the func-
tion are not zero. Note that in the traditional colloca-
tion, when 〈L̃j | = 〈δj |, Eq. (14) is always satisfied due
to the interpolating property of Lj , i.e. Lj(xk) = δjk.
That proves that the above property is a feature of the
collocation method.
We therefore search for a family of bi-orthogonal func-

tions |Lj〉, 〈L̃j |, such that all the following properties
hold:

Collocation coefficients: For dense grid spacings, the
action of 〈L̃j | should coincide with the Dirac dis-
tribution;

Biorthogonality: Even though it is not be necessary
that 〈L̃j |Lk〉 = δjk, for any j, k, at least the “weak”
duality relation

∑

i

∫

L̃j(x)Li(x)fi = fj (15)

should be verified for the points j where fj 6= 0.

Closure wrt products: The triple product relation of
Eq. (14) should hold;

Polynomial exactness: The functions L̃j(x) would
guarantee in this way the multipole-preserving
property.

In Sec. A of the Appendix, we demonstrate that all these
properties are met for the quadrature formula

fj ≡ 〈ϕ(m)
j |f〉 =

∫

dxϕ
(m)
j (x)f(x) , (16)

where ϕ
(m)
j is a family of ISF of order m. The fj co-

efficients defined by Eq. (16) may therefore be used at
the place of the function point values f(xj). With this
choice, we are guaranteed to preserve the first m multi-
poles of f during the discretization procedure. For grid
spacings which are small enough, we recover the usual
behaviour of the collocation method thanks to Eq. (A4).
Fig. 3 provides evidence of this.
When the coefficients fj are sensibly different from

f(xj), the values of the coefficients fj should be rather
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FIG. 3. Top panel: evaluation of quadrature formula of
Eq. (16) for the same Gaussian functions of Fig. (2). Inter-
estingly, the results for high values of σ/h differ considerably
from the point values: the discretization coefficients may even
become negative for sharp Gaussians. On the other hand, the
discrete multipolesMp (bottom panel) of the coefficients agree
much better with the expected values, and exhibit the correct
O(hp) convergence ratio.

considered as quadrature terms. However, we might in-
terpret these coefficients as an optimal generalization of
the collocation method, suitable for grid spacings that
are larger than the oscillation of functions we would like
to discretize. This generalization is optimal in the sense
that the loosening of the accuracy in the multipoles of
order p, which is unavoidable for large grid spacings, still
exhibits the correct convergence ratio O(hp).

It is easy to see that, by using a three-dimensional
separable ISF basis

Φ
(m)
i,j,k(x, y, z) = ϕ

(m)
i (x)ϕ

(m)
j (y)ϕ

(m)
k (z) , (17)

our method can be generalized straightforwardly to
three-dimensional grids, especially for separable func-
tions. In the following section we will illustrate the ad-
vantage of this method for electronic structure calcula-
tions.

IV. CONSEQUENCES IN ELECTRONIC

STRUCTURE CALCULATIONS

We illustrate our idea using the BigDFT code [2] which
is based on Daubechies wavelets to express the electronic
wavefunctions and on interpolating scaling functions for
the electronic density and the Kohn-Sham potential. All
tests in this article will be done with the LDA functional.
We have checked that these results are the same for differ-
ent functionals and also for the Hartree-Fock approach.
The BigDFT code has an adaptive mesh with one level

of refinement and the corresponding parameter hgrid

specifies the grid spacing of the coarse resolution. The
finer resolution which is only used near the nucleus so has
a twice finer grid step by construction. As mentioned in
Sec. II, norm-conserving GTH-HGH pseudopotentials [3]
are used in the BigDFT code. They are built with Gaus-
sian functions for ρion and Vnonlocal. Using the colloca-
tion method, BigDFT needs a grid step of the order of
the standard deviation σ parameter of the Gaussian func-
tion. As an example, for the case of the hydrogen atom,
σ has a value of 0.2 atomic units that obliges to use a
grid spacing of the same value i.e. σ/h & 1. In the case
of BigDFT, this means that the input parameter hgrid
should be of the order of 0.4 AU in order to have the
finer mesh of the same resolution as the Gaussian stan-
dard deviation parameter.

A. Accuracy in absolute energy

In Fig. 4, we show the percentage of the difference
of the total energy from the reference calculation with
hgrid= 0.15 in function of the grid spacing. The quadra-
ture formula (16) has been used with ISF of order m =
16. For a grid step greater than 0.6, the collocation
method gives an error bigger than 1%, drastically in-
creasing. On contrary, our multipole preserving method
is more stable given an error of 1% for hgrid=0.9 with
an accuracy of two orders of magnitude up to a grid step
of 2 which corresponds to five times the σ value of the
Gaussian function.
Another intrinsic artifact of the real-space methods,

especially the finite difference scheme or any methods
which uses collocation technique, is the egg-box er-
ror [11, 12]. The discretization procedure is not invari-
ant by global translations and rigid rotations. So dif-
ferent relative positions of the ions with respect to the
mesh of the simulation domain change the discretized
values of Vext. This egg-box effect can be considerably
reduced by our method, for large grid spacings. In the
figure 5, we have plotted the maximum variation of the
absolute energy of a H2 molecule when rotating its main
axis, while keeping fixed interatomic distance. As the
relative positions of the centers of the pseudopotentials
vary strongly with the molecule orientation, this is a
good (even severe) estimator of the egg-box error. We
can see that the multipole preserving method decreases
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FIG. 8. Smoothed Daubechies scaling function φ(16)(t), with
the prescription given by Eq. (21). The values at the integer

points wi = φ(16)(i) are the “magic filter” coefficient for the
original Daubechies scaling function of order m = 8, indicated
by φ(t).

whose collocated values f(xj) would preserve the multi-
poles of Ψ, that can be derived from the original expres-
sion in terms of cµ coefficients. This function is expressed
in terms of the smoothed Daubechies scaling functions

φ
(16)
µ (t), plotted in Fig. 8. Therefore, when starting from

the coefficients cµ, the real space values of ψ might be
given by the formula

fj =
1√
h

m
∑

i=1−m

ci−jwi . (26)

The results of this paper might be useful to define the
inverse relation. Given a set of real-space point values
fj , these coefficients might be interpreted as generalized
collocation values. With this interpretation we are able
to write the piecewise polynomial expansion of the Kohn-
Sham orbital valid on a interval of size 2m around a grid
point µ:

ΨL(x)

∣

∣

∣

∣

∣

[1−m−µ,m−µ]

=

m
∑

j=1−m

fj−µL(1−m,m)
j (

x

h
− µ) .

(27)
This piecewise polynomial function would have the ex-
pansion coefficients in Daubechies wavelets basis given
by the equation

cµ = 〈φµ|ΨL〉

=
1√
h

m
∑

j=1−m

fj−µ

∫ m

1−m

dxφ(
x

h
− µ)L(1−m,m)

j (
x

h
− µ)

=
√
h

m
∑

j=1−m

fj−µwj . (28)

This result shows that the “Magic Filter” method
can be seen as the optimal passage matrix between

the Daubechies wavelet basis and a real-space descrip-
tion in a generalized collocation scheme. As shown in
[1, 2] Eqs. (26) and (28) show that this passage ma-
trix is unitary up to O(h2m). If the Kohn-Sham orbital
would be analytically known, we could apply Eq. (22),
and our generalized collocation scheme would reduce to
Magic Filter method. For this reason, even though it
is generally applicable, the multipole-preserving quadra-
ture presented in this paper perfectly reconciles with a
Daubechies wavelets computational treatment equipped
with the Magic Filter method.

VI. CONCLUSION

Collocation method is a universally applicable pre-
scription for the numerical discretization of functions.
However it suffers from an intrinsic limitation: highly
oscillating functions cannot be well represented on a grid
if the spacing is too large with respect to the typical
length of the oscillations. Therefore the accuracy of the
collocation is rapidly spoiled as soon as the grid spac-
ing becomes too large. Unstable results might occur if
the numerical implementation is done in such a regime.
This limitation implies that there is a upper limit for the
grid spacing in a real space based DFT code, and con-
sequently a lower limit for the number of computational
degrees of freedom. Results become rapidly meaningless
when these limits are overcome.
With this paper, we have presented a method to gen-

eralize the collocation of arbitrary analytic function on
large grid spacing, without spoiling the accuracy of the
discretization. The collocation values might be replaced
by the scalar products of the analytic function with the
basis of Interpolating Scaling Functions. For analytic
and separable functions like Gaussians, this prescription
is very simple and easy to implement in three dimensions
(see e.g. [8]), and tends to the point values when the grid
is fine enough. This method has been implemented in the
BigDFT code, which uses a real-space based description
using Daubechies wavelets. Thanks to the inclusion of
this method, the code exhibits numerical stability over
a wide range of grid spacings, not accessible with tradi-
tional collocation. However, the implementation of this
method is unrelated to Daubechies wavelet basis set, and
can be used in other DFT codes and even in different
contexts, like for example the definition of compensating
charges in Fast Multipole Methods.
Having said that, we would like to point out that

our method is focused in providing stabilisation of low-
accuracy results, that would be unaccessible if traditional
collocation is used. If a high-accuracy calculation is
needed, the grid spacing has to be adjusted in the re-
quired range. Nonetheless, as it preserves numerical sta-
bility, our multipole-preserving approach is guaranteed
to be better than traditional collocation.
The outcomes of this method are very important, as it

enables us to use larger grid spacings even for hard pseu-
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dopotentials and to perform coarse-grained DFT calcu-
lations. As the large grid behaviour of the code is highly
stabilized with this method, the user is now able to per-
form low-accuracy DFT calculations with reduced num-
ber of degrees of freedom. This is fundamental in view
of rapid exploration of the energetic features of a system
at DFT level, or to accelerate the convergence of iter-
ative molecular calcualtions [13]. Notable examples are
the Potential Energy Surface explorations of systems at
the nanoscale, as well as the recently established field of
high-throughput calculations for material design.
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Appendix A: Interpolating scaling functions

Interpolating scaling functions (ISF) [4] arise in the
framework of wavelet theory [5, 6]. They are one-
dimensional functions, and their main properties are:

• The full basis set can be obtained from all the trans-
lations by a certain grid spacing h of the mother
function ϕ(m) centered at the origin.We indicate
the basis set with

ϕ
(m)
i (x) =

1

h
ϕ(m)(

x

h
− i) (A1)

• The mother function ϕ(m) is symmetric, with com-
pact support from −m+1 to m−1. It satisfies the
interpolating property ϕ(m)(j) = δj .

• They satisfy the refinement relation

ϕ(m)(x) =

m−1
∑

j=−m+1

hj ϕ
(m)(2x− j) (A2)

where the hj ’s are the elements of a filter that char-
acterizes the wavelet family, equal to ϕm(j/2) in
the case of ISF, and m is the order of the scaling
function. Eq. (A2) establishes a relation between
the scaling functions on a grid with grid spacing
h and the ones defined higher resolution level with
spacing h/2.

• The filters in Eq. (A2) are defined such that (as
proven in Ref. [7]) that the lowest m moments of
the scaling function are all vanishing but the first,
i.e.:

〈ϕ(m)|p〉 =
∫

ϕ(m)(x)xpdx = δp, 0 ≤ p < m (A3)

This enables us to show that (see e.g. [8])

〈ϕ(m)
j |p〉 = xpj

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-15 -10 -5  0  5  10  15

t

ϕ(t)
ψ(t)

FIG. 9. Plots of interpolating scaling function φ(16)(t) and
corresponding lifted wavelet with 16 vanishing moments.

The ISF families exhibit polynomial exactness: indeed,
the so-called lifting procedure allows to define a set of
functions {ψ̃j} – the lifted wavelets – that are both or-

thogonal to ϕ
(m)
j and have (at most) m vanishing mo-

ments. As the multi-resolution basis formed by the ϕj

at lowest resolution and the lifted wavelets ψ̃j at all the
resolution levels forms a complete set, this proves that
the basis of the ϕj exhibits polynomial exactness up to
order m. Fig. 9 shows an interpolating scaling function
ϕ(16)(t), together with the corresponding lower resolution
lifted wavelets.
The polynomial exactness of the ϕj basis, together

with their compact support, allows us to demonstrate
the collocation property: we can demonstrate that

lim
h→0

∫

dxϕ
(m)
j (x)f(x) = lim

h→0

∫

dtϕ(m)(t−j)f(ht) = f(hj) ,

(A4)
where we have expressed x = ht in terms of the dimen-
sionless unit t. To show this, let us suppose that the
function f(x) can be well approximated by its Taylor
polynomial close to the point xj = hj:

f(ht) =

m−1
∑

q=0

f (q)(xj)

q!
hq(t− j)q +O(hm); , (A5)

which would lead, thanks to Eq. (A3), to

∫

dtϕ(m)(t− j)f(ht)

=

m−1
∑

q=0

f (q)(xj)

q!
hq

∫

dt(t)qϕ(m)(t)+

+O(hm) = f(hj) +O(hm) , (A6)

which proves Eq. (A4).
We have seen that for a grid spacing which is small

enough, the coefficients fj = 〈ϕ(m)
j |f〉 approach the col-

location coefficients f(xj). Therefore in this case any set

Page 9 of 11 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



10

of interpolating functions with polynomial exactness of
order m would be a good choice for Lj , as the corre-
sponding fL would be similar up to O(hm). As a matter
of fact, ISF basis can be treated as an orthogonal basis,
even this is not true: non-orthogonality effects are visible
only up to O(hm).

However, even in this case, it might be useful to iden-
tify the direct basis Lj which better generalizes the col-

location approach. The Lagrange polynomials

L(ia,ib)
k (t) =

ib(i 6=k)
∏

i=ia

t− i

k − i
=

ib−ia−1
∑

q=0

Aia,ib
k,q tq , k ∈ [ia, ib]

(A7)

might constitute a basis of interest. The matrix Aia,ib
k,j is

the inverse of the Vandermonde matrix, i.e.

ib−ia−1
∑

q=0

Aia,ib
j,q iq = δij ∀i, j ∈ [ia, ib] . (A8)

In the following we show by using this basis set as the
direct interpolating basis, we recover the biorthogonality
and the triple product property (Eq. (14)).
Let us consider a set of discretization points ranging

from ia to ib = ia + n. The properties of ISF imply

〈ϕ(m)
i |L(ia,ib)

k 〉 =
n−1
∑

q=0

Aia,ib
k,q xqi = δik , ∀i, k ∈ [ia, ia + n], n < m , (A9)

∫

dxϕ
(m)
i (x)L(ia,ib)

j (x)L(ia,ib)
k (x) =

n−1
∑

p=0

Aia,ib
j,p xpi

n−1
∑

q=0

Aia,ib
k,q xqi = δijδik , ∀i, j, k ∈ [ia, ia + n], n < m/2 . (A10)

Therefore, for all the i lying in the interval [ia, ib = ia+n],

the basis set |L(ia,ib)
k 〉〈ϕ(n)

k | constitutes a biorthogonal
basis generalizing the collocation method to O(hn)[18].

Appendix B: Magic Filter, the original idea

Given a set of 2m-family Daubechies scaling functions
φ centered on a uniform mesh of spacing h, the expansion
coefficients of a given function f(x) in this set are defined
as

cµ =
1√
h

∫

dxφ(
x

h
− µ)f(x) =

√
h

∫

dtφ(x− µ)f(ht) .

(B1)
This discretization of the function f in this basis set has
an algebraic hm convergence rate. In other terms

f(x)− 1√
h

∑

µ

cµφ(
x

h
− µ) = O(hm) . (B2)

A wavelet quadrature in this context is based on the
idea of approximating the expression above by a collo-
cation formula. In other words, we should define some

coefficients wi, where i = 1−m, · · · ,m such that

cµ =
√
h
∑

j

wj−µf(hj) +
√
hO(h2m) . (B3)

This can be possible only if the above formula would
give the exact result when f(x) = xp, 0 ≤ p < 2m. By
comparing (B1) and (B3) in the case of polynomials we
thus find the equation defining the Magic Filter:

∑

j

wj(j + i)p =

∫

dxφ(x)(x+ i)p ∀i, 0 ≤ p < 2m ,

(B4)
which is solved ∀i if and only if

∑

j

wjj
p =

∫

dxφ(x)xp ≡Mp ∀0 ≤ p < 2m , (B5)

the Magic Filters are given by Eq.(10) of Neelov and
Goedecker paper [1]:

wk =

m
∑

j=1−m

A1−m,m
k,j Mj =

∫

dxφ(x)L(1−m,m)
k (x) .

(B6)
This equation shows that the magic filters can be viewed
as the expansion coefficients of the Lagrange polynomials
in the Daubechies scaling functions basis, and is identical
to Eq. (20). Also the paper from Johnson [9] can be used
as a reference in this regard.
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