
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/pccp

PCCP

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


On an economic prediction of the finer resolution level wavelet coeffi-
cients in electron structure calculations

Szilvia Nagya and János Pipek∗b

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
First published on the web Xth XXXXXXXXXX 200X
DOI: 10.1039/b000000x

In wavelet based electron structure calculations introducing a new, finer resolution level is usually an expensive task, this is why
often a two-level approximation is used with very fine starting resolution level. This process results in large matrices to calculate
with and a large number of coefficients to be stored. In our previous work we have developed an adaptively refining solution
scheme that determines the indices, where refined basis functions are to be included, and later a method for predicting the next,
finer resolution coefficients in a very economic way. In the present contribution we would like to determine, whether the method
can be applied for predicting not only the first, but also the other, higher resolution level coefficients. Also the energy expectation
values of the predicted wave functions are studied, as well as the scaling behaviour of the coefficients in the fine resolution limit.

1 Introduction

In data analysis wavelets1 have a large share within the meth-
ods both in scientific and industrial research and applications.
The theory of using wavelet basis functions offers two possi-
ble, different interpretations. The analytic aspect reduces the
decomposition of a function, image or signal to more and more
simple (more and more rough) building blocks as the analysis
proceeds. On the other hand, the synthetic point of view starts
from a rough resolution level of a function and by adding re-
finements, it arrives at a sufficiently precise representation of
the function that is studied.

The most widespread use of wavelets is still in the image
compression techniques2,3, and the other applications are also
mainly analyzers. Wavelets can build a basis for differen-
tial equation discretisation4 and solving5–7, and the solvers
have been developed and tested in various fields of science
from diffusions to electromagnetic waves8–11. In electron
structure calculations wavelet basis has been present since
the early nineties12–15, and in the previous decade both a
wavelet based13,14,16 and a multiwavelet based17–19 solver
have been developed with chemical accuracy and massively
parallel computation possibility. These solvers mostly use two
resolution levels, but adaptively refining solution schemes are
also given for simpler systems20–22.
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As the wavelet basis set behaves as a set of building blocks
that can be chosen uniformly, independently of the system it-
self, we have studied the coefficients of the electron-electron
cusp in the two-electron density matrix23, so that the electron-
electron cusp could be added to a rougher resolution level so-
lution as a last refinement step. In the following a similar idea
is presented, a prediction of the next level coefficients is sug-
gested24, moreover, the asymptotic behavior of the compo-
nents of the predicted wavelet coefficients, the possibility of
using the computationally cheap prediction for further refine-
ments, and the predicted energy levels are studied based on
the suggestions from Ref.25.

1.1 About wavelet analysis

In order to introduce the notations we use in the article for the
wavelets, we shortly summarize the idea behind wavelet anal-
ysis. In the discrete wavelet analysis the Hilbert space of the
problem to be solved is divided into resolution levels which
are embedded into each other. The basis functions of each
resolution level consist of shifted versions of one function on
a regular grid, and the grid distance halves at each consecutive
resolution levels. Let us use the notation for the mth resolution
level scaling function

sm,k(x) = 2m/2s(2mx− k) (1)

where s(x) is the “mother scaling function”, and k is the shift
index. As the refinement levels are embedded into one an-
other, any function that can be exactly expanded at resolu-
tion level m can be also exactly expanded at any finer reso-
lution level m+ n. In particular, the mother scaling function
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belonging to the resolution level m = 0 can be expanded by
the scaling functions of level m = 1, i.e., there exists a refine-
ment equation between the neighboring resolution level scal-
ing functions,

s(x) = 21/2
Ns

∑
i=0

his(2x− i), (2)

with ∑Ns
i=0 hi =

√
2. Wavelets are the basis functions of the

detail space which completes a rough resolution subspace to
the next, refined subspace of the Hilbert space. They are also
shifted and shrunk versions of one common “mother wavelet”
w(x),

wm,k(x) = 2m/2w(2mx− k). (3)

The mother wavelet, as it is an element of the subspace m = 1
can also be expanded by scaling functions,

w(x) = 21/2
Ns

∑
i=0

gis(2x− i), (4)

with gi = (−1)ihNs−i.
In order to simplify later usage of the basis functions, a gen-

eral

χτ(x) =
{

sm,k(x), if τ = {s,m,k}
wm,k(x), if τ = {w,m,k} (5)

basis function with a composite index τ will be introduced.

2 Prediction of the first finer resolution level
coefficients in the wavelet-based solution of
the Schrödinger equation

A wave function can be expanded at a given resolution level
M > 0 either as linear combination of the scaling functions of
the resolution level

Ψ[M](x) = ∑
ℓ∈ΩM

cMℓ sMℓ(x), (6)

or starting from a basic resolution level m = 0

Ψ[M](x) = ∑
ℓ∈Ω0

c0ℓ s0ℓ(x)+
M−1

∑
m=0

∑
ℓ∈Ωm

dmℓ wmℓ(x). (7)

In both of the above cases Ωm denotes the set of the non-zero
expansion coefficients at resolution level m. For M = 0 only
the scaling function terms remain, i.e.,

Ψ[0](x) = ∑
ℓ∈Ω0

c0ℓ s0ℓ(x). (8)

Using expansion (7) or (8), the Schrödinger equation

ĤΨ = EΨ (9)

can be approximated at any resolution level M, resulting in

H [M]Ψ[M] = E [M]Ψ[M], (10)

with the matrix elements

H [M]
ρτ = ⟨χρ |Ĥ|χτ⟩. (11)

Here the notations of (5) were used with χ’s being either 0th
resolution level scaling functions or wavelets of any resolution
level m = 0,1, . . . ,M−1.

As we have mentioned previously, the point to use wavelets
in solving differential equations is that most of the higher res-
olution level wavelet coefficients are close to zero, thus they
can be omitted from the calculations. In Ref.24 we suggested a
method for predicting which of the next refinement level coef-
ficients will be necessary to include to the refined calculation
if the precision of the Mth resolution level is not sufficient,
and telling whether the Mth resolution level sufficiently pre-
cise is by predicting the magnitude of the next resolution level
wavelet coefficients. The method is summarized shortly in the
followings.

Let us suppose, that we have solved the Mth resolution level
problem (10) and having determined both Ψ[M], and the do-
mains of the non-zero coefficients Ωm at each resolution level
0≤m<M. As an approximation for the magnitude of the next
level coefficients dM,k, we can optimize the energy by adding
just one wavelet from the subspace M to the wave function.
The new wave function

Φ[M+1](αk) = Ψ[M]+αk ·wM,k (12)

results in a new energy

E (αk) =
⟨Φ[M+1](αk)|Ĥ|Φ[M+1](αk)⟩
⟨Φ[M+1](αk)|Φ[M+1](αk)⟩

. (13)

Using the Ritz variation principle for the ground state results
in

dE (αk)

dαk
= 0,

d2E (αk)

dα2
k

> 0. (14)

The solution is

αk =


−λ +

√
λ 2 +1, if ⟨wM,k|Ĥ|Ψ[M]⟩> 0

−λ −
√

λ 2 +1, if ⟨wM,k|Ĥ|Ψ[M]⟩< 0
0 if ⟨wM,k|Ĥ|Ψ[M]⟩= 0

, (15)

where the shorthand notation

λ =
E [M]−⟨wM,k|Ĥ|wM,k⟩

2⟨wM,k|Ĥ|Ψ[M]⟩
(16)

was introduced. This value of αk predicts the real value of
the wavelet coefficients dM,k not only for the ground states,
but also for the excited states as it was proven in Ref.24. It
can also be seen, that the values of alpha are approximately
αk ≈ 1

2λ if ⟨wM,k|Ĥ|Ψ[M]⟩ is near zero.
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A) B)

Fig. 1 A) The values WM,k as a function of the normalized shift index k for resolution levels M = 1, . . . ,6 for a 1D harmonic oscillator model
system with ω = 1 a.u., calculated with Daubechies basis set of support length 8. B) The values WM,k as a function of the normalized shift
index k for resolution levels M = 1, . . . ,5 for a 1D potential well model system with a width of 8 a.u. and height of V0 = 104 a.u., calculated
with Daubechies basis set of support length 6. Atomic units were used.
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Fig. 2 The values RM,k, λ and αk as a function of the normalized shift index k for wavelet resolution levels M = 1, . . . ,6 for a 1D harmonic
oscillator model system with ω = 1 a.u., calculated with Daubechies basis set of support length 8. Ground state and atomic units were used.
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3 Matrix elements and singularities

In the infinitely fine resolution limit the values
E [M] = ⟨Ψ[M]|Ĥ|Ψ[M]⟩, RM,k = ⟨wM,k|Ĥ|Ψ[M]⟩, and
WM,k = ⟨wM,k|Ĥ|wM,k⟩ constituting the approximation
αk and their scaling properties with the resolution level M can
be calculated.

The scaling properties of WM,k can be studied easily: it con-
sists of the kinetic energy and the potential energy terms in
one-electron systems. The generalization for multiple elec-
trons can also be carried out. The scaling behaviour of kinetic
energy term

⟨wM,k|−
1
2

∆|wM,k⟩ (17)

with the resolution level M can be calculated by using the def-
inition

wM,k = 2
M
2 w(2Mx− k) (18)

and applying the variable transformation y = 2Mx− k, results
in

1
2

22M⟨w0,0|∆|w0,0⟩. (19)

In case of the potential energy term

⟨wM,k|V |wM,k⟩=
∫

w∗
M,k(x)V (x)wM,k(x)dx, (20)

the substitution (18) and changing of the integration variable
to y = 2Mx− k result in∫

w∗
M,k(y)V (2−M(y+ k))wM,k(y)dy →V (0)⟨w0,0|w0,0⟩,

(21)
if M is large.

In order to test the applicability of the wave function predic-
tion method we have chosen two well-known one-dimensional
models. The first model is the Harmonic oscillator with a well-
behaved, smooth, quadratic potential, for testing the behaviour
of the method in those spatial domains, where in realistic cases
the potential function is smooth. In molecular systems such
regions can be found between the nuclei in the bonding do-
mains, as well as at the asymptotic tails. However, in realis-
tic atomic systems, the external potential exhibits Coulombic
singularities, resulting in a more detailed fine resolution level
structure of the wave function at the singularities. In order to
simulate this behaviour we have chosen a one-dimensional po-
tential with derivative singularities and smooth parts as well.
Correspondingly, the second model system was chosen as the
well-known box potential with two (very high) sharp edges
and a flat well in between. For these potentials, the calcu-
lation of the matrix elements can be reduced to solutions of
very small sized ( Ns ×Ns) eigenvalue equations, according to
Refs.11,24,26.

The values of WM,k (local energy contribution) can be seen
in Figure 1. In the first subplot we have applied a one dimen-
sional harmonic oscillator model with ω = 1, in the second
subplot an electron in a box with width 8 a.u, and wall height
V0 = 104 a.u. The dominance of the kinetic energy term in the
higher resolution levels is clearly visible on the plots.

Similar calculations can be carried out for determining the
behavior of the values RM,k. If M is large enough, the value
of Ĥ|Ψ[M]⟩ in RM,k approximates E|Ψ[∞]⟩ very well, as well
as the energy E [M] approximates its infinitely fine resolution
level limit, the exact energy E. Using these values, the limiting
behavior of RM,k can be calculated as

⟨wM,k|E|Ψ[∞]⟩= E
∫

w∗
M,k(x)Ψ

[∞](x)dx. (22)

A Taylor series expansion of the wave function around 0

Ψ(2−M(y+ k))≈ Ψ(0)+Ψ′(0) ·2−M(y+ k) (23)

results in

2−
3M
2 EΨ′(0)

∫
yw∗(y)dy. (24)

Note, that the first moment of the wavelet, µ1 =
∫

yw∗(y)dy
appears in the expression, as well as the exact energy and the
derivative of the exact wave function at 0. The values of RM,k
can be seen in Figure 2. The excited states as well as other
basis sets result in very similar tendencies in RM,k. The value
of RM,k oscillates a lot, but the overall scaling, especially for
larger Ms meet the description in (24). As we have found pre-
viously21,22, the indices, where RM,k is large are the positions
where further refinement might be necessary, moreover, for
most of the indices RM,k behaves very similarly to αk.

The scaling properties of λ can be easily derived from (21)
and (24),

λ ≈ 1
2EΨ′(0)

2
7M
2
⟨w0,0|△|w0,0⟩

µ1
. (25)

For large values of λ , i.e., when RM,k ≈ 0, the predicted co-
efficients are approximately 1

2λ , and the number of these Mth
level coefficients αk is 2M times the interval length, thus the to-
tal weight 2Mα2

k of the Mth resolution level is less than 2−6M .
If all the resolution levels above M are omitted from the cal-
culations, the total weight that is lost is less than

∞

∑
m=M

2−6m =
2−6M

1−2−6 . (26)

4 Energy predictions

Due to the improved precision of the wave functions, the en-
ergy expectation values can be also be more precise. The exact
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Table 1 Energy levels of a simple 1D harmonic oscillator model system. The exact energies, the energies E [M] calculated as eigenvalues of
the Mth resolution level approximation of the Hamiltonian, and the predicted energies EM

pred calculated from E [M−1]. Atomic units and
Daubechies-8 basis set were used.

Energy Ground state 1st excited state 2nd excited state 3rd excited state 4th excited state
Exact 0.5 1.5 2.5 3.5 4.5
E [0] 0.517112256390810 1.599404458146794 2.777022029081063 3.997082442456408 5.186398997999037
E1

pred 0.502172810810787 1.518800774886581 2.573978630132646 3.689029670234657 4.847482745389376
E [1] 0.500808994455534 1.506441583382804 2.525266283013718 3.566883650097235 4.637885946573929
E2

pred 0.499779606006445 1.498478772113361 2.495343564778601 3.491846904710259 4.492240615775458
E [2] 0.500017441275289 1.500152737719495 2.500673509869070 3.502041349156252 4.504873856129472
E3

pred 0.499992232871423 1.499933033305139 2.499711780886731 3.499154925008878 4.498064719850611
E [3] 0.500000295257151 1.500002639582547 2.500011930589652 3.500037205990299 4.500091693592365
E4

pred 0.499999854828044 1.499998706339830 2.499994180696348 3.499981963890681 4.499955871984413
E [4] 0.500000004706870 1.500000042294175 2.500000192296497 3.500000603696133 4.500001498629072
E5

pred 0.499999997629393 1.499999978717204 2.499999903347566 3.499999697018824 4.499999249169179
E [5] 0.500000000072438 1.500000000664393 2.500000003027253 3.500000009522552 4.500000023679339
E6

pred 0.499999999962497 1.499999999662935 2.499999998466288 3.499999995179508 4.499999988018145
E [6] 0.500000000027025 1.500000000022808 2.500000000046947 3.500000000155680 4.500000000382068

energies of ith excited states of the previously studied poten-
tials’ (harmonic oscillator and electron in a box) can be com-
pared to the eigenenergies E [M] of the Hamiltonian expanded
up to the Mth resolution level and to the expectation values
EM

pred calculated with the Mth level predicted wave functions,
where the predictions are deduced from the (M−1)st level ap-
proximation. The energy level corrections resulting from the
predicted wave functions are given in Table 1 for the harmonic
oscillator and in Table 2 for the box potential. The calculations
were carried out on one-dimensional models with Daubechies
wavelets of support length 8 and 6, respectively. It can be seen,
that the predicted energy mostly overcompensates the error of
the energy arising from the solution of the previous resolution
level eigenvalue equation in case of the harmonic oscillator,
whereas in case of the box potential it gives very good results
and stays always between the energy it is predicting from and
the energy it is predicting for.

In Figure 3 the errors of the energies E [M] and EM+1
pred are

plotted for resolution levels M = 2, . . . ,6, which shows a clear
improvement of the predicted energies compared to the eigen-
values of the previous resolution levels. If the energy differ-
ences versus the wave function norm differences are plotted
on a logarithmic scale, we count on decreasing the energy er-
rors approximately linearly as a function of the norm-square
differences, i.e., a power law behavior is expected. Figure 4
shows the energy difference as a function of the norm-square
difference of the solutions of the eigenvalue equations at var-
ious resolution levels and the predictions arising from these
solutions for the next resolution levels. The expected linear
function with slope 1 almost fits the curves.

5 Predictions for the 2nd finer resolution coef-
ficients and higher resolution levels

We have demonstrated24, that a computationally economic
calculation can predict the wave functions’ next resolution
level coefficients, but using these coefficients as a basis of
another refinement could result in even more economic cal-
culation scheme. Let us suppose, that we have an eigenvector
of the Mth resolution level problem Ψ[M], and the predicted
wavelet coefficients αk for the next resolution level, i.e., we
have a predicted wave function

ΨM+1
pred = Ψ[M]+∑

k
αkwM,k. (27)

Similarly to the first prediction, a secondary predicted wave
function can be introduced by using one wavelet of the next
resolution level,

ΦM+2
pred (βk) = ΨM+1

pred +βk ·wM+1,k (28)

a new energy expression can be derived

E (βk) =
⟨ΦM+2

pred (βk)|Ĥ|ΦM+2
pred (βk)⟩

⟨ΦM+2
pred (βk)|ΦM+2

pred (βk)⟩
. (29)

Applying the variation principle, the resulting coefficients,
similarly to (15) are

βk =


−µ +

√
µ2 +1, if ⟨wM+1,k|Ĥ|ΨM+1

pred ⟩> 0
−µ −

√
µ2 +1, if ⟨wM+1,k|Ĥ|ΨM+1

pred ⟩< 0
0 if ⟨wM+1,k|Ĥ|ΨM+1

pred ⟩= 0
.

(30)
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Table 2 Energy levels of a simple 1D potential well model system with a width of 8 a.u and height of V0 = 104 a.u. The exact energies are
approximated with that of the infinite height potential well, the energies E [M] calculated as eigenvalues of the Mth resolution level
approximation of the Hamiltonian, and the predicted energies EM

pred calculated from E [M−1]. Atomic units and Daubechies-6 basis set were
used.

Energy Ground state 1st excited state 2nd excited state 3rd excited state 4th excited state
Exact (V0 = ∞) 0.077106284383511 0.308425137534042 0.693956559451596 1.233700550136170 1.927657109587765
E [0] 0.147460025959808 0.621084594682282 1.425065515190754 2.605478407959908 4.388770664703637
E1

pred 0.123211827105759 0.449885987869410 0.870740361199860 1.786811757254302 3.598332222296299
E [1] 0.093687568730919 0.374502637742428 0.846259835175265 1.527812624224056 2.471787261792321
E2

pred 0.085243299626242 0.336824916291484 0.742853475639093 1.295242703321165 2.013801411238339
E [2] 0.080542422342473 0.322054628374328 0.724595494544035 1.289561307300119 2.021463699903037
E3

pred 0.078086074197066 0.312215000417627 0.701935585766946 1.246327286529497 1.943858093514579
E [3] 0.077674505733333 0.310702990618433 0.699124299049468 1.243082007419446 1.942939310175101
E4

pred 0.077156782297233 0.308626455396157 0.694397847938545 1.234422644693223 1.928573627800850
E [4] 0.077128303197236 0.308515168814296 0.694167910829924 1.234103523980229 1.928355839996265

A) B)

Fig. 3 Energy errors vs. resolution level of A) a 1D harmonic oscillator model system with ω = 1 a.u., calculated with Daubechies basis set of
support length 8, and B) a 1D electron in a box problem with potential well with 8 and wall height V0 = 104 a.u. E [M],i denotes the energy
levels calculated from the Mth level eigenvalue equations and EM,i

pred means the Mth level predictions calculated from the M−1th level
solutions. The excitation index is i. Atomic units were used.

6 | 1–10

Page 6 of 10Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



A) B)

C) D)

Fig. 4 Energy differences vs. norm square differences of the Mth level solutions of the eigenvalue equations and the predictions for the next
resolution levels for the ground and excited states i = 0, . . . ,5. A model system of a 1D harmonic oscillator and Daubechies basis set of
support length 8 were applied in subplots A) and C), whereas an electron in a potential well of width 8 and wall height 10,000 in
Daubechies-6 basis in subplots B) and D). E [M],i denotes the energy levels calculated from the Mth level eigenvalue equations and EM+1,i

pred
means the M+1st level predictions calculated from the Mth level solutions. Clearly, the predictions have smaller errors than the eigenvalue
solutions at one resolution level less (these are the elements that they are generated from), but have larger error than the values they give
prediction for. Atomic units were used.
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Here, the shorthand notation covers a bit more complicated
meaning

µ =
EM+1

pred −⟨wM+1,k|Ĥ|wM+1,k⟩
2⟨wM+1,k|Ĥ|ΨM+1

pred ⟩
. (31)

As it can be seen from the previous two sections, the energy
level EM+1

pred differs not too much from the previous energy
E [M], moreover, after a given, but not too large resolution level,
the complete term EM+1

pred is negligible compared to the other
component of the denominator in µ . Using the same model
systems as previously, in Figures 5 and 6 we have plotted the
exact Mth resolution level expansion coefficients dexact

M,k , the

eigenvectors of the Mth level Hamiltonian deig
M,k, the first pre-

dicted coefficients αk, arising from the (M − 1)st level solu-
tion, and the secondary predicted coefficient βk, which is de-
rived from the (M−2)nd level eigenvector solution, and from
its prediction to level M − 1, i.e., from ΨM−1

pred . Note, that the
coefficients of level m < M also differ for the various “solu-
tions” of level M, however, they are not plotted due to only
slightly visible differences.

The figure shows, that the secondary predicted coefficients
have a slight oscillation around a rather good prediction for
the exact values of the coefficients. This oscillatory behaviour
can be reduced by an averaging of the neighbouring coeffi-
cients (see the thin red line on the figures), however, at the
derivative singularities the averaging worsens the results, thus
this aspect needs further investigation. Also, the energy ex-
pectation values using these doubly predicted wave functions
are not expected to give reasonably good results: the second
prediction is to be used for a approximation of the error in the
calculations with the first prediction. Further predictions seem
to have worse results.

6 Summary

We have presented a prediction method for the magnitude of
the next resolution level coefficients of a wavelet based elec-
tron structure calculation, if an eigenvalue calculation of the
discretised Hamiltonian at resolution level M is already car-
ried out. We have given the scaling behaviour of the predicted
coefficients, which was 2−6M and the total omitted weight if
the calculation is stopped at resolution level M.

We have demonstrated, that the energy expectation values
with the predicted wave functions give better result than the
original energies, however, an overcompensation of the errors
occurs often.

We have also studied the secondary predicted coefficients,
that give in average a fair approximation of the real wavelet
expansion coefficients, even though an oscillation around the
ideal value and a slight overestimation can also be experienced
in our model systems.
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M=1 M=3 M=5

Fig. 5 Ground state expansion coefficients dexact
M,k , deig

M,k, predicted coefficients αk, and secondary predicted coefficients βk for a 1D harmonic
oscillator model system using Daubechies-8 basis set for wavelet resolution levels M = 1,3,5. The first predicted coefficients αk belonging to
wavelet resolution level M are generated from the wave functions Ψ[M], whereas the second predicted βks from ΨM

pred that were predicted

from Ψ[M−1] (In case of M = 1 coefficients, the pure scaling function expansion (8) is used for the basis of the second prediction). On the
abscissa the indices are scaled to their real spatial position. Also an averaged secondary prediction is plotted, which gives a better
approximation of the real coefficients. Atomic units were used.

M=2 M=3 M=4

Fig. 6 2nd excited state expansion coefficients dexact
M,k , deig

M,k, predicted coefficients αk, and secondary predicted coefficients βk for a 1D
electron in a box model system using Daubechies-6 basis set for wavelet resolution levels M = 2,3,4. At the box walls (derivative
singularities of the potential, at positions ±4) it is clearly visible, that much higher order correction terms are needed than in the smooth cases.
Atomic units were used.
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