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In this work we show the implementation of a linear scaling algorithm for the calculation of the Poisson integral. We use
domain decomposition and non uniform auxiliary grids (NG) to calculate the electrostatic interaction. We demonstrate the
approach within the PARSEC Density Functional Theory code and perform calculations of long 1D carbon chains and other long
molecules. Finally, we discuss possible applications to additional problems and geometries.

1 Introduction

Density Functional Theory (DFT)1 has become the method
of choice for the calculation of the electronic properties of
large systems, this is mostly because of a good balance be-
tween numerical accuracy and computational cost. In most
applications, the Kohn-Sham (KS)2 differential equations are
solved either by a basis representation such as Gaussian ba-
sis sets3, local numerical basis sets4, plane waves5–7, or
wavelets8 or via the representation of the wave function over
a discrete grid9–15. While each method has its own advan-
tages and disadvantages, the use of a discrete grid, also known
as the real-space method9,10,12 has some advantages for par-
allel implementations of large systems16,17. Another advan-
tage of the real-space method is that it is relatively straight-
forward to use the Runge-Gross theorem for time dependent
DFT (TDDFT)18 and perform direct time propagation of the
KS orbitals (RT-TDDFT)13,19,20. Both for ground state and
especially for the time dependent case, the calculation of the
electrostatic interaction term, known as the Hartree potential,
and the Fock exchange interaction term , is becoming the most
time consuming part of the problem. The Hartree term is given
by:

VH(~r) =
∫

ρ(~r1)d~r1

|~r−~r1|
(1)

As the direct calculation of the integral given in Eq. 1 is of
O(N2) complexity, where N is the number of grid points, most
implementations solve instead the equivalent Poisson equa-
tion:

∇
2VH(~r) =−4πρ(~r) (2)
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Eq. 2 is conventionally solved with iterative solvers such
as the conjugate gradient (CG)21 or multi-grid solvers15,22,23.
Another approach is to use the Fast Fourier Transform
(FFT)24,25 to calculate VH . Both CG and multi-grid solvers
require the formulation of boundary conditions. For many
situations, the multipole approximation26, is a good and effi-
cient way to set the boundary conditions of the system but for
structures with high aspect ratio there are known convergence
issues and so either a larger box should be taken or a much
slower calculation for the boundaries should be used. With
FFT the box size should be twice the size of the system in
each dimension, which also makes the calculation slower. The
appearance of efficient algorithms such as the Fast Multipole
Method (FMM)27,28 makes it possible to re-consider the direct
calculation of Eq. 1. In recent years, FMM based29–32 and
other33–36 efficient integration methods were implemented for
Hartree and Fock exchange terms in quantum calculations.
In this work we present a method, based on auxiliary non-
uniform grids (NGs)37,38, that can asymptotically reach O(N)
performance. The NG method uses FMM-like hierarchical do-
main decomposition to compute Eq. 1, but represents the po-
tentials by their values on non-uniform auxiliary grids which
are then used for interpolation to an arbitrary grid. The rest
of the manuscript is organized as follows: we first review the
real-space method as implemented in the PARSEC code and
then describe the NG algorithm. We discuss some important
implementation details, with a particular emphasis given to
elongated structures. Finally, we present results, demonstrat-
ing the algorithm’s performance, for ground state calculation
of 1D carbon chains. We conclude with some discussion of
how this method can be used for additional geometries and
also for Fock Exchange and screened exchange calculations.
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2 Brief introduction of the Real-Space pseu-
dopotential method

The real space pseudopotential method is based on sampling
the orbitals on a uniform grid and on converting the KS differ-
ential equations to high order finite difference equations. We
write first the spin un-polarized KS equations as:

(
−∇2

2
+V̂ion(~r)+VH(~r)+VXC(~r)

)
ϕm(~r) = εmϕm(~r)

ρ(~r) = 2
Nocc

∑
m=1
|ϕm(~r)|2 (3)

where we use atomic units throughout, εm and ϕm are the
eigenvalues and eigenvectors of the equation respectively, and
V̂ion is the ionic potential, calculated using the pseudopotential
method as described in9,10. VH is calculated via the solution
of Eq. 2 and finally VXC is calculated according to the selected
functional. The Fornberg39 formulation of high order finite
difference is used to write:

∂ 2ϕm(xi,y j,zk)

∂x2 =
n=D

∑
n=−D

Cn

h2 ϕm(xi +nh,y j,zk)+O(h2D) (4)

where h is the mesh size and Cn are the finite difference co-
efficients. Doing so to all partial derivatives, the Laplacian is
now represented by a high order finite difference discrete op-
erator. This representation is then used in both Eq. 3 and
Eq. 2 self consistently. The resulting finite difference equa-
tions are then solved as described in9,10. To solve Eq. 3 in a
finite domain the wave functions, ϕm, are restricted to be zero
outside the domain and the KS equations are solved over that
domain. While we focus in this work on finite systems, the
same method can be used for 1D40, 2D, and 3D41 periodic
calculations by applying the appropriate Bloch conditions. To
solve the finite difference form of Eq. 2 for non-periodic sys-
tems, the conjugate gradient (CG) method is used with appro-
priate Dirichlet boundary conditions for the potential that can
be calculated via the multipole expansion and other methods.

3 Algorithm description

3.1 Discrete form of integral summations

We now focus on strategies for calculating the Hartree term.
We first discuss the relationship between the continuous inte-
gral, given in Eq. 1, to its possible discrete form approxima-
tion. A naı̈ve approximation to the integral would be:

VH(xi,y j,zk) =
∫

ρ(~r2)d~r2

|~ri, j,k−~r2|
≈ h3

∑
m,n,l

ρ(xm,yn,zl)

|~ri, j,k−~rm,n,l |
(5)

The summation in Eq. 5 assumes (m,n, l) 6= (i, j,k). The
self-contribution term, (m,n, l) = (i, j,k), has to be found ana-
lytically or numerically and depends on the grid interpolation
kernel. However, the approximation in Eq. 5 is too crude in
comparison to solving the high order finite difference Poisson
equation and would require a very fine grid to converge. This
is because the potential of a volume element of charge is not
given by ρ(xm,yn,zl)

|~rm,n,l−~ri, j,k|
. The difference is significant mostly for

the immediate neighbors, we can therefore try to replace the
1/r Green’s function by the true potential of the volume el-
ements at the centers of neighboring elements. While there
are analytic forms for the electrostatic potential of a cube, we
made the choice of using the finite difference Poisson equation
to calculate the potential of a point charge located at the origin
and to use this potential for the values of the Green’s function.
And so instead of calculating Eq. 5, we calculate:

VH(xi,y j,zk)≈ h3
∑

m,n,l
ρ(xm,yn,zl)G(~ri, j,k,~rm,n,l) (6)

where G(~ri, j,k,~rm,n,l) →
∆r�h

1
|~ri, j,k−~rm,n,l |

is the corrected inter-

action, ∆r ≡ |~ri, j,k −~rm,n,l | and h is the grid spacing. While
Eq. 6 gives a better approximation for the Hartree potential, it
would still take O(N2) to calculate and therefore some addi-
tional approximations should be made.

3.2 Multipole approximation and Non uniform Auxiliary
grid

In this section we review the algorithm of building a Non Uni-
form Auxiliary grid (NG) that was developed for fast calcu-
lation of capacitance of complex systems37. The first part of
the algorithm follows the FMM logic, but we write it here for
completeness. To get some approximate, but more efficient
calculation, we first note that for any set of point charges in
space we can use the multipole expansion26 and so write the
potential of charges that are located in a volume Ω around the
origin as:

VΩ(~ri, j,k) =
∞

∑
m1=0

m2=m1

∑
m2=−m1

f (m1,m2)

|~ri, j,k|m1+1 Y m2
m1

(θ ,φ) (7)

where f (m1,m2) is the (m1,m2) moment of the charge and
Y m2

m1 are the spherical harmonics. Far enough from the charge
volume, the expression in Eq. 7 can be truncated to a finite
summation up to order T : V T

Ω
(~ri, j,k) ≈ ∑

T
m1=0(· · ·), while

keeping a small relative error Erel . If the charges can be as-
sumed to be all contained in a sphere of radius RS, a closed
form expression can be obtained for the truncation order that
is needed to get a given maximal relative error. At a distance
R from the system, we would get37:
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T ≥ logR/RS
(E−1

rel )−1 (8)

Eq. 8 encapsulates the basic idea - that the truncation or-
der, for a desired value of relative error, depends only on the
ratio R/RS. If we define a far-field potential as one for which
R >W ·RS, i.e. the criteria for using the approximation scales
linearly with the domain size, we can divide the space in a
multi-level decomposition to blocks of varying size, RS, while
the basic mathematical form of the far-field potential of each
block, at any level, remains the same.

Next, we would like to build a method that would allow us
to sample expression (7) and so use a cheaper interpolation
scheme for the potential at other arbitrary grid points. At this
point we deviate from traditional FMM and build the auxil-
iary grids. Expression (7) consists of elements of the form
r−aeibθ eicφ with 1≤ a≤ T +1,−T ≤ b,c,≤ T . Thus, we can
sample T + 1 equally spaced points in the α ≡ r−1 variable
and 2T + 1 in each of the angular coordinates variables, to
fully reconstruct V T from the samples. We also note, that for
larger R, it is evident from Eq. 8 that we can use a smaller T
and hence less angular sampling points. The reconstruction is
done using a polynomial interpolation in the α variable and an
interpolation filter in the angular coordinates37.

So far, we have treated the far-field potential of a single vol-
ume and have devised an α grid that enables us to interpolate
the potential. The α grid is uniform in r−1, but non-uniform in
r. The grid thus formed with the radial and angular variables
is a Non-uniform auxiliary Grid which we call NG. Note that
although there are codes that solve the KS equations them-
selves on a non-uniform grid14,42,43, the idea here is different
- we use many auxiliary non-uniform grids for the purpose of
electrostatic potential interpolation. In a typical situation of
decomposition of space, we would like to gather the far-field
potential of many distinct domains at a given domain. To that
end, we devise a new local grid that will allow us to interpolate
the far-field contribution of several sources. This local grid is
illustrated in Fig. 1.

In this construction, we build a grid that is uniform in all
co-ordinates and has a total number of grid points that is also
independent of system size for a given required relative error.
In practice, we use sampling that is denser than the theoretical
requirements to allow for a linear interpolation of the potential
from its samples, which reduces the total complexity. Also,
the potential at the sampling points is at first constructed us-
ing the exact, discretized integration form, Eq. 6, and not the
truncated multipole expression, and the values that are sam-
pled on the grid are of the function rV (~r) , which is a smoother
function and is less prone to numerical issues. Once an appro-
priate local grid is defined, we can divide the problem space
into domains of varied size, RS, such that a multi-level hierar-
chical decomposition is built. In this scheme, we keep track of
parent-child relation (blocks of level i contain blocks of level

Fig. 1 The far field grid (Green), and the local grid (red) of the
upper and lower wave-filled blocks, respectively (given W = 2).

i+ 1 , the level being higher meaning smaller blocks). We
define two domains to be well-separated if their distance, Rd ,
fulfills Rd >W ·RS. Domains that are not well-separated will
be called neighbors. We can now define, in a similar fashion
to the FMM algorithm, the ’Interaction List’ of a domain j, as
the set of all domains which are well separated from j, while
their parents are not well separated from the parent of j. This
concept is illustrated in Fig. 2.

Fig. 2 A 1D illustration of different levels. The cell of interest is
shown in red, the near neighbors in blue and the interaction list are
the yellow cells with arrows. The arrows show how the interaction
list data is interpolated into the cell - this is discussed later in the
text.
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3.3 Algorithm details

We now describe how by the combination of hierarchical de-
composition and far field interpolation we calculate the elec-
trostatic potential. In a general 3D problem, with a cubic do-
main, we divide space into 8 cubes and then repeatedly divide
each cube into 8 child cubes until we reach the minimal al-
lowed domain size which can be 1 grid point or bigger. We
define level 0 as the whole problem domain and call it the
highest level. Level 1 will have 8 cubes and so on. For sim-
plicity, we have assumed that our domain is a cube of size
2N × 2N × 2N - this assumption is not necessary as we can
play with the minimal domain size and also add zeros to a
more general box. While the algorithm can be implemented
in 3D as described above and in37, we have made the choice
of considering first elongated structures where our box is of
size Lx×Ly×Lz and we have Lz� Lx,Ly. To demonstrate the
algorithm scaling with Lz, we made the simplification of per-
forming domain decomposition only along the z axis, such that
the angular sampling in θ ,φ can be approximated by sampling
in the x,y co-ordinates, and the interpolation of the potential
at any point (x,y,z) can be made simply by only using points
with the same (x,y) co-ordinates. These simplification still
improves the algorithms’ numerical complexity while yield-
ing an acceptable numerical error.

The algorithm is now defined as follows:

• hierarchical domain decomposition.

• At the lowest level, calculate the exact potential on the
far field NG grid and near neighbor potentials.

• Up-tree stage - For each level - build a far field NG grid
for each domain by interpolation of the child domains
Vf ar(i) = ∑ j∈children(i) interpolation(Vf ar( j)) - the inter-
polation is needed because the NG grids of the domains
are not the same.

• We now use a Down-tree pass to sum the contribution
of different blocks. Starting from level 2 we take each
block Interaction List (IL) domains and interpolate their
far-field NG values into the block local grid. From level
3 and lower we add also the contribution of the domain’s
parent grid potential. And so:

V (Block(k)) = ∑
i∈IL(k)

Interp(Vf ar(i)) (9)

+ Interp(Vinner(parent(k)))

The last stage can be illustrated by figure 2. At the end of
the last stage we get the potential at every grid point.

4 Scaling and results for some model systems

4.1 Scaling tests for the algorithm

We first checked the performance of the algorithm on a syn-
thetic problem where we have produced a charge density and
compared speeds of a direct calculation to the NG implemen-
tation. We took a box of 8× 8×Lz points with Lz going till
600, and compared the speeds as shown in figure 3.

Fig. 3 Comparison of direct calculation of integral (shown in red) to
the NG algorithm (shown in blue)

Fig. 3 clearly shows linear scaling compared to the cubic
scaling of a direct calculation. It should be noted that since
we have performed the hierarchical decomposition only in
one dimension this is still not very efficient as the scaling is
O(n2

xn2
ynz). To reach the full efficiency one needs to do the

decomposition in all dimensions - this was done in37 for elec-
trostatic applications and was further implemented on GPUs38

to get additional acceleration. In those works they report scal-
ing values reaching ∼ 400N behavior for practical applica-
tions. FMM and other implementations have also reported
O(N) and O(N log(N)) complexities. FFT based works24,25

report O(N log2(N)), however, the FFT constant is 5 and since
log2(N = 106)∼ 20 it can reach better performance on a reg-
ular grid. A possible advantage of both the NG method and
FMM like methods is that they can reach significantly better
performance when the charge density becomes sparse, further-
more the NG method can easily be adapted to screened poten-
tials, other kernels and also to work with codes that solve the
KS equations on non-uniform grids.

An additional consideration is memory, the NG main mem-
ory requirement is coming from the non-uniform auxiliary
grids at the lowest level, this is O(N) with a constant that de-
pends on the chosen size of α grid and the lowest level block
size. The algorithm accuracy is controlled by the density of the
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NG and the size of the smallest domain. As the algorithm is
implicitly based on the truncation of the multipole expansion,
the errors in potential estimation can in some cases accumu-
late in the total energy expression, this makes the convergence
tougher (higher T and therefore denser NG grid). However,
the eigenvalues and changes in total energy (e.g. due to ioniza-
tion or geometry change) converge much faster. The conver-
gence can be significantly improved by calculating the local
ionic term also with the NG method as some of the possible
truncation errors will cancel out.

4.2 Simulation of 1D carbon chains

A simple test case for an elongated structure is that of 1D
chains of carbon, also known as carbyne. Such chains can ap-
pear in two forms44, one called cumulene, where the carbons
in the chain are equi-distant and have a double bond (= C =
C =)n, and the other called polyyne where there are alternat-
ing single and triple bonds (−C≡C−)n. To test our approach
we have calculated H(−C≡C−)nH with n=40 and n=110 and
verified that the eigenvalues we get with CG and with NG are
the same. We have used a box of 12a.u.×12a.u.×160a.u. and
also a box of 12a.u.×12a.u.×320a.u. While it is possible to
calculate with a thinner box - it results in wrong eigenvalues
as the confinement of the wavefunction becomes too unreal-
istic. In all calculations we have used grid spacing of 0.4a.u.
We have also calculated the periodic case, (−C ≡ C−)n, as
in44 for a cell of 5.159a.u. and 18.8973a.u.(10Å) in the other
dimensions. We have used norm conserving pseudopotentials
of s/p cutoff radius (a.u.) of C : 1.6/1.6 and H : 1.39. The
periodic calculations were compared to plane-waves calcu-
lations with PAW pseudopotentials that were done with the
VASP code5. In addition to the case of 1D polyyne chains,
we have calculated also additional examples (shown in Ap-
pendix B) of Alkyl chain of length 40 - C40H82, polar poly-
pyrimidine chains of length 10 and 20 ((C4N2H2)nH2) units
and alpha helix configuration of poly-glycine with 40 amino
acids, C80H122N40O41. The peptide example is a bit artifi-
cial as peptides of such length tend to fold unless the edges
are held by some other structure. Both the poly-pyrimidine
and poly-glycine are examples of polar chains with polar sub-
units that accumulate a significant dipole for the whole chain.
The gap in polymers generally gets smaller as the chain gets
longer, this is further enhanced by the polar interaction as was
demonstrated for the poly-pyrimidine case45.

4.2.1 Periodic case To describe the periodic case we
have used a periodic cell of 5.159a.u. length in the periodic di-
rection and 18.8973a.u.(10Å) periodicity in the other dimen-
sions. The cell is drawn in Fig. 4. As described in44, the dis-
tances between the atoms are 2.8535a.u.(1.51Å) for the single
bond and 2.3055a.u.(1.22Å) for the triple bond.

Fig. 4 Unit cell of 1D C chain. The cell boundaries are indicated by
the vertical lines.

We have calculated the band structure of the cell and com-
pared the results of the plane-waves calculation to the real-
space calculation as shown in Fig 5.

Fig. 5 Band structure of 1D carbon polyyne chain, the solid blue
lines are plane waves calculations, the red asterisks are results of the
PARSEC code. The Fermi level is shown at the top of the valence
band by dash-dotted black line.

4.2.2 Finite carbon chains Next we have calculated the
properties of H(−C ≡ C−)20H. We took the bulk distances
and calculated the electronic properties without further relax-
ation. The cell and structure of the H(−C ≡ C−)20H are
shown in Fig. 6.

Fig. 6 H(−C≡C−)20H structure, the box is shown for proportions.

We have terminated the chain with hydrogens at a bond dis-
tance of 2.0598a.u.(1.09Å). An interesting thing to note is
that already at n = 20 (40 C atoms) the electronic eigenvalues
are already very close to the bulk state. We have compared the
eigenvalues of the finite n = 20 case with the eigenvalues of
a periodic k-grid of 20 points, using the fact that the band is
monotonic, we have aligned the eigenvalues according to their
order. This is shown in Fig. 7 for the valence band. Such a
behavior, of a finite system approaching the properties of the
infinite polymer is known for both this and other systems46,47

We have examined the effect of neighbor correction, de-
scribed earlier, on the resulting eigenvalues, where we have
compared the solution of CG with the NG algorithm with
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Fig. 7 Comparison of periodic (red circles) and H(−C ≡C−)20H
(blue asterisks) electronic eigenvalues in the valence band,
eigenvalues are shown with reference to the Highest Occupied
Molecular Orbital (HOMO) or EF , so the top occupied state is 0

and without 4th nearest neighbor correction as shown in Fig.
8. As is evident, the neighbor correction scheme is criti-
cal for getting the correct eigenvalues. We have also calcu-
lated and H(−C ≡C−)55H and reached box size of 12a.u.×
12a.u.× 320a.u. To test the algorithm, we also went to box
size of 1000a.u. and still managed to get correct behavior of
the solver. To check our calculations with non neutral systems
we have removed 1 and 2 electrons and compared the differ-
ence in Total energy for both the CG and NG calculations,
the difference in ionization energy was 0.003Ry and 0.005Ry
respectively, representing a relative error of∼ 0.005 in ioniza-
tion energy.

Fig. 8 Effect of neighbor correction scheme. The error in
eigenvalues relative to a CG calculation, is shown for 4 neighbors
correction (blue asterisks) and without neighbor correction (red
circles).

5 Summary

We have shown an auxiliary grid method for the calculation of
the electrostatic terms in DFT. We have also shown that we get
a linear scaling for elongated structures and also demonstrated

the accuracy with a system of 1D carbon chains and other long
molecules. While we have demonstrated the method for the
ground state Hartree term, it is easy to show that the same
method can be used to calculate the Fock exchange pair inte-
grals and also the Hartree term in time dependent problems.
The main advantage of the method is that it allows the use of
minimal box. In elongated structures and also in quasi-planar
structures (e.g. very large graphene nano ribbons) this can be
very helpful as the usual multipole approximation does not
converge for high aspect ratio domains and so it is difficult
to efficiently set the boundary conditions for Poisson equation
solvers (either CG or multi-grid). The NG scheme can also
be used as a method to calculate the boundary conditions for
such solvers. An important situation where the NG method
(or other FMM based methods) can be even more efficient rel-
ative to other methods is when the structures are low dimen-
sional though not linear or planar but curved - A curved 1D
or 2D structure can occupy an even larger encompassing box,
making the use of FFT slower. An additional possible advan-
tage of the method, common also to other integration based
methods, is that we can easily estimate regions where either
the charge density or the potential are zero or close to zero - in
some cases the calculation is not needed at all at those points
( either for the source charge or for the potential or both ) and
so a significant reduction in time can be achieved. Finally, it
is also possible to tailor the grid interpolation scheme to other
interaction kernels, e.g. screened potentials, with such poten-
tials we expect better performance as the far field behavior is
almost trivial.
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Appendix A - Calculation of ionic potential

The electrostatic potential in Eq. 3 is composed from the VH
term, arising from the electron density, and the ionic term.
Naively, it possible to write the ionic potential of a nucleus
with Z protons as Vion(~r) =− Z

|~r−~R| . However, this potential is
often replaced with a softer pseudo-potential that includes the
core electrons and is much smoother near the origin. In the
PARSEC code, norm-conserving pseudopotentials48 are used,
and the Kleinman-Bylander method49 is used. This makes
the ionic potential a non local operator that is represented as
follows:

V̂ a
psϕn(~r) =V a

loc(ra)ϕn(~r)+∑
l,m

Ga
n,lmũlm(~ra)∆Vl(ra) (10)
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Where ~ra = ~r− ~Ra, ra = |~ra|, and ũlm(~ra) is the atomic
pseudo wave function corresponding to angular momemntum
lm and the projection coefficients are given by:

Ga
n,lm =

1
< ∆V a

lm >

∫
ũlm(~ra)∆Vl(ra)ϕn(~r)d3r (11)

with:

< ∆V a
lm >=

∫
ũlm(~ra)∆Vl(ra)ũlm(~ra)d3r (12)

Above the cutoff radius, Rc, we have ∆Vl(ra) = 0 and
V a

loc(ra) =−Zps/ra where Zps is the total charge of the nucleus
and core electrons. The total ionic potenital is then calculated
by a summation over all ions in the system:

V̂ion = ∑
a

V̂ a
ps (13)

Equation 13 is used exactly as is in finite systems which
are the focus of this work. For completeness we describe
shortly also the 3D and 2D implementations. In 3D we
use the Ewald summation technique12 to calculate the ionic
potential. While in 2D it is possible to use 2D forms of
the Ewald summation12,50 we have chosen41 a different ap-
proach51 - we add and subtract positive gaussian charges
to the ions to separate the potential into long and short
range parts. The positive charge is given by: n+(ra) =
(γa/π)(3/2)Zps exp(−γ2

a r2
a) , the potential of such charges is

given by: V+(ra) = −Zpser f (−γara)/ra. We can then repre-
sent the local potential from Eq. 10 as:

V a
loc(ra) = ∆V (ra)+V+(ra) (14)

The first term in Eq. 14 can be shown to decay very fast51

and hence can be easily calculated by direct summation of few
neighbors. The second term can be calculated by solving the
Poisson equation with 2D boundary conditions41. It is possi-
ble to use this method also for finite systems and to calculate
the electrostatic potential of the gaussian charges plus the elec-
tron density. This has minimal additional computational cost
and has the advantage of reducing the residual errors of trun-
cated multipole expansions because now it is calculated for
locally neutral domains.

Appendix B - Additional examples

Alkyl chain C40H82

We have used an alkyl chain of 40 units. As before we have
used norm conserving pseudopotentials of s/p cutoff radius
(a.u.) of C : 1.6/1.6 and H : 1.39. Grid spacing of 0.4a.u. and
a box of 20a.u.×20a.u.×140a.u. The system is described in

Fig. 9 Alkyl chain with 40 units

Fig. 10 C40H82 eigenvalues. The CG results are shown with blue
asterisks, the NG results are shown by red circles. The lower line is
the top of the occoupied states. The upper line is the start of empty
states.

Fig. 9. The CG band-gap is 6.4143eV compared to 6.4141eV
of NG. Some of the eigenvalues are shown in Fig. 10, and
show very good agreement between the two methods.

Poly-pyrimidine

We have calculated the dipole and band gap of both 10 and 20
units poly-pyrimidines ((C4N2H2)nH2). We have used norm
conserving pseudopotentials of s/p cutoff radius (a.u.) of
C : 1.6/1.6, N : 1.5/1.5, and H : 1.39. Grid spacing of 0.4a.u.
and a box of 20a.u.× 20a.u.× 160a.u. for the 10 units and
20a.u.× 20a.u.× 200a.u. for the 20 units. The 10 units sys-
tem is shown in Fig. 11. For the 10 units the CG dipole was
23.074D compared to 23.086D with NG ( diff. of ∼ 0.01D
). The CG band gap was calculated to be 1.6821eV compared
with 1.6809 of NG (diff. of ∼ 0.001eV ). For the 20 units
system the CG dipole was calculated to be 42.3804D while
the NG was 42.387D (diff. of 0.006D), the CG band gap was
1.4783eV compared to 1.4757eV of NG (diff. of 0.0026eV ).
Those LDA values are slightly lower the PBE values calcu-
lated elsewhere45 but show very similar trends.

Fig. 11 Poly-pyrimidine with 10 units. Box size is
20a.u.×20a.u.×160a.u., carbon atoms are shown in brown,
hydrogen in white and nitrogen in light blue
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Fig. 12 40 amino-acid poly-glycine. Carbons are shown in brown,
Hydrogens in white, Oxygen in red and Nitrogen in light blue.

Poly-Glycine

The last system we have calculated is that of alpha-helix poly-
glycine of 40 amino acids (C80H122N40O41). This system is
also highly polar as every peptide bond along the chain con-
tributes to the total dipole moment of the molecule. We have
used norm conserving pseudopotentials of s/p cutoff radius
(a.u.) of C : 1.6/1.6, N : 1.5/1.5, O : 1.45/1.45, and H : 1.39.
Grid spacing of 0.4a.u. and a box of 20a.u.×20a.u.×160a.u.
The system is shown in Fig. 12, this structure was not fully
relaxed and the dipole can still change significantly during
additional geometrical relaxation. It is calculated mostly for
the comparison of CG and NG. The CG z direction (long
axis) dipole was 147.4341D, compared to 147.402D of NG
(diff. of ∼ 0.03D), by accident we did not fully align the
molecule to the box axis and so had also dipoles in the other
directions (CG/NG/diff.) 6.875D/6.866D/0.008D in x and
5.450D/5.449D/0.001D in y. The gap is already very small
and with a Fermi temperature of 0.05eV the first unoccupied
state was already with ∼ 0.1 occupation by both calculations.
The CG gap was 0.4584eV the NG gap was 0.4577eV (diff.
of 0.0007eV ).
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