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Spectroscopic constants for the homonuclear dimers of the very heavy rare gases radon (Rn) and eka-radon (Uuo) are reported. A

computational protocol using the eXact 2-Component molecular-mean field Hamiltonian has been established based on extensive

calculations of the xenon dimer. We find that reliable results require CCSD(T) calculations at the extrapolated basis set limit.

In this limit counterpoise corrected results are closer to experimentally derived values than uncorrected ones. Furthermore, in

an attempt to reduce the computational cost while retaining very high accuracy, we studied the performance of range-separated

density functional theory. Although we observe a somewhat more favorable basis set convergence and reduced importance of

connected triples with range-separated methods compared to pure wave function theory, in practice we have to employ the same

computational protocol for obtaining converged results. At the Dirac-Coulomb level we find an almost fourfold increase of

binding energy when going from the radon to the eka-radon dimer, but the inclusion of spin-other-orbit interaction reduces the

dissociation energy of the heaviest dimer by about 40 %.

1 Introduction

Rare gas dimers are bound species because of the dispersion

interaction, which is generally characterized as an attractive

interaction between the induced dipoles of each monomer. In

the framework of wave function theory (WFT), the generation

of induced dipoles can only be described by adding excited

determinants to the ground state Hartree-Fock (HF) determi-

nant. Therefore, the potential energy curves of those dimers

at the HF level is repulsive. Consideration of excited deter-

minants, on the other hand, leads to the possibility of various

kinds of interaction, namely, Coulombic attraction or repul-

sion, induction and dispersion at the same time. Careful treat-

ment of all those interactions requires very sophisticated theo-

retical approaches. It has been demonstrated by Hobza et al.1

that the inclusion of up-to triple excitations in a Coupled Clus-

ter (CC) expansion and extrapolation to the complete basis set

limit (CBS) can provide chemical accuracy (∼ 1 kcal/mol) for

such systems. The overwhelming cost of CC methods at the

CBS limit, though, has encouraged the development of various

new theoretical techniques to reach the same accuracy with a

much cheaper computational setup.2,3

Density Functional Theory (DFT) is undoubtedly the most-

used quantum chemistry method.4 However, it is well-known
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that standard approximate DFT functionals, with a local

ansatz, are unable to capture dispersion interaction.5,6 In re-

cent years there has been intense development of disper-

sion corrections within the framework of Kohn-Sham the-

ory, mostly by inclusion of explicit dispersion coefficients (C6

and higher) and the proper distance dependence.7–14 An al-

ternative is provided by range-separated DFT, introduced by

Savin,15 which allows one to graft WFT correlation meth-

ods onto DFT without double counting of electron correlation.

The resulting long-range WFT – short-range DFT (lrWFT–

srDFT) method formally comes with the computational cost

of the selected WFT component. However, it has been argued

that range-separated methods have a weaker basis set depen-

dence as well as less severe requirements for the size of the

correlation space and excitation rank.16 One of our objectives

of the present work is therefore to investigate whether such

methods can yield CCSD(T)/CBS-like accuracy for van der

Waals dimers at reduced computational cost.

The homonuclear dimers of He, Ne, Ar, Kr and Xe have

been studied extensively both theoretically and experimentally

by various groups (see Refs. 17–28 and references therein).

However, the dimers of the heavier elements in this group, that

is, Rn (Z=86) and eka-Rn (Z=118; ununoctium), have not been

studied at all by experiment and very rarely by theory.29–32 In

passing we should note that the chemical exploration of radon

is limited due to its price and radioactivity, and it is mostly

known as a health hazard,33–35 whereas (possibly) only three

single atoms of the isotope 294118 have been synthesized.36–38

The half-life of this isotope is 0.89 ms, which is beyond the
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limits of present-day techniques for the chemical study of su-

perheavy elements.39,40

Runeberg and Pyykkö29 have reported spectroscopic con-

stants of Rn2 (and Xe2) obtained at the CCSD(T) level using

relativistic pseudopotentials. Nash, applying a similar com-

putational protocol, have provided corresponding data for Rn2

and eka-Rn2.30 More recently, Kullie and Saue reported spec-

troscopic constants for the complete series of homoatomic rare

gas dimers using MP2-srDFT and the 4-component relativistic

Dirac-Coulomb (DC) Hamiltonian.32 For the heaviest dimers

there is, however, significant discrepancy between results (as

shown in the lower parts of Tables 2 and 3). For instance,

for Rn2 Runeberg and Pyykkö obtains a dissociation energy

De = 222.6 cm−1 and estimates De = 276.6 cm−1, which is

still far from 323.9 cm−1 reported by Kullie and Saue (MP2-

srLDA) and from 129.1 cm−1, reported by Nash. Likewise,

Kullie and Saue obtain De = 1199.1 cm−1 for eka-Rn2, which

is more than twice the value 500.1 cm−1 reported by Nash.

In the present study we therefore carry out 2-component rela-

tivistic CCSD(T) as well as CCSD(T)-srLDA calculations in

an attempt to provide reference values for the spectroscopic

constants of the dimers of the very heavy rare gases and to es-

tablish a computational protocol for reliable theoretical stud-

ies of the chemistry of the heaviest rare gases. This effort

constitutes the very first use of lrCC-srDFT methods with a

relativistic Hamiltonian.

Our paper is organized as follows: In Section 2 we discuss

our choice of relativistic all-electron Hamiltonian and corre-

lation methods. Computational details are given in Section 3.

In Section 4 we present and discuss our results, starting with

a calibration study of the xenon dimer. We conclude and pro-

vide perspectives in Section 5.

2 Theoretical Considerations

2.1 Choice of Hamiltonian

The selected compounds clearly call for a careful relativistic

treatment, including both scalar-relativistic and spin-orbit ef-

fects. Starting from the 4-component Dirac Hamiltonian in

the molecular field one may add the two-electron Coulomb

term, which provides not only the instantaneous two-electron

Coulomb interaction, but also two-electron spin-same orbit

(SSO) interaction.41 For very accurate calculations higher-

order contributions to the fully relativistic two-electron inter-

action, notably the spin-other orbit (SOO) interaction, as well

as QED corrections may be considered. Formally, WFT-based

electron correlation calculations have exactly the same cost

using 2- and 4-component relativistic Hamiltonians, to the ex-

tent that the latter Hamiltonians are employed within the no-

pair approximation (that is, negative-energy orbitals are ex-

cluded). This is easily seen from a consideration of the elec-

tronic Hamiltonian in second-quantized form

H = EHF +∑
p,q

Fq
p {a†

qap}+
1

4
∑

p,q,r,s

V rs
pq{a†

r a†
s aqap}, (1)

where {} denotes normal ordering with respect to the Fermi

(HF) vacuum: The number of Fock matrix elements F
q
p and

anti-symmetrized two-electron integrals V rs
pq will be exactly

the same at the 2-component (2c) and 4-component (4c) level.

However, the large prefactor of the 4-index transformation at

the 4c level, due to the small-component basis functions, may

favor the use of a 2c relativistic Hamiltonian, even though the

formal scaling of this computational step is generally lower

than the correlated calculation itself. An interesting alternative

is provided by the eXact 2-Component (X2C) molecular-mean

field (mmf) Hamiltonian,42 where the converged 4-component

Fock operator is subjected to an exact block diagonalization

from which the corresponding 2c Fock operator for positive-

energy orbitals only is extracted and represented by the large-

component basis. The two-electron Coulomb term is thus

left untransformed, formally introducing ”picture change er-

rors”,43–45 but the resulting X2CDC
mm f Hamiltonian has been

shown to provide very close agreement with 4c correlated

calculations, at least when only valence electrons are corre-

lated.42 It is also possible to include the Gaunt term, and

thereby SOO interactions, in a molecular mean-field manner.

We denote this Hamiltonian X2CDCG
mm f .

In the present study our correlated calculations have been

carried out on top of both HF and short-range Kohn-Sham ref-

erence functions, as will be described in the following subsec-

tions.

2.2 Wave Function Theory

We have considered a range of correlation methods: second-

order Møller-Plesset perturbation theory (MP2), coupled-

cluster singles-and-doubles (CCSD) and CCSD with approx-

imate triples (CCSD(T)) in the present work. Although MP2

is widely employed to study weak intermolecular interactions,

deficiencies have been identified which may lead to a huge

overestimation of non-covalent binding energies.46,47 In par-

ticular, Szabo and Ostlund demonstrated that the MP2 energy

of a closed-shell diatomic molecule formed by two closed-

shell atoms has the correct long-range R−6 behavior

lim
RAB→∞

EMP2
AB = EMP2

A +EMP2
B +

CAB
6

R6
AB

, (2)

but with the CAB
6 dispersion coefficient calculated at the un-

coupled HF level of theory.48 The CCSD method takes into

account all intra-atomic correlation contributions up-to singles

and doubles amplitudes, but it has been shown that CCSD can

significantly underestimate non-covalent binding energies (see
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for instance ref. 49,50). In contrast, inclusion of connected

triples of inter-atomic type and hence attractive, improves the

description vastly. The inclusion of 4th and 5th order of con-

nected triples i.e CCSD(T), is therefore the current reference

method for non-covalent interactions .51–53

2.3 Range-separated theory

The first implementation of the lrCC-srDFT method was re-

ported by Goll, Werner and Stoll,16 who also reported calcu-

lated spectroscopic constants of the homoatomic dimers of He,

Ne, Ar, Kr and Xe, the latter two rare gas elements described

by relativistic effective core potentials. In the present work

we report the first implementation and application of the the

lrCC-srDFT method at the 2c/4c relativistic level. In this sec-

tion we briefly outline the theory of the lrCC-srDFT method.

Further information can be obtained by consulting ref. 16 and

references therein.

One starts from a separation of the two-electron Coulomb

term Vee into a short-range part V sr
ee and its complement V lr

ee .

The latter is denoted the long-range part, although in practice

it is non-zero at all interelectronic distances r12. Ideally the

separation should be such that the long-range part, to be han-

dled by WFT, carries a maximum of static correlation and a

minimum of dynamic correlation as well as providing mathe-

matically tractable two-electron integrals. The most common

choice is defined in terms of the error function15

vlr
ee(1,2) =

er f (µr12)

r12
(3)

where the range-separation parameter µ can take any value

between 0 and ∞; µ = 0 defines pure Kohn-Sham DFT and

µ → ∞ corresponds to pure WFT. µ−1 has units of length, but

one should note that the long-range potential, eqn (3), corre-

sponds to that of a Gaussian charge distribution rather than a

hard-sphere model.32 If one therefore wants to associate the

range-separation parameter with a radius R around the refer-

ence electron, one should choose µ−1 = R
√

2/5 which pro-

vides identical root-mean-square radii for the two models.

The energy functional of lrWFT-srDFT theory

E[n] = min
Ψµ→n

〈Ψµ |T +V lr
ee |Ψµ〉+Esr

HXc[n]+
∫

n(1)veN(1)d1,

(4)

to be minimized with respect to the (number) density n, is ob-

tained through a generalized adiabatic connection54 to a ficti-

tious system, defined by µ , with long-range interaction only.

The wave equation of the fictitious system is

Ĥµ Ψµ = Eµ Ψµ ; Ĥµ = T +V
µ

e f f +V lr
ee , (5)

where we impose that the local effective potential

V
µ

e f f = veN + vsr
Hxc; vsr

Hxc(1) =
δEsr

HXc

δn(1)
(6)

affords the same electron density as the real interacting sys-

tem. Analogous to conventional Kohn-Sham theory, the ex-

act form of the short-range Hartree, exchange and correlation

(Hxc) energy functional Esr
HXc is not known, but since it is re-

stricted to the short-range part of the total electron interaction

(as well as the coupling to the long-range part), one may hope

that local approximations may be even more effective than in

conventional DFT.

A fundamental difference between conventional Kohn-

Sham theory and lrWFT-srDFT theory is that the fictitious

system of the latter is interacting so that its wave function

Ψµ can not be expressed in terms of a single Slater determi-

nant. The approximate methods of WFT are therefore invoked

to solve eqn (5). Calculations generally starts with a single-

determinant ansatz HF-srDFT,55 corresponding to a Kohn-

Sham calculation with a range-separated hybrid (RSH),56

which provides an orbital set for more elaborate correlation

calculations. It also defines a partitioning of the Hamiltonian

Hµ = Hµ;0 +Wµ (7)

where the zeroth-order Fock-like Hamiltonian

Hµ;0 = T +VeN + Jlr[n0]+V sr
Hxc[n0] (8)

is defined in terms of the zeroth-order density n0. The pertur-

bation

Wµ = V lr
ee − Jlr[n0]

︸ ︷︷ ︸

lr fluctuation potential

+ V sr
HXc[n]−V sr

HXc[n0]
︸ ︷︷ ︸

self consistency correction

(9)

contains a long-range fluctuation potential as well as a short-

range self-consistency correction, the latter reflecting the

change of the density from the initial HF-srDFT calculation

to the final correlated level. The self-consistency correction

does not enter the lrMP2-srDFT energy expression,57,58 but

formally enters lrCC-srDFT theory. However, studies by Goll

et al.16 indicate that the effect of the density update is quite

small, and it will be ignored in the present work.

2.4 Basis set extrapolation

The accuracy of correlation methods also entails that we have

to cancel out other sources of error such as the basis set in-

completeness. For pure WFT correlation methods, the two-

point extrapolation scheme advocated by Helgaker et al.59,60

provides a convenient means for calculating the energy at the

extrapolated basis set limit:

E∞ = ESCF
X +

X3Ecorr
X − (X −1)3Ecorr

(X−1)

X3 − (X −1)3
. (10)

Here X is the cardinal number of the correlation-consistent

basis set.
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For range-separated methods the situation is less clear. Very

recently, Franck et al. have proposed a three-point scheme

based on an exponential formula,61 but we feel that further

study is required to settle this issue and have not applied the

proposed scheme in the present work.

3 Computational Details

We performed all calculations with a development version

of the DIRAC-13 quantum chemistry package.62 Unless oth-

erwise stated all calculations are based on the 2-component

relativistic X2CDC
mm f Hamiltonian based on the 4-component

Dirac-Coulomb Hamiltonian.42 A Gaussian nuclear model

has been chosen for the nuclei.63 We applied uncontracted

large-component basis sets of Dyall-type64,65 including core-

correlating and diffuse functions up to quadruple-ζ quality

(highest available set). The corresponding small component

basis set is generated using the restricted kinetic balance con-

dition.

In our range-separated DFT studies a short-range LDA

exchange-correlation functional was used for all cases.66,67

We have chosen a system-independent fixed value 0.4 a−1
0 as

our range separation parameter (µ), following the suggestion

by Fromager et al..68

Spectroscopic constants have been derived by a least square

fit of the potential energy curve (PEC) to a polynomial using

the TWOFIT utility program available in DIRAC. Through-

out this study, we have chosen nine grid points and fitted them

against an eighth-degree polynomial. The grid has been gen-

erated inside the classical turning points of the PEC. For Xe2

the grid was generated around the experimental equilibrium

bond length, whereas for the heavier dimers we used the best

estimate from previous studies.

4 Results and Discussions

4.1 Calibration Study

We first carried out a calibration study of the xenon dimer

with the goal to define a suitable computational protocol in

terms of (i) correlation method, (ii) number of active occu-

pied orbitals and (iii) basis set level. We consider the con-

vergence of spectroscopic constants with respect to these pa-

rameters rather than their agreement with experimental values

in order to avoid getting the right result for the wrong rea-

son. Throughout the calibration study, we compared results of

two augmented correlation-consistent basis sets for relativis-

tic calculations provided with the DIRAC package, namely

dyall.acv3z (TZ) and dyall.acv4z (QZ).64 Subsequently, we

extrapolated the pure WFT data to the complete basis set

limit using eqn(10). The basis set superposition error (BSSE)

was addressed by means of the counterpoise correction ap-

proach.69 MP2, CCSD and CCSD(T) have been considered

for the correlation treatment and analyzed to ascertain what

is sufficient to yield properly converged data. To determine a

minimal yet physically accurate active occupied orbital space

we have systematically increased our correlation space from

valence 5s5p to sub-valence 4s4p4d. We used for the xenon

dimer an energy cutoff in the virtual space of 40 Eh, but a

Mulliken population analysis was carried out in order to en-

sure that all correlating functions were retained.

Table 1 comprises our results for the equilibrium bond

length (re), harmonic frequency (ωe) and dissociation energy

(De) of the xenon dimer. Compared to the QZ basis set cal-

culations with the TZ basis set yield a significant elongation

of re (> 0.1 Å), lowering of harmonic frequencies of ∼ 2-3

cm−1 and De’s reduced by 20%. We are unable to determine

to what extent our results are converged at the QZ level, since

no Dyall basis sets with higher cardinal number are available.

However, upon basis set extrapolation we find, as summarized

in Table 1, that the extrapolated results are significantly dif-

ferent from the results obtained with the QZ basis set. We

have therefore systematically performed the same extrapola-

tion technique for the radon and eka-radon dimers in our sub-

sequent pure WFT correlation calculations.

Table 1 further shows that even in the extrapolated basis

set limit there is a significant spread in the spectroscopic con-

stants obtained by MP2, CCSD and CCSD(T). In fact, we find

that MP2 and CCSD in the best basis indeed over- and under-

binds the xenon dimer, respectively, in agreement with previ-

ous findings (cf. Section 2.2). Therefore, we conclude that we

cannot compromise with any lower-level method, but have to

use the CCSD(T) method. As shown by Table 1, the devia-

tions of the spectroscopic constants (re, ωe, De) with respect

to their values derived from experiment are then (0.017Å, 0.8

cm−1, 12 cm−1), respectively, which is quite satisfying.

The effect of correlating sub-valence and outer-core shells

can be determined from the CCSD(T)/QZ results outlined in

Table 1. Adding the 4d shell to the occupied correlation space

of the 5s5p valence shells changes (re, ωe, De) by (-0.04 Å,

0.81 cm−1, 13.13 cm−1), whereas the addition of the 4s4p

shells has hardly any effect. This indicates that saturation with

respect to correlated orbitals can to a great extent be reached

by including the (n−1)d-shell in addition to the nsnp valence

shell of a given noble gas. In subsequent calculations we have

therefore correlated (n−1)dnsnp.

A final issue to be adressed is whether BSSE-corrected re-

sults are to be used or not. BSSE typically leads to overbind-

ing in that the atoms in the dimer calculation benefits from

the presence of the basis set of the other atom. Counterpoise-

corrected interaction energies for homoatomic dimers A2 are
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given by

∆Eint = E
A2
A2

−2EA
A +∆BSSE; ∆BSSE = 2

(

EA
A −EAGh

A

)

,

(11)

where atomic energies EAGh
A have been calculated in the full

molecular basis by introducing a ghost (Gh) center at the po-

sition of the second atom. The usefulness of the counter-

poise correction has been challenged in two recent papers by

Baerends and co-workers.70,71 They have carried out bench-

mark calculations of the helium and beryllium dimer and find

that uncorrected interaction energies overall compare better

with (ideally) basis set free reference numbers. They point out

that basis set incompleteness is more severe for the dimer than

the atom, an imbalance which is aggravated by the improve-

ment of the monomer basis in counterpoise-corrected calcula-

tions. Clearly, in a complete basis EA
A = EAGh

A , but this limit is

not assured by basis set extrapolation, an issue not discussed

by Baerends and co-workers. Indeed, by analysis of their data

we find that in general ∆BSSE is significantly different from

zero in the extrapolated basis set limit. From the expected

faster convergence of EAGh
A with respect to EA

A one may ex-

pect that the correlation contribution to ∆BSSE is positive in

the extrapolated limit, but curiously this is not always what

we observe. Looking at our own data we find that the CP-

uncorrected CCSD(T) results agree best with experiment in

any finite basis, but not in the extrapolated basis set limit. We

have therefore chosen to base our computational protocol on

counterpoise-corrected CCSD(T) interaction energies extrap-

olated to the basis set limit.

Let us now turn to the range-separated approach. Table 1

summarizes the performance of lrWFT-srLDA methods for

the xenon dimer. The calculated spectroscopic constants are

less sensitive with respect to the choice of basis set as com-

pared to the pure WFT calculations, but the effect is not neg-

ligible: the difference between the TZ and QZ basis sets is

for either correlation approach on the order of (0.03 Å, 1.2

cm−1, 20 cm−1) for (re, ωe, De), respectively. This means in

turn that a QZ basis set is required to achieve sufficient accu-

racy. We next observe, in agreement with previous findings,16

that the valence-only results for the range-separated methods

are in closer agreement to the experimental references than

those of their pure WFT counterparts. However, with the in-

clusion of the 4d shell in the occupied correlation space num-

bers change significantly: (> 0.04Å, > 1.2 cm−1, > 25 cm−1)

for (re, ωe, De), respectively. We therefore conclude that sim-

ilar to the pure WFT case the addition of the (n− 1)d shell

to the active correlation is required for the WFT-srDFT meth-

ods. Also with correlation of subvalence we observe a better

convergence of the results with regard to the pure WFT corre-

lation model, in particular for CCSD. Still, lrCCSD(T)-srLDA

notably outperforms all other methods while showing a con-

sistent behavior with increasing basis set size and correlation

space. The lrCCSD(T)-srLDA approach combined with a QZ

basis set thus yields spectroscopic constants within (0.009 Å,

0.5 cm−1, 15 cm−1) for (re, ωe, De) of the pure wave func-

tion CCSD(T)/CBS reference data. We therefore conclude

that lrCCSD(T)-srLDA is indeed a very promising approach

for the description of dispersion-bound molecules. We do ob-

serve a faster convergence of results with respect to computa-

tional parameters, in particular less sensitivity to the inclusion

of triple excitations, but not enough to warrant the use of a less

expensive computational protocol.

4.2 Rn2 and Uuo2

Based on the calibration study discussed in detail in the pre-

vious section our computational protocol for the subsequent

study of the Rn2 and Uuo2 dimers comprises the correlation

of the occupied (n− 1)dnsnp shells using the best basis set

available, an augmented correlation-consistent QZ basis set.

The energy cutoffs in the virtual space were set to 46 and 40

Eh, respectively, for the radon and eka-radon dimers. In case

of the pure WFT methods we also carry out extrapolation to

the basis set limit according to eqn (10).

Table 2 shows our results for the Rn-dimer at the CCSD(T)

level, both for the QZ basis set and extrapolated to the ba-

sis set limit. The corresponding lrWFT-srDFT/QZ data shows

very close agreement with the pure WFT CCSD(T)/CBS data.

The same conclusion holds for the spectroscopic constants of

the eka-Radon dimer which are shown in Table 3. Two re-

markable features should be noted: i) When including spin-

other-orbit interaction through the X2CDCG
mm f Hamiltonian, the

dissociation energy of eka-Rn2 is reduced by about 40 %,

whereas the effect of this interaction is almost negligible for

the lighter homologues. We would like to stress that whereas

previous studies have demonstrated considerable weakening

of covalent bonds by spin-orbit interaction,72–77 the present

study concerns bonds arising from London dispersion forces

and where a substantial weakening is observed upon introduc-

tion of a component of the two-electron interaction often ig-

nored in relativistic molecular calculations, namely the spin-

other orbit interaction. This is new and merits further study.

ii) In spite of the very significant weakening of the eka-Rn2

bond by inclusion of the Gaunt term, the bond is still markedly

stronger than for the lighter homologues, as seen in Figure 1,

albeit absent at the HF level.

In Tables 2 and 3 we have listed some results of previous

studies. We note that the lrMP2-srDFT spectroscopic con-

stants of Kullie and Saue32 are in line with the present bench-

mark values, while this is not the case for the values reported

by Runeberg and Pyykkö29 and by Nash.30 Runeberg and

Pyykkö29 employed large-core pseudo-potentials,78,79 cali-

brated against atomic HF calculations based on the Wood-

Boring Hamiltonian80 with an effective spin-orbit operator.
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Only valence nsnp electrons were treated explicitly and de-

scribed by a specially designed basis. By comparison with the

all-electron basis sets of Dyall we find that the “Basis 2” of

Runeberg and Pyykkö are of augmented correlation-consistent

TZ quality. Their results are therefore not converged with re-

spect to the basis set and correlated orbitals. Nash30 employs

small-core pseudopotentials81,82 calibrated against atomic HF

calculations based on the Dirac-Coulomb Hamiltonian. Al-

though Nash correlates (n − 1)s(n − 1)p(n − 1)dnsnp elec-

trons, his 6sd6p2pf1g valence basis is clearly too small.

Runeberg and Pyykkö29 as well as Nash30 include spin-orbit

interaction in their calculations, but not spin-other-orbit inter-

action, which we have seen is critical for the proper descrip-

tion of bonding in eka-Rn2.

5 Summary and Outlook

We have reported spectroscopic parameters for the ho-

moatomic dimers of xenon, radon and eka-radon obtained

with the eXact 2-Component (X2C) molecular-mean field

Hamiltonian at the CCSD(T) level and extrapolated to the

complete basis set limit, at which counterpoise corrected re-

sults seem to be more reliable than uncorrected ones. We also

report the very first lrCC-srDFT implementation at the 2-and

4-component relativistic level. The lrCCSD(T)-srLDA/QZ

results are in general in rather close agreement with the

CCSD(T)/CBS results. Although we observe a somewhat

faster convergence of the range-separated results with respect

to the number of correlating orbitals, choice of basis set and, in

particular, inclusion of triples, in practice this does not allow

us to proceed with a computationally less expensive protocol.

Our results confirm the previous lrMP2-srDFT numbers re-

ported by Kullie and Saue,32 notably an almost fourfold in-

crease at the DC level of the binding energy in going from the

radon to the eka-radon dimer. However, we also find that the

dissociation energy of the eka-Rn2 dimer is reduced by about

40 % upon the inclusion of spin-other orbit interaction. Yet

the bonding in eka-Rn2 dimer is markedly stronger than in the

lighter homologues. This may suggest contributions of cova-

lent bonding to the bonding picture, which clearly deserves

further attention, although we find that Uuo2 is unbound at

the HF level. It will therefore be interesting to study the bulk

behavior of this superheavy element.
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51 K. E. Riley, M. Pitoňák, P. Jurečka and P. Hobza, Chem. Rev., 2010, 110,

5023–5063.
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58 J. G. Ángyán, Phys. Rev. A, 2008, 78, 022510.

59 T. Helgaker, W. Klopper, H. Koch and J. Noga, J. Chem. Phys., 1997,

106, 9639.

60 A. Halkier, T. Helgaker, P. Jörgensen, W. Klopper, H. Koch, J. Olsen and

A. K. Wilson, Chem. Phys. Lett., 1998, 286, 243 – 252.

61 O. Franck, B. Mussard, E. Luppi and J. Toulouse, J. Chem. Phys., 2015,

142, 074107.

62 DIRAC, a relativistic ab initio electronic structure program, Release

DIRAC13 (2013), written by L. Visscher, H. J. Aa. Jensen, R. Bast, and

T. Saue, with contributions from V. Bakken, K. G. Dyall, S. Dubillard,

U. Ekström, E. Eliav, T. Enevoldsen, E. Faßhauer, T. Fleig, O. Foss-

gaard, A. S. P. Gomes, T. Helgaker, J. K. Lærdahl, Y. S. Lee, J. Hen-
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Fig. 1 Dissociation energies De (in cm−1) for the homonuclear rare

gas dimers. The first five data points are derived from experiment,83

whereas the final two points correspond to the values obtained in the

present work with the X2CDCG
mm f Hamiltonian at CCSD(T) level and

extrapolated to the basis set limit.
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Table 1 Spectroscopic constants for the xenon dimer. dyall.acv∞z refers to extrapolated basis using eqn (10) with X=4.

CP refers to counterpoise correction. ECP stands for Effective Core Potential. Bold numbers are best numbers for each

choice of Hamiltonian and method.

Method Correlating Orbitals Hamiltonian Basis re/Å ωe/cm−1 De/cm−1 CP

MP2 5s5p X2CDC
mm f dyall.acv3z 4.491 18.01 165.16 x

dyall.acv4z 4.392 20.76 204.48 x

CCSD dyall.acv3z 4.673 13.98 98.43 x

dyall.acv4z 4.564 15.99 120.98 x

CCSD(T) dyall.acv3z 4.585 15.81 127.20 x

dyall.acv4z 4.465 18.67 162.62 x

MP2-srLDA dyall.acv3z 4.431 18.54 173.54 x

dyall.acv4z 4.404 19.56 189.98 x

CCSD-srLDA dyall.acv3z 4.440 18.37 171.40 x

dyall.acv4z 4.408 19.55 190.69 x

CCSD(T)-srLDA dyall.acv3z 4.429 18.75 179.28 x

dyall.acv4z 4.396 19.99 200.49 x

MP2 4d5s5p X2CDC
mm f dyall.acv3z 4.375 20.64 213.90 x

4.349 21.40 230.88

dyall.acv4z 4.275 23.87 267.32 x

4.250 24.68 283.57

dyall.acv∞z 4.213 26.21 311.14 x

4.187 27.16 327.80

CCSD dyall.acv3z 4.644 14.19 102.15 x

4.610 14.96 112.81

dyall.acv4z 4.536 16.30 124.95 x

4.510 16.85 132.95

dyall.acv∞z 4.466 17.99 144.53 x

4.444 18.41 151.01

CCSD(T) dyall.acv3z 4.540 16.52 137.53 x

4.508 17.40 151.13

dyall.acv4z 4.421 19.48 175.75 x

4.396 20.11 186.64

dyall.acv∞z 4.346 21.73 208.69 x

4.324 22.28 217.67

MP2-srLDA dyall.acv3z 4.364 20.58 213.29 x

dyall.acv4z 4.337 21.70 233.59 x

CCSD-srLDA dyall.acv3z 4.399 19.54 193.04 x

dyall.acv4z 4.367 20.78 215.03 x

CCSD(T)-srLDA dyall.acv3z 4.388 19.93 201.65 x

dyall.acv4z 4.355 21.25 225.76 x

MP2 4s4p4d5s5p X2CDC
mm f dyall.acv3z 4.373 20.71 214.94 x

dyall.acv4z 4.272 23.94 268.91 x

CCSD dyall.acv3z 4.646 14.17 101.96 x

dyall.acv4z 4.537 16.26 124.51 x

CCSD(T) dyall.acv3z 4.540 16.55 138.01 x

dyall.acv4z 4.420 19.49 176.17 x

MP2-srLDA dyall.acv3z 4.362 20.64 214.42 x

CCSD-srLDA dyall.acv3z 4.398 19.58 193.73 x

CCSD(T)-srLDA dyall.acv3z 4.386 19.97 202.36 x

CCSD(T) 4d5s5p X2CDCG
mm f dyall.acv4z 4.422 19.49 176.14 x

dyall.acv∞z 4.347 21.74 209.17 x

MP2-srLDA32 4d5s5p DC dyall.acv4z 4.337 21.7 233.6 x

CCSD(T)29 5s5p ECP46MWB 78 ”Basis 2” 4.525 17.6 156.5 x

CCSD(T)-srPBE16 5s5p ECP28MDF84 aug-cc-pVQZ 4.334 20.5 197.5 x

Exp. 83 4.363 20.90 196.20
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Table 2 Spectroscopic constants for the radon dimer. dyall.acv∞z refers to extrapolated basis using eqn (10) with X=4.

CP refers to counterpoise correction. ECP stands for Effective Core Potential. Bold numbers are best numbers for each

choice of Hamiltonian and method.

Method Correlating Orbitals Hamiltonian Basis re/Å ωe/cm−1 De/cm−1 CP

MP2 5d6s6p X2CDC
mm f dyall.acv4z 4.343 20.47 364.40 x

4.323 21.04 385.70

dyall.acv∞z 4.280 22.43 427.31 x

4.263 23.01 449.82

CCSD dyall.acv4z 4.617 13.93 168.56 x

4.596 14.42 179.55

dyall.acv∞z 4.617 15.45 197.25 x

4.528 15.91 207.22

CCSD(T) dyall.acv4z 4.502 16.56 235.56 x

4.483 17.06 249.70

dyall.acv∞z 4.424 18.54 282.80 x

4.412 18.97 294.95

MP2-srLDA dyall.acv4z 4.388 19.06 323.68 x

CCSD-srLDA dyall.acv4z 4.432 17.87 284.73 x

CCSD(T)-srLDA dyall.acv4z 4.418 18.31 301.02 x

MP2 5d6s6p X2CDCG
mm f dyall.acv4z 4.346 20.49 363.58 x

dyall.acv∞z 4.282 22.46 426.99 x

CCSD dyall.acv4z 4.621 13.91 166.65 x

dyall.acv∞z 4.547 15.44 195.57 x

CCSD(T) dyall.acv4z 4.506 16.55 233.82 x

dyall.acv∞z 4.427 18.53 281.41 x

PBE31 all DC 4.646 15 193.6

MP2-srLDA32 5d6s6p DC dyall.acv4z 4.387 19.0 323.9 x

CCSD(T)29 6s6p ECP78MWB 79 “Basis 2” 4.639 14.9 222.6 x

CCSD(T)30 5s5p5d6s6p RECP60(DC) 81 6sd6p2pf1g 4.73 129.1
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Table 3 Spectroscopic constants for the eka-Radon dimer dyall.acv∞z refers to extrapolated basis using eqn (10) with

X=4. CP refers to counterpoise correction. ECP stands for Effective Core Potential. Bold numbers are best numbers for

each choice of Hamiltonian and method.

Method Correlating Orbitals Hamiltonian Basis re/Å ωe/cm−1 De/cm−1 CP

MP2 6d7s7p X2CDC
mm f dyall.acv4z 4.184 26.52 1258.87 x

4.169 27.60 1286.93

dyall.acv∞z 4.136 28.11 1389.73 x

4.130 28.43 1400.40

CCSD dyall.acv4z 4.435 18.85 765.65 x

4.424 19.55 777.00

dyall.acv∞z 4.383 20.13 832.78 x

4.380 19.87 832.28

CCSD(T) dyall.acv4z 4.338 21.70 927.73 x

4.327 22.51 942.52

dyall.acv∞z 4.280 23.39 1033.53 x

4.280 23.45 1032.71

MP2-srLDA dyall.acv4z 4.205 25.51 1198.53 x

CCSD-srLDA dyall.acv4z 4.254 23.77 1075.93 x

CCSD(T)-srLDA dyall.acv4z 4.240 24.32 1121.05 x

MP2 6d7s7p X2CDCG
mm f dyall.acv4z 4.223 25.00 840.59 x

dyall.acv∞z 4.172 26.67 966.61 x

CCSD dyall.acv4z 4.503 17.02 372.01 x

dyall.acv∞z 4.445 18.27 434.14 x

CCSD(T) dyall.acv4z 4.393 19.94 524.18 x

dyall.acv∞z 4.329 21.74 624.24 x

PBE31 all DC 4.375 20 427.5

MP2-srLDA32 6d7s7p DC dyall.acv4z 4.205 26.3 1199.1 x

CCSD(T)30 6s6p6d7s7p RECP92(DC) 82 6sd6p2pf1g 4.57 500.1
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