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The quantum dynamics of electron transfer in mixed-valence organic compounds is investigated using a reaction path model cal-
ibrated by constrained density functional theory (cDFT). Constrained DFT is used to define diabatic states relevant for describing
the electron transfer, to obtain equilibrium structures for each of these states and to estimate the electronic coupling between
them. The harmonic analysis at the diabatic minima yields normal modes forming the dissipative bath coupled to the electronic
states. In order to decrease the system-bath coupling, an effective one dimensional vibronic Hamiltonian is constructed by parti-
tioning the modes into a linear reaction path which connects both equilibrium positions and a set of secondary vibrational modes,
coupled to this reaction coordinate. Using this vibronic model Hamiltonian, dissipative quantum dynamics is carried out using
Redfield theory, based on a spectral density which is determined from the cDFT results. In a first benchmark case, the model is
applied to a series of mixed-valence organic compounds formed by two 1,4-dimethoxy-3-methylphenylen fragments linked by
an increasing number of phenylen bridge. This allows us to examine the coherent electron transfer in extreme situations leading
to a ground adiabatic state with or without barrier and therefore to a trapping of the charge or to an easy delocalization.

1 Introduction

Electron transfer (ET) in organic or inorganic chemical and in
biological systems has received a widespread interest1–3 and
remains a challenging subject both experimentally and theo-
retically. Electron transfer is central in many redox biological
processes4,5 but also in the dissociation of excitons at hetero-
junctions in photovoltaic materials6–10 or in molecular elec-
tronics11. It is intrinsically a nonadiabatic process involving
at least two electronic states, and the recent observation that
quantum coherence can survive for a surprisingly long time
even in biological systems12–16 at room temperature has re-
newed the interest in modelling such quantum processes in
complex environments. Long-lived coherences imply that the
quantum system remains in a superposition of states before
reaching the Boltzmann equilibrium. To explore this relax-
ation process, the basic tool is a system-bath Hamiltonian17,18

in which the system consists of the two electronic states and
the bath models the environment, usually by harmonic oscilla-
tors or phonon modes. The usual Donor-Acceptor view corre-
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sponds to the diabatic electronic representation and the main
parameter is the electronic coupling responsible for the trans-
fer. In this context, however, obtaining the relevant diabatic
states remains a challenge in large molecules, and is still cur-
rently investigated using different strategies6,19–31.

In this work, we address the ab-initio calibration of the
diabatic system-bath Hamiltonian by cDFT32–34(constrained
density functional theory) which is particularly appealing
since it constrains the electron density optimization to define
ad hoc the diabatic electronic states. Here, each state results
from a particular optimization of the ground state with a con-
strained distribution of the electronic density. Subsequently,
ET dynamics is analyzed by a method for open quantum sys-
tems. The crudest approach is the spin-boson model in which
the system is restricted to the two electronic states at their
equilibrium geometries and the bath is formed by all vibra-
tional modes. This two-level dissipative model might lead to
a strong coupling of the electronic degrees of freedom with
the vibrations, possibly not allowing for a perturbative treat-
ment. In this case, one might resort to non-perturbative meth-
ods, like those based on path integrals35,36, or on the Hi-
erarchic Equations of Motions (HEOM) method13,37–40, or
to a full-dimensional dynamical treatment using the Multi-
Configuration Time dependent Hartee (MCTDH) methodol-
ogy41–44, possibly in its recent multi-layer formulation (ML-
MCTDH)45–48.
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An alternative route is to augment the system dimensional-
ity by including certain vibrational degrees of freedom into
the system such that the coupling to the remaining bath is
reduced17,49–52. In this work, we follow this latter strategy.
Specifically, the primary normal modes are partitioned into a
linear reaction path coordinate which connects the two equi-
librium diabatic structures (to be considered as part of the sys-
tem) and secondary modes which form the new bath. These
new bath modes are chosen to be orthogonal, but coupled to
the reaction path. This approach is one of the possible reaction
coordinate representation of the spin-boson model providing
the usual Marcus scheme53 with two crossing diabatic poten-
tial energy curves. This strategy has been frequently discussed
in dissipative dynamics54–58. Note that the definition of the re-
action coordinate is not unique, and alternative choices exist,
which will be discussed.

Once a system / bath separation is obtained which allows
for a perturbative treatment, a wide range of dynamical meth-
ods exist, like semiclassical59–61, quantum35,36 or stochastic
methods62,63. Their validity with respect to the dynamical
regime are reviewed for example in Ref.64.

In this work, we model the dissipative dynamics based on
the Bloch-Redfield approach65–67, which has proven its use-
fulness in various applications68–71. It is based not only on
a weak coupling assumption, but also on the Markov ap-
proximation, valid when the bath correlation functions decays
rapidly as compared to the typical system timescales. Note
that this constraint can be overcome by non-Markovian meth-
ods72–75, and the vibronic Hamiltonian developed in this work
could in the future be directly used within this framework.

Organic mixed-valence compounds76 can be investigated
as model system for electron transfer. The chosen sys-
tem is composed of 1,4-dimethoxy-3,methylphenylens groups
(DMP) bound by a n-paraphenylens chain (DMPn). DMPn
are organic mixed-valence compounds77,78 in their +I degree
of oxidation. The donor and acceptor sites of these aromatic
polymers are bound by an increasing chain of n-paraphenylens
rings. This allows us to consider different situations with de-
creasing electronic coupling and therefore different electron
transfer regimes.

The paper is organized as follows. The molecular system is
presented in Sec. 2. Sec.3 summarizes the cDFT method and
gives the structural results. The vibronic diabatic Hamiltonian
calibrated by cDFT and the one-dimensional effective Hamil-
tonian after the extraction of a reaction path are discussed in
Secs. 4 and 5, respectively. The tools for describing the dis-
sipative ET process are then defined in Sec. 6. Finally Sec. 7
analyzes the different dynamical behaviours and temperature
effects, before concluding by giving perspectives for future di-
rections.

+

Electron donorElectron acceptor

Fig. 1 DMPn: 1,4-dimethoxy-3,methylphenylens groups bound by a
chain of n-paraphenylens.

2 Molecular system

We consider 1,4-dimethoxy-3,methylphenylens groups
(DMP) bound by a n-paraphenylens chain (DMPn). One of
these DMP groups carries a charge. The n value corresponds
to the number of paraphenylens cycles (0,1 or 2 in this study)
bonding donor and acceptor groups. Our aim is to study
the effect of the bridge onto the charge transfer between
the acceptor DMP group (positively charged) and the donor
(neutral), as shown in Fig. 1. The two diabatic electronic
states of the spin-boson model are then degenerate and
correspond to the state with the positive charge on the left (L)
or the right (R) ring.

Within the Robin-Day classification scheme79, mixed-
valence compounds can be separated in three different classes
following the strength of the electronic coupling that repre-
sents the ability of the charge to migrate from one site to
another. Class I corresponds to the case where the charge
is completely localized and cannot move. This corresponds
to a vanishing electronic coupling. In class II, a weak elec-
tronic coupling leads to a partial delocalization of the charge.
In class III, a strong electronic coupling allows the charge to
be completely delocalized over the two cycles. Experimental
studies77,78 show that DMP0 is a class III compound (charge
of +0.5 on each cycle), whereas DMP2 has all the features of
a class II compound (charge +1 localized on one cycle and
a weak electronic coupling (around 400 cm−1)). Neverthe-
less, DMP1 exhibits features of class II and class III (charge
partially localized +0.8 on acceptor cycle and +0.2 on donor
one).

In this work, we study how this classification manifest in the
dynamics of the energy transfer and its dynamical interplay
with nuclear deformations.

3 Electronic structure

To assess charge transfer dynamics, as well as to analyze ge-
ometrical characteristics, extended electronic structure calcu-
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lations have been performed, both with constrained DFT and
conventional DFT.

3.1 Electronic Structure Calculations

3.1.1 Constrained DFT. cDFT calculations have been
performed with a locally modified version80,81 of the software
deMon2k82. Resolution of the Kohn Sham equations were
performed in the context of auxiliary DFT, meaning that aux-
iliary electronic density functions are used to compute both the
Coulomb and exchange-correlation (XC) contributions to the
Kohn-Sham potential83. All the calculations was performed
with the TZVP (Triple Zeta with Valence Polarization Func-
tions) atomic basis set84 and the GEN-A2* auxiliary basis
set85. Adaptive grids of fine mesh have been used to calculate
the XC potential86. Tolerance criteria of 10−9 Ha and 10−6 Ha
have been used for the SCF (Self Consistent Field) energy and
for the density fitting coefficient error. We tested the follow-
ing XC functionals: OPBE87,88, OPTX-LYP89, revPBE9890,
B3LYP91 and PBE088,92. Calculations with hybrid function-
als have been obtained through a variational fitting of the Fock
exchange potential93. The influence of dispersion interactions
on the optimized geometries were found to be negligible (see
Supporting Material) and were not included in the results pre-
sented below.

Diabatic states relevant to charge transfer processes have
been defined with cDFT by imposing the net charge differ-
ence94 between the two extreme aromatic cycles to be equal to
one. The atomic charges for cDFT calculations were defined
according to the Hirshfeld scheme95. Geometry optimizations
for each diabatic state have been carried out with tolerance
criteria of 10−5 Ha/bohr. The normal modes have been cal-
culated under the harmonic approximation from the second
derivatives of the energy with respect to the nuclear displace-
ments (Hessian matrix). The Hessian matrix elements have
been calculated numerically by the finite differences method.
The electronic coupling element between diabatic states are
calculated according to the orthogonalization procedure de-
scribed by Wu and Van Voohris96.

3.1.2 Standard DFT details. To complement the results
obtained by cDFT, we also perform standard DFT calculations
using Gaussian0997. This enables us to use other XC function-
als that were not available in our version of deMon2k such as
the long-range corrected (ωB97XD98) exchange-correlation
functional. The hybrid (M06HF99) functional has also been
used with Gaussian09. All these calculations have been car-
ried out with a 6-311g** basis, geometry optimization using
tight convergence criterion and ultrafine grids. Note that we
verified that addition of diffuse functions did not have signif-
icant effects on the optimized geometries (see Supplementary
Material).

MeO

OMe

Me

MeO

OMe

Me

n

δ

δ'

C

MeO

OMe

Me

O
+

Me

MeO
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Fig. 2 Lewis structure of DMPn molecules (upon oxidation, donor
cycle have a benzoidal structure whereas the acceptor one exhibits a
quinonoidal structure). For clarity, only one mesomeric formula is
shown here.

3.2 Results: geometries and electronic coupling

The ET dynamics is determined by the geometical changes
and the electronic coupling. In this section, we present re-
sults of the geometries as well as the electronic coupling, as
obtained by cDFT detailed above.

3.2.1 Geometries. The quality of the geometry is of great
importance as it is the main parameter used in the parametriza-
tion of the bath. Atomic coordinates of each optimized
molecules are reported in supplementary material.

Upon oxidation (see figure 2), a benzoidal-quinonoidal de-
formation of the acceptor cycle can be noticed on the Lewis
representation of the molecule. One can use this general ge-
ometric behavior as a parameter to assess how localized the
charge is on each cycle77,78. In particular, the C-O bond length
δ (given in Table 1) becomes shorter as the cycle becomes
charged. For DMP0, the C-O bond length is identical for the D
and A cycles, while a difference appears for DMP1 and which
is even more pronounced for DMP2. This data illustrates the
Robin-Day classification of DMP series of molecules. The
DFT optimized geometries do not systematically reproduce
this trend because of self-interaction-error. With a pure GGA
OPBE functional or the hybrid B3LYP functional, the C-O
bond length is similar on both sides of the molecules in the
three cases. These functionals fail to describe the type II na-
ture of DMP2. On the opposite, M06HF predicts the three
molecules to belong to class II. The range separated functional
provides a qualitatively correct picture when comparing the
bond lengths with the experimental values. Note however that
the use of range separated functionals relies on the empiricism
of the determination of the range-separation parameter100.

To circumvent these difficulties, we use the constrained
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Table 1 Variation of C-O bound length δ in of DMPn (n = 0,1,2)
for diabatic (cDFT) or adiabatic states (DFT). A : acceptor cycle / D
: donor cycle.

δ bound length cDFT OPBE DFT OPBE DFT B3LYP
D A D A D A

DMP0 1.32 1.37 1.34 1.34 1.34 1.34
DMP1 1.32 1.37 1.35 1.35 1.34 1.34
DMP2 1.32 1.37 1.35 1.35 1.35 1.35

δ bound length DFT M06HF DFT ωB97XD Exp.
D A D A D A

DMP0 1.30 1.36 1.33 1.33 1.341 1.344
DMP1 1.30 1.36 1.33 1.34 1.331 1.363
DMP2 1.32 1.36 1.31 1.36 1.325 1.370

DFT approach and define relevant geometries in the diabatic
basis. As can be seen from table 1, cDFT provides geometries
that correspond well to the D/A+ description (and also for the
D+/A state, data not shown).

3.2.2 Electronic couplings. In this paragraph, we discuss
the influence of the XC functional of the electronic coupling
using the OPBE optimized geometry (Table 2). The ”Exp.”
column corresponds to measured ET rates using a Marcus
model77,78. As expected, the values reflect a decay of the elec-
tronic coupling with the D-A distance, even though the decay
is very slow, a consequence or the aromatic character of the
bridge molecules. The cDFT values are strongly dependent
on the amount of Fock exchange included in the Kohn-Sham
potential. OPBE (GGA) is clearly unable to produce reliable
values since the computed value is larger for DMP2 than for
DMP1. A monotonic decay is obtained with hybrid function-
als, which is more or less pronounced depending of the per-
centage of non-local exchange. None of the hybrid functional
is fully satisfactory, when compared to the experimental val-
ues. For DMP2, the lowest values are obtained with PBE0-50
(366 cm−1), but the value for DMP0 is too low.

As a consequence, in order to define the electronic coupling
for the dynamical calculations to be presented below, we use
a linear fit of ln(VLR,exp) = −βRDA + b where RDA is the dis-
tance which separates centers of acceptor and donor cycles.
For DMP0 to DMP2, experimental lengths of RDA are in good
agreement with cDFT results. We find β = −0.179 a.u. and
b = 8.38 with least square regression and a determination co-
efficient of 0.977. This approach can be justified in the con-
text of superexchange theory101,102 , where it can be shown
that in tight-binding, second-order perturbation approxima-
tions, VLR,exp follows an exponential decay as a function of
a single RDA coordinate.

Table 2 Electronic coupling calculated with cDFT OPBE, B3LYP,
PBE0, PBE0-50 (PBE0 with 50 % Fock exchange), experimental
fitted data and experimental results

VLR(cm−1) OPBE B3LYP PBE0 PBE0-50 Fit Exp.
DMP0 2364 1598 1400 1083 2007 2330
DMP1 1888 1123 933 608 926 760
DMP2 2254 940 892 366 427 430

4 Vibronic Hamiltonian

A vibronic coupling Hamiltonian is developed to study the in-
fluence of nuclear dynamics onto the ET process, and, vice-
versa, to which extent the ET dynamics influences the nuclear
dynamics.

4.1 Derivation of the vibronic Hamiltonian

To this end, we start from the geometry obtained by optimiza-
tion under charge constraints (cDFT) and the normal modes
q̃L,i corresponding to the (L) configuration. Then, the ge-
ometry of the (R) configuration is expressed using the nor-
mal mode displacements of the (L) configuration. This yields
to a two-state quantum Hamiltonian (atomic units are used
throughout):

H(q̃) =

(
T +VL(q̃) VLR

VRL T +VR(q̃)

)
(1)

with

T = −1
2

M

∑
i=1

∂ 2

∂ q̃2
i

, (2)

VL(q̃) =
1
2

M

∑
i=1

ω
2
i q̃2

i , VR(q̃) =
1
2

M

∑
i=1

ω
2
i (q̃i +di)

2 .

In this expression, the di describe the deformations of the nor-
mal modes of the (L) configuration required to match the (R)
configuration. In other words, they reflect the shifts of the
potential energy minima along each normal mode. The di
were obtained by first putting the (L) and (R) geometries in
Eckart conditions to minimize the contributions from overall
rotation and translation. Then, the atomic displacement vec-
tor in mass-weighted Cartesian coordinates is projected onto
the displacement vectors corresponding to the normal modes
of the (L) configuration103. As a consequence, the di reflect
to which extent the different normal modes are affected by the
ET process. They are shown as a function of the correspond-
ing normal mode frequencies ωi in figure 3.
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Fig. 3 Absolute value of the normal modes displacements |di| in
mass-weighted coordinates obtained with the OPBE functional.

4.2 Results for the vibronic Hamiltonian

For all cases, the distribution of |di| exhibits three different
frequency ranges : below 900 cm−1, we find mainly tor-
sional modes implying the whole molecule, between 900 and
2000 cm−1, there are mainly torsional and stretching modes
( > 1300 cm−1) of aromatic carbon skeleton, while frequen-
cies over 2000 cm−1 correspond to localized C-H stretching
modes.

We want to stress that adding a phenylene ring increases the
number of modes by 30, leading to a higher density of states.

Figure 3 shows the |di| distribution. Between 900 and 2000
cm−1, it keeps the same form and slightly increases from
DMP0 to DMP2 even if the number of modes increases by
13 within this frequency range for each phenylene ring. For

all DMPn molecules, cDFT gives geometries for the accep-
tor and donor ring which are very close, i.e. most of the
stretching of the carbon skeleton of the DMP cycles is simi-
larly displaced regardless of the length of the chain. However,
the |di| corresponding to the frequencies above 2000 cm−1

increase tremendously from DMP0 to DMP1 and to a lesser
extent, from DMP1 to DMP2. This can be explained by the
role of the bridge even though it does not contribute signif-
icantly to the number of modes (increment of only 4 modes
per phenylene ring in this frequency range). The modes above
2000 cm−1 are directly related to the stretching of carbon-
hydrogen bonds. But when considering both donor-acceptor
and acceptor-donor geometries of one DMPn, one can see that
because of the non-planarity of the molecule and in partic-
ular the plane containing acceptor and donor cycles, hydro-
gens of methoxy groups terminal cycles cannot be superposed.
Thus, even in the normal mode representation, all modes im-
plying these hydrogens (and in particular, stretching modes)
are strongly displaced.

5 Coordinate representation of the spin-boson
model

The vibronic coupling Hamiltonian presented in equation (1)
forms the basis of the dynamical calculations. Due to the
large number of modes, a full quantum dynamical treat-
ment is out of reach. A simulation with the promising ML-
MCTDH (Multi Layer-Multi Configuration Time Dependent
Hartree)45–48 method could be investigated with this system
size. However, for further applications, in which the solvent
or protein modes and temperature effects should be taken into
account, we present a dynamical analysis based on dissipative
quantum dynamics.

5.1 Reaction path model

A dynamical treatment based on dissipative quantum dynam-
ics relies on a partitioning into a ’system’ and a ’bath’. A natu-
ral separation would be to treat electronic degrees of freedom
as system, and all nuclear degrees of freedom as a bath. This
leads to the well-known spin-boson model, which has been
widely studied both with path integral methods as well as with
methods based on reduced master equations64.

However, we have found this standard approach not to be
amenable to a subsequent perturbative treatment, since the
coupling of the electronic degrees of freedom to the nuclear
motion was found to be too strong. In this case, a general
strategy is to include a part of the nuclear dynamics into an
extended system, which is subsequently coupled to the re-
maining nuclear degrees of freedom. To proceed along this
direction, we first re-express the normal mode variables by
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qi = q̃i−di/2 to take advantage of the symmetric character of
the studied molecules. The Hamitonian thus reads:

H(q) =

(
T +VL(q) VLR

VRL T +VR(q)

)
(3)

with

T = −1
2

M

∑
i=1

∂ 2

∂q2
i

(4)

VR/L(q) =
1
2

M

∑
i=1

ω
2
i (qi±di/2)2 =

1
2
(q± c)T

ΛΛΛ(q± c) (5)

where we have defined the vector q = (q1, · · · ,qM), the vector
c = (d1/2, · · · ,dM/2), as well as the diagonal M×M matrix
Λi j = δi jω

2
i for compactness. Note that VR corresponds to the

minus sign in eq. (5). To single out a specific nuclear motion
to be treated dynamically, we re-express the nuclear motion
by a new basis ui such that

q =
M

∑
i=1

xiui (6)

where one can choose a certain reaction path vector u1 which
shall be included into the system to be described dynamically.
In what follows, we choose u1 = c/‖c‖, which means that
the reaction path defined by u1 describes a linear interpolation
between the two (L) and (R) structures.

Despite similar in spirit, this ansatz differs from the effec-
tive mode methodology put forward in Refs.51,52,104. This
alternative strategy consists in choosing an effective mode
endorsing the whole vibronic coupling, i.e. the vector g =
ΛΛΛc/‖ΛΛΛc‖. The difference between the two selected active
coordinates can be illustrated in a two-dimensional case as
shown in Fig. 4.

The reference point chosen in this symmetric case coincides
either with the minimum of the ground adiabatic state (class
III) or with the transition state when this state presents a bar-
rier (class II). The u1 vector lies along the line connecting the
two diabatic minima while the g vector is the gradient vector
of the difference between the two diabatic or adiabatic sur-
faces. It is orthogonal to the seam or locus where the diabatic
surfaces are degenerate. By this way, the only direction induc-
ing a variation of the diabatic or adiabatic energy gap is along
this detuning mode. This g vector is one of the three main
vectors used in the description of conical intersections105. Vi-
brations orthogonal to g are thus decoupled from the elec-
tronic system since they do not vary the energy gap but are
still coupled to the vibrational motion along g by cross terms
in the potential energy. Fig. 4 depicts contour plots of the
diabatic (dashed) and adiabatic surfaces (full lines) for class
II and class III systems respectively and the two directions u1

g

u1

-d1/2 +d1/2

-d2/2

+d2/2

0

0

q1

q2

g

u1

-d1/2 +d1/2

-d2/2

+d2/2

0

0

q2

q1

Fig. 4 Two-dimensional representation of the effective mode g and
the reaction path u1. Upper panel : Class III (without barrier).
Lower panel : Class II (with barrier)

and g. One sees that both coordinates present advantages and
weak points. Specifically, u1 really connects the minima and
coincides with the minimum energy path near the transition
state but does not capture the whole vibronic coupling.

For the present system, we analyzed both possibilities.
However, we found that taking u1 as reaction path, and thus
having a reaction path which connects the minima, was im-
portant to achieve a weak coupling to the remaining modes,
making a subsequent perturbative treatment possible. As a
consequence, in what follows, we present results using u1 as
reaction path vector. The remaining ui, i = 2 · · ·M can be con-
structed such that

uT
i u j = δi j i, j = 1, · · · ,M (7)

uT
i ΛΛΛu j = δi jω̃

2
i i, j = 2, · · · ,M (8)

(see Appendix for details)
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Then, both the potentials VL/R and kinetic energies T ap-
pearing in eq.(5) can be transformed to yield

T = T1 +Tb (9)
VL/R(x1, ..xM) = WL/R(x1)+

(
x1± x0

1
)
·B+Vb(x2, ..,xM) (10)

with

T1 =−
1
2

∂ 2

∂x12 , Tb =−
1
2

M

∑
i=2

∂ 2

∂xi2
(11)

WL/R(x1) =
1
2

Ω
2(x1± x0

1
)2

(12)

B =
M

∑
i=2

κixi (13)

Vb(x2, ..,xM) =
1
2

M

∑
i=2

ω̃i
2x2

i (14)

In these expressions, we have used the abbreviations x0
1 =

‖c‖, Ω2 = uT
1 ΛΛΛu1 and κ j = uT

1 ΛΛΛu j
This transformation thus represents the ET process as a

electronic transfer coupled to a primary mode x1, and coupled
to a set of transformed bath modes xi, i = 2, · · ·M.

A natural separation into system Hs and bath Hb can thus be
written as:

H = Hs +S ·B+Hb (15)

with

HS =

(
T1 +WL(x1) VLR

VRL T1 +WR(x1)

)
(16)

S =

(
x1 + x0

1 0
0 x1− x0

1

)
(17)

Hb =

(
Tb +Vb(x2, ..,xM) 0

0 Tb +Vb(x2, ..,xM)

)
(18)

This partitioning forms the basis of the dissipative treatment
to be presented below.

5.2 Results of the reaction path model

We first remark that for each DMPn molecule, the frequency
Ω of the reaction path oscillator (Table 3) is very close to the
frequency of the maxima in the |di| distribution, as shown in
Fig.3. As x0

1 is the root mean square of the displacements
of all the normal modes, it is a good quantity to assess how
much the geometries are modified upon the charge transfer.
It increases by a factor of almost 10 from DMP0 to DMP1
whereas it roughly remains constant from DMP1 to DMP2.
This emphasizes the fact that the distorsion between the two

DMP cycles initially implied by the bridge is more important
than the one induced by adding another phenylene ring. This
is in agreement with the findings based on the |di| presented
above.

To get a glimpse onto the mutual interplay between ET and
nuclear deformation, we show the potential energy surface
along the reaction path WL/R(x1) as well as the corresponding
adiabatic curves, obtained as

W a
±(x1) =

1
2

(
WL +WR±

√
(WL−WR)

2 +4V 2
LR

)
(19)

The coordinate x1, which describes the motion along the lin-
ear reaction path, interpolates between the two geometries,
which are placed at the mimima of the two diabatic potentials
WL/R(x1), located at x1 = ±x0

1 for WL(x1) and WR(x1) respec-
tively.

The parabola WL/R(x1) and W a
±(x1) of the reaction path for

each DMPn are shown on figure 5. In each case, the di-
abatic representation WL/R(x1) consists of two potential en-
ergy curves (parabolas in a harmonic model) crossing along
the reaction path. However, one can easily link the shape of
the adiabatic curves W a

±(x1) to the Robin-Day classification
scheme mentioned above. Indeed, as DMP0 has a strong elec-
tronic coupling, the two parabolas disappear leading to an adi-
abatic potential with a single adiabatic minimum. This is in
agreement with the class III character of this compound as the
charge could be completely delocalized other the two sites.
DMP1 and DMP2 have a weak electronic coupling leading to
an adiabatic ground state potential energy curve with a dou-
ble well. The charge could be partially localized according to
the shape of the barrier. These are features of class II com-
pounds. We also observe that the barrier is higher for DMP2
than for DMP1. The barriers are of 790 cm−1 and 1330 cm−1

for DMP1 and DMP2 respectively. This explains why experi-
mentally, the charge in DMP1 is more easily transferred than
in the case of DMP2.

As indicated earlier, a quantum dissipative treatment on the
basis of perturbation theory using standard spin-boson model
is not possible for the system considered in this work, due
to the strong coupling of the electronic motion to the nuclear
rearrangements. By including an overall geometical deforma-
tion into the system Hamiltonian, the coupling of this vibronic
system to the remaining modes has been significantly reduced.

The distribution of the κi, the coupling constants of the re-
action path to the remaining bath modes can be expressed in

Table 3 Reaction path frequency Ω and displacement x0
1

DMP0 DMP1 DMP2

Ω (cm−1) 598 85 85
x0

1 (a.u.) 63 617 650
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Fig. 5 Diabatic and adiabatic potential energy curves of the reaction
path model for DMP0,1,2. Plain red line : W a

− Adiabatic ground state.
Plain blue line : W a

+ Adiabatic excited state. Dashed green line : WL
Diabatic left state. Dashed violet line : WR : Diabatic right state.

terms of a spectral density:

J(ω) =
π

2

M

∑
i=2

κ2
j

ω̃ j
δ (ω− ω̃ j). (20)

Following Ref.8, to take solvent effects heuristically into
account, and thus to construct a genuine dissipative theory,
we express the spectral density as a smoothed function, i.e.
approximate

δ (ω− ω̃ j) ≈ 1
π

∆

(ω− ω̃ j)
2 +∆2

(21)

with ∆ obtained by the root mean square of the whole

frequency distribution ∆ =
√

∑
M
j=2
(
ω̃ j+1− ω̃ j

)2
/(M−1)
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Fig. 6 Spectral density of the secondary modes in the reaction path
model of DMP0,1,2. Upper panel: DMP0; lower panel: DMP1,2. All
these results have been obtained with the OPBE functional.

The resulting curves of J(ω) are depicted on Fig. 6. When
comparing the results for DMP0 with DMP1,2 (lower panel),
the most striking feature is the additional band around 3000
cm−1 which is due to the additional modes present stemming
from the phenyl bridging fragments. This feature is consistent
with the distribution of the normal mode displacements di, as
explained in detail in Sec. 3, and clearly visible in Fig. 3.

6 Electron transfer quantum dynamics

In order to analyze the effects of nuclear motion onto the ET
process, we choose a Redfield approach based on the above
mentioned separation of a system containing the electronic
degrees of freedom together with a one-dimensional motion
along a chosen reaction path x1, and a bath corresponding
to the remaining nuclear displacements induced. These latter
will be described by a thermal bath. To this end, we use the
Nakajima-Zwanzig projector formalism to develop the quan-
tum master equation.

6.1 Derivation of the master equation

Assuming the bath modes remain in thermal equilibrium
ρ
(eq)
b = 1

Zb
e−βHb with β = 1/kBT , these last ones induce a
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dissipative dynamics of the system, described by the system
density matrix :

ρS =

(
ρLL(x1,x′1) ρLR(x1,x′1)
ρRL(x1,x′1) ρRR(x1,x′1)

)
. (22)

Using the Nakajima-Zwanzig projector formalism2,3, the time
evolution of the density matrix elements is given by:

ρ̇S(t) = −i [HS,ρS]+

t∫
0

K(t− t ′)ρS(t ′)dt ′ (23)

where initial system-bath correlation is neglected and the
memory kernel can be expressed as:

K(t− t ′)ρS(t ′) =
i
[
S,{iC(t− t ′)U(t− t ′)SρS(t ′)U†(t− t ′)}+{h.c.}

] (24)

with U(t− t ′) = e−iHs(t−t ′)

At this level of approximation, the bath dynamics enters via
the correlation function

C(t− t ′) = trb

(
Be+iHb(t−t ′)Be−iHb(t−t ′)

ρ
(eq)
b

)
=

1
π

∞∫
−∞

J(ω)eiω(t−t ′)

eβω −1
dω (25)

Eq. (23) can be further simplified. At the same level of per-
turbative order, we can replace ρS(t ′) ≈U(t ′− t)ρS(t)U†(t−
t ′) to obtain a time-local memory kernel. The master equation
then reads:

ρ̇S = −i [HS,ρS]

−
t∫

0

dτ
{

C(τ)
[
S,U(τ)SU†(τ)ρS(t)

]}
−
{

h.c.
}

(26)

where τ = t− t ′.
Since C(τ) is a function that decays to zero rapidly (in the

order of 50 fs in our case), we can extend the upper integra-
tion limit to infinity (Markov approximation), an approxima-
tion which only affects the short-time behaviour, but not the
relaxation on longer times. We thus arrive to the final equa-
tion:

ρ̇S = −i [HS,ρS]−
[
S,
{

DρS(t)−ρS(t)D†}] (27)

with the dissipative operator given by

D =

∞∫
0

C(τ)U(τ)SU†(τ)dτ (28)

In practice, equation (27) is solved in an eigenbasis of
HS, obtained by diagonalizing the 2-component Fourier grid
Hamiltonian106. This diagonalisation yields vibronic states
|χ j〉, with eigenenergies E j. In this basis, HS is diagonal, and
the dissipative operator reads:

Di j = Si j
J(∆Ei j)

eβ∆Ei j −1
(29)

where ∆Ei j is the difference of energies of the two eigenval-
ues of the ith and jth eigenstates of the vibronic diagonalized
basis set, and Di j and Si j are the matrix elements of D and S
respectively. In obtaining this expression, the principal value
parts of the integrals over the bath correlation functions have
been neglected.

The time propagation is performed by a standard Runge-
Kutta method, yielding ρS at all times, from which several ob-
servables of interest have been obtained. First, the population
Pj of the system in the different vibronic eigenstate are simply
given by:

Pj = 〈χ j|ρs|χ j〉 . (30)

From the full vibronic density matrix ρs, one can obtain an
electronic density matrix by tracing out the vibrational degree
of freedom x1 to yield

ρ
(el)
S =

(
ρ
(el)
LL ρ

(el)
LR

ρ
(el)
RL ρ

(el)
RR

)
(31)

with

ρ
(el)
αα ′ =

∫
ραα ′(x1,x1)dx1 α,α ′ = L,R (32)

where the electronic population in the left or right diabatic po-
tential well describing the charge the corresponding part of the
molecule given by ρ

(el)
LL and ρ

(el)
RR respectively, and the corre-

sponding electronic coherence between the diabatic L/R states
given by ρ

(el)
LR

Furthermore, we wish to analyze the nuclear dynamics
along the reaction path, i.e. the position probability density

P(x1) = ρRR(x1,x1)+ρLL(x1,x1) . (33)

In analogy to the electronic decoherence, we also wish to
analyze vibrational decoherence. An intuitive measure of vi-
brational coherence is the position expectation value

〈x1〉 =
∫

x1P(x1)dx1 (34)

which shows a dynamical behaviour as long as the vibrational
motion maintains coherences. This process of decoherence
can be measured by analysing the loss of purity, which can
be done by considering trρ2

S . Indeed, this quantity equals one
for a pure state, and is less than one for a statistical mixture.
Hence, its decrease as a function of time is an indicator of
decoherence.
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Fig. 7 Diabatic population and coherence estimated through the
position expectation value 〈x1〉 of DMP0 as a function of time
(T = 300K). Top panel : Diabatic populations. Full lines: with
dissipation, dashed line: without dissipation. Inset : Diabatic
populations at shorter times. Bottom panel : full line 〈x1〉 with
dissipation, dashed line 〈x1〉 without dissipation.

7 Results

To study the dynamics of electron transfer, and its interplay
with the geometrical deformations, described by both the re-
action path and the remaining bath modes, we consider the
charge to be initially located on one side, i.e. the wavepacket
is taken to be the vibrational ground state of VL (see eq. (5)).
Subsequently, by time propagation, we analyze the charge mi-
gration, and the induced dynamics describing the nuclear re-
arrangement for all three cases, DMP0, DMP1, and DMP2.

7.1 DMP0: Class III regime.

Fig. 7 shows the evolution of reduced density matrix element
ρel

LL. The total electronic population in the diabatic state VL
thus represents the probability to find the charge localised at
one end of the molecule. We find damped oscillations with
two mean periods: a rapid one with 7.0 fs and a slower one
with 88 fs which are both damped on the timescale of 500
fs. The fast oscillation corresponds to Rabi oscillations be-
tween the two electronic states. The origin of the slower one
becomes evident when compared to the mean position of the
reaction path 〈x1〉, as shown in the lower panel: one clearly
sees that the slower oscillation corresponds to the oscillation
of 〈x1〉, thus reflecting vibrational motion along the reaction
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Fig. 8 Square root of position probability density P(x1) of DMP0 as
a function of time (T = 300K).

path, induced by the electron transfer. The oscillations of 〈x1〉
start from -30 a.u., which corresponds to the minimum of VL
(see Fig. 5). Both ρel

LL and 〈x1〉 show damped oscillations,
with a time constant of about 500 fs. Specifically, the decrease
of 〈x1〉 is a clear fingerprint of vibrational decoherence. To
emphasize the role of the bath, these results have to be com-
pared with the population and position expectation value with-
out dissipation (dashed line on both respective panels of Fig.
7). Without secondary bath, the oscillations have the same two
periods unless they do not reach an asymptotic behaviour and
exhibit beating features expected for a wavepacket in a poten-
tial with a shape of an harmonic oscillator. Hence, the overall
picture that arises from these results is a rapid charge oscilla-
tion, accompanied by periodic nuclear deformations, and this
concerted vibronic dynamics shows a strong dissipation due to
the coupling to the remaining bath modes. All these features
are characteristics of a class III charge transfer system.

After about 1 ps, the system has reached thermal equilib-
rium, with ρel

LL levelling off at 0.5 and 〈x1〉 converging to zero.
This indicates a complete charge delocalization over the whole
molecule, and a relaxation to a symmetric geometry. The nu-
clear quantum dynamics can in more detail be seen in Fig. 8,
where the probability distribution P(x1) (see eq. 33). is de-
picted for times up to 1 ps. At short times, we find a narrow
wave packet, peaked around its expectation value, which un-
dergoes damped oscillations and spreading. This vibrational
motion is consistent with the potential energy surfaces de-
picted in Fig. 5 (upper panel). At equilibrium, the probability
spreads over about 20 a.u.

To show that this state, both in terms of electronic popula-
tion as well as in vibrational motion, is indeed the Boltzmann
limit, we plot in Fig. 9 the population Pj of selected vibronic
states |χ j〉, which are eigenstates of HS. We clearly see how
these populations tend to limits given by the Boltzmann distri-
bution (shown at the right of Fig. 9). The Boltzmann distribu-

10 | 1–16

Page 10 of 16Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



0                0.5                 1
Time (ps)

1

1

equilibrium
values

0

0.5

0.8

0.6

0.4

Fig. 9 Vibronic populations and purity of the reduced electronic
density matrix of DMP0 in function of time at T = 300K. The
corresponding values in a Boltzmann ensemble are added on the
right side.

tion comprises several states, i.e. is a statistical mixture, and
as a consequence, the value of trρ2

S is less than one.
These features of a class III type ET, with charge and geom-

etry relaxation with a rather rapid time constant of about 500
fs is due to the lack of a barrier along the reaction path, and is
thus significantly different from DMP1 and DMP2, as will be
shown in the following section.

7.2 DMP1,2: Class II regime.

As shown in section 5.2, adding one (DMP1) or two (DMP2)
bridge molecules leads to an adiabatic reaction path poten-
tial energy surface which exhibits a double minimum with a
barrier. This leads to a significantly different charge transfer
dynamics as compared to DMP0, and the corresponding nu-
clear deformations. To analyze this dynamics, we perform the
same calculations as in DMP0: starting from a fully localized
charge state, i.e. the vibrational ground state of VL, we follow
the vibronic dynamics by numerically solving eq. (27). The
results are presented in Fig. 10 for DMP1 (black curves) and
DMP2 (red curves). When comparing with the corresponding
results for DMP0 (Fig. 7), we find qualitative differences: in
case of DMP1,2, there are no oscillations, but slow relaxation
towards charge equilibration, on a timescale of about 100 ps
for DMP1 and even longer for DMP2. For very short times
(see inset of Fig. 10), we find weak dynamical structures, be-
fore slow, continuous equilibration takes place. Again, charge
dynamics is accompanied by nuclear rearrangements, as seen
from the time evolution of 〈x1〉 (lower panel). Also in this
graph, a weak dynamical behaviour is observed for very short
times, before 〈x1〉 converges to zero on a timescale of about
100 ps for DMP1. In case of DMP2, both charge and nuclear

1

0.5

0

0

-100

-200

-300po
si

ti
on

   
   

   
(a

.u
.)

50250
Time (ps)

0 2 4
0.9

1

Fig. 10 Diabatic population (upper panel) and position expectation
value 〈x1〉 (lower panel) of DMP1 (black curve) and DMP2 (red
curve) in function of time at T = 300K.

dynamics are too slow to allow for reliable estimate of relax-
ation times within the calculated time window. In both cases,
the fact that 〈x1〉 converges to zero does not mean however
there is a maximum of the probability density around x1 = 0.
This can be seen on Fig. 11 showing the probability density
P(x1) (as defined in eq. 33) as a function of time. Starting
from a distribution initially well-localized around the mini-
mum of VL(x1), it reaches without any significant dynamics,
a final bi-modal shape, reflecting the double minimum of the
adiabatic potential energy surface W a

−(x1). The lowest two
eigenstates are degenerate (see table 5) and correspond to a
maximum of localization probability in the right well for the
ground state and on the left side for the second one. To analyze
this dynamics in more detail, we show on Fig. 12 the popula-
tions Pj of the vibronic eigenstates of HS for DMP1. Starting
from a non-equilibrium distribution, we see that within a short
time of about 500 fs, the higher states have converged to their
equilibrium values, and the long time coherent dynamics is
entirely comprised within the subspace of the two lowest vi-
bronic states.

To summarize, the barrier in the adiabatic potential en-
ergy surface along the reaction path x1 dramatically modi-
fies charge transfer and nuclear dynamics, and leads to strong
charge localisation. Dynamics converges to equilibrated final
charge distribution only very slowly, without any oscillations
. These are characteristics of a class II ET system. While the
higher states relax rapidly, the long time behaviour is entirely
dominated by the states below the barrier, leading to the ob-
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Fig. 11 Square root of position probability density P(x1) of DMP1,2
over time (T = 300K). Top : DMP1. Bottom : DMP2.

served very slow charge equilibration.

7.3 Temperature effects.

Temperature effects are very different between class III and
class II. This is illustrated through the population Pi in the ini-
tial and equilibrium vibronic states for DMP0 in Tab. 4 and
DMP1 in Tab. 5 and both through the evolution of the average
position 〈x1〉 shown in Fig. 13.

Table 4 Energy Evib and expected values of the population Pvib of
vibronic states of DMP0 for initial state Pvib,0 and for Boltzmann
equilibrium Pvib,eq at different temperatures.

1 2 3 4
Evib (cm−1) -1034 -692.0 -301.2 112.3

Pvib,0 0.242 0.355 0.170 3.07 10−2

Pvib,eq (300 K) 0.814 0.158 0.024 0.003
Pvib,eq (50 K) 0.999 5.29 10−5 6.91 10−10 4.70 10−15

The bath temperature has a very small effect on the relax-
ation dynamics for class III system. Indeed, initial nuclear
wave function (ground state of WL(x1)) is mainly a superpo-
sition of the first four vibronic eigenstates. As shown in Tab.
4, the weights of the excited vibronic states (about forty) are
very small. Relaxation then requires only few transitions and
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0.4 0.1

0            1

equilibrium
values

Fig. 12 Vibronic populations Pi of DMP1 over time (T = 300K).
The Boltzmann values are given at the right side. In the inset, the
same figure between 0 and 1 ps.
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Fig. 13 Position expectation value of DMP0,1 at different
temperatures. Top panel : DMP0. Bottom panel : DMP1. Plain
black line : 300 K. Red dotted line : 200 K. Dashed green line : 120
K. Dashed and dotted blue line : 50 K.

decoherence seen in the damped evolution of the mean posi-
tion operates on similar timescale for all temperatures.

On the contrary, as shown in Fig.13, relaxation with class
II (DMP1) strongly depends on temperature. In this case,
the ground adiabatic potential energy curve presents a dou-
ble well shape and vibronic states below the barrier appear
in well-known tunneling doublets (see table 5). For DMP1,
due to the barrier width, the ground-level vibronic eigenfunc-
tions remain localized in only one potential well with a small
secondary maximum on the other side. Higher-lying states
are more delocalized across both potential wells. Under these
circumstances, the initial vibrational wave function has com-
ponents only on the vibronic state localized in the left side,
as clearly seen from Tab. 5. The interaction with the ther-
mal bath leads to redistribution of the population across the
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Table 5 Energy Evib and expected values of the population Pvib of
vibronic states of DMP1 for initial state Pvib,0 and for Boltzmann
equilibrium Pvib,eq at different temperatures.

1 2 3 4
Evib (cm−1) -97.25 -97.25 -15.9 -15.9

Pvib,0 0.935 4.82 10−3 1.93 10−2 1.94 10−2

Pvib,eq (300 K) 0.159 0.159 0.108 0.108
Pvib,eq (50 K) 0.452 0.452 0.043 0.043
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Fig. 14 Vibronic populations Pi of DMP1 as a function of time at
temperature of T = 50K. In the inset, the same figure between 0 and
10 ps.

vibronic states. For instance, the transfers to states 3 and 4
from state 1 are very efficient, since these transitions exhibit
strong matrix elements and J(∆Ei j) is non-zero, and thus leads
to a quick thermalization of these two states. This behaviour
is similar for higher energy states as shown in Fig. 12. At
300 K, the last vibronic state populated with more than 0.1 %
of the total population is the twenty-eighth (920 cm−1). This
vibronic state is over the barrier and almost delocalized over
the left and right electronic states. A direct population trans-
fer for 1 → 2 is strongly suppressed since 1 and 2 are quasi-
degenerate with a negligible coupling element. The transfer
between the two first states thus proceeds via vibrational ex-
cited states. These higher energy states over the barrier open
an indirect gate for a stationary population transfer from the
first to the second although these two are both localized vi-
bronic states. It thus strongly depends on the vibronic pop-
ulation Pi distribution with temperature. This can clearly be
seen in Fig. 14, which is the same as Fig. 12, but for a tem-
perature of 50 K. At this temperature, the states 3 and 4 are
only weakly populated and the last level populated with more
than 0.1% of the total population is only the sixth (145 cm−1)
which is below the barrier. This leads to a trapping of the vi-
bronic populations what is also clearly visible in the position
expectation value 〈x1〉.

Conclusions

In this work, we have analyzed charge transfer dynamics of
mixed-valence compounds using time dependent dissipative
quantum simulations. One aim was to present the methodol-
ogy: first, the contrained DFT framework allowed us to deter-
mine the nuclear reorganizations that accompany the charge
transfer within a diabatic picture. Geometrical deformations
induced by electron transfer were found to be in good agree-
ment with experimental results. However, electronic cou-
plings were parameterized. On the basis of these electronic
structure calculations, a quantum dynamical approach was de-
veloped, to study the combined charge transfer / vibrational
dynamics in its full dimensionality, and heuristically including
solvent effects. The dissipative quantum dynamics is based
on the Redfield approach. However, a thourough analysis
revealed that the coupling between charge transfer and nu-
clear deformations was too strong to be treated perturbatively
within the standard spin-boson model. We thus developed a
reaction path model, in which a linear interpolation of two lim-
iting geometries has been used as reaction path to be included
into the system Hamiltonian. Through this methodology, the
coupling to the remaining modes has been reduced allowing
for a subsequent perturbative treatment of the remaining bath
modes. The dynamical approach thus consisted in a dissi-
pative combined electronic/vibrational propagation, within a
Redfield approach, where the dissipative operators are entirely
determined from first principles without any adjustable param-
eters.

Specifically, for the system under study, we have analyzed
the influence of a different number of bridge molecules onto
the charge transfer dynamics. In each regime, relaxation to-
wards equilibrium has been discussed in terms of the occupa-
tion of the stationary vibronic eigenstates. It is the superpo-
sition of these eigenstates which undergoes decoherence and
by projection we get view on the partial diabatic or adiabatic
electronic or vibrational decoherence.

For DMP0, without bridge, charge transfer proceeds along
the reaction path on a barrierless adiabatic potential en-
ergy surface. It has all the features of a class III system.
The detailed calculations including the dissipation yielded a
timescale of both geometry and charge relaxation of about
500 fs towards a fully symmetric geometry with a delocalized
charge distribution.

For DMP1,2, bridge molecules lead to a barrier along the
reaction path, which drastically changes the charge transfer
dynamics (class II system): the charge does not oscillate, but
only very slowly relaxes to its final distribution. While the
short time behaviour might show some rapid dynamics, which
stem from the preparation of the initial state, the long time
behaviour is entirely dominated by the lowest vibronic states
within the double well potential. For high barriers, where the
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tunnel splitting is very small, the charge and geometry relax-
ation is extremely slow, even in the presence of a bath.

We think the proposed methodology, applied to model sys-
tems in this work, is well suited to analyze the subtle inter-
play between charge transfer and nuclear deformations, a pro-
totype situation for many important processes in chemical and
biological systems where both electronic and vibrational deco-
herences proceed in a similar time scale. In these more general
cases, the following treatment can be applied.

First, one of the crucial issue is how to choose a correct
partitioning between system and bath for a given problem.
The partitioning of the initial spin-boson model usually in-
validates any dynamical perturbative treatment so that at least
one collective mode has to be included into the system in or-
der to reduce the coupling. The main manipulation is then a
canonical transformation of the spin-boson vibrational bath. A
similar procedure could be used when charge transfer occurs
in photovoltaic materials or in solid matrices or in crystalline
bulk structure if a sufficiently large sample of the environment
can be treated by the DFT approach. In solid state, the initial
phonon spectral density could also be described by smooth
ohmic or superohmic densities calibrated from experimental
measurements. In that case, our procedure should begin by a
discretization of this spin-boson spectral density. For ET in
larger systems encountered in life science such as ET in pro-
teins or nucleic acid, alternative strategies will be required.
First, because an exhaustive treatment by cDFT is not con-
ceivable for systems composed of thousands of atoms. Hy-
brid QM/MM approach by which only the most important
molecular fragments (e.g. the Donor-Bridge-Acceptor sys-
tem) are treated by DFT while the remaining atoms are treated
by molecular mechanics force fields is well established to han-
dle large systems. Actually, the main difficulty would lie in the
calculation of normal modes for very large systems, let alone
the inclusion of non-harmonic effects that may be important
for biological electron transfer. To circumvent these difficul-
ties, an appealing procedure would be to calibrate the spec-
tral densities from the time correlation function of the fluctu-
ation of the electronic energy gap39,107–109. The latter can be
straightforwardly obtained from molecular dynamics simula-
tions. As explained for instance in ref.110, the classical cor-
relation function can be corrected to account for the oscillator
Bose distribution. The continuous spin-boson spectral density
should then be discretized and transformed to apply the collec-
tive mode model. A prolongation of the present work to model
ET in large and complex molecular systems would thus to re-
sort to hybrid cDFT/MM MD simulations from which spin-
boson spectral densities could be calibrated. We are working
in our laboratories on this strategies and will report our results
in due course.
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Appendix : Reaction path formalism

In the two-level system case, from a spin-boson Hamiltonian
written in mass-weighted coordinates, one can write :

H =

(
T +VL(q) VLR

VLR T +VR(q)

)

with T = 1
2 ∑

M
i=1− ∂ 2

∂q2
i

and VR/L(q) = 1
2 ∑

M
i=1 ω2

i (qi±di/2)2

where we have defined the vector q = (q1, · · · ,qM).
We proceed by defining a linear reaction path u1 =

c/‖c‖ where c = ∑
i
(di/2)ei in order to manage a coordi-

nate change {qi}→{x1,xi} through a vectorial transformation
from {ei} → {ui}. u1 is a normalized reaction path vector.
The secondary modes

{
ui
/

i ∈ [[2,M]]
}

are constructed nor-
malized and orthogonal to this one (as well as orthogonal in
their own space). The potential energy operator can be written

as : VR/L = 1
2 (q± c)T

ΛΛΛ(q± c) where q =
M
∑

i=1
xiui in the new

basis set. We set ‖c‖= x0
1 and Λi j = δi jω

2
i .

VR/L = 1
2

((
x1± x0

1
)

u1 +
M
∑

i=2
xiui

)T

ΛΛΛ

((
x1± x0

1
)

u1 +
M
∑

i=2
xiui

)

= 1
2

 u1
T ΛΛΛu1

(
x1± x0

1
)2

+
M
∑

i=2

M
∑
j=2

xix jui
T ΛΛΛu j

+
M
∑

i=2
xi
(
x1± x0

1
)(

u1
T ΛΛΛui +ui

T ΛΛΛu1
)


We define a projector on the reaction path P = u1u1

T and or-
thogonal to this one Q = I−P in order to express the PΛΛΛP,
QΛΛΛQ matrices. After diagonalization, PΛΛΛP leads to one non-
zero eigenvalue Ω2 of the reaction path (eigenvector) u1 and
QΛΛΛQ to a M− 1 non-zero eigenvalues ω̃i

2 of the secondary
bath modes (eigenvectors)

{
ui
/

i ∈ [[2,M]]
}

. The couplings κi
are then calculated through PΛΛΛQ+QΛΛΛP expressed in the ba-
sis of the {ui}.
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74 U. Kleinekathöfer, J. Chem. Phys., 2004, 121, 2505–2514.
75 M. Schröder, U. Kleinekathöfer and M. Schreiber, J. Chem. Phys., 2006,

124, 084903.
76 J. Hankache and O. S. Wenger, Chem. Rev., 2011, 111, 5138–5178.
77 S. V. Rosokha, D.-L. Sun and J. K. Kochi, J. Phys. Chem. A, 2002, 106,

2283–2292.

1–16 | 15

Page 15 of 16 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



78 S. V. Lindeman, S. V. Rosokha, D. Sun and J. K. Kochi, J. Am. Chem.
Soc., 2002, 124, 843–855.

79 M. B. Robin and P. Day, Advances in Inorganic Chemistry and Radio-
chemistry, Academic Press, 1968, vol. 10, pp. 247–422.

80 A. de la Lande and D. R. Salahub, J. Mol. Struct. THEOCHEM, 2010,
943, 115–120.
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