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Strongly correlated plexcitonics: Evolution of the Fano resonance in the presence of
Kondo correlations

A. Goker
Department of Physics,

Bilecik University,
11210, Gülümbe, Bilecik, Turkey

(Dated: March 18, 2015)

We study the optical absorption of a system consisting of a diatomic molecule that exhibits strong
electron correlations coupled to metal nanoparticles possessing plasmon resonances by invoking the
time dependent non-crossing approximation. We investigate the evolution of the Fano resonance
arising from the plasmon-exciton coupling when both atoms are Coulomb blockaded. We find that
the Fano resonance rapidly dwindles as the ambient temperature exceeds the Kondo temperature of
the singly occupied discrete state with the higher energy and vanishes entirely at elevated temper-
atures. Our results show that even boosting the plasmon-exciton coupling above this temperature
scale fails to revive the Fano resonance. We propose a microscopic model that accounts for these
results. We suggest that a possible remedy for observation of the Fano resonance at high ambient
temperatures is to position the singly occupied discrete state with the higher energy as close as
possible to the Fermi level of the contacts while keeping the emitter resonance constant to prevent
the merger of the Fano and plasmon resonances.

PACS numbers: 78.67.-n, 71.35.-y, 72.15.Qm

I. INTRODUCTION

The ability to manipulate and control objects at the
nanoscale resulting from the nanotechnology revolution1

had profound implications in experimental studies of
quantum physics that were completely out of reach previ-
ously. This stems from the fact that the miniaturization
of physical devices directly uncovers their quantum na-
ture and the development of a proper quantum theory is
required to explain their behaviour at the nanoscale.

Designing nanoscale devices that can tailor light-
matter interaction to the desired level has recently gar-
nered tremendous attention since this tunability has the
potential to pave the way for concentrating optical energy
into spatial regions with dimensions less than the wave-
length of the illumination2. Collective excitations in met-
als called plasmons provide the means towards this end
by acting as a lens. The field enhancements by these plas-
mon resonances that occur in confined nanostructures
like metal nanoparticles3 enable coupling with nearby
quantum impurities like dots and molecules. The inter-
action of molecular junctions with light provides an ideal
venue to study and tune these couplings4. Coupling of
the plasmons to the molecular excitations called excitons
has recently been dubbed as plexcitonics5. This mech-
anism is regarded as a promising path towards realizing
tunable molecular systems6 and plasmonic switches7.

The classical electrodynamics simulations involving
numerical solutions of Maxwell solutions fail8,9 to cap-
ture the inherent quantum nature of interference be-
tween quasi-particles like plasmons and excitons. The
observation of Fano resonance in plexcitonics systems10

due to the plasmon-exciton coupling mechanism further
increased the need for such a quantum theory11. Ini-
tial attempts involving a quantum dot-metal nanopar-

ticle system12–14 utilized a density matrix approach to
treat the oscillations of the quantum dot while the metal
nanoparticles were taken to be classical. The influ-
ence of the Fano resonance on scattered photon statis-
tics has also been reported for this system by invok-
ing a full quantum theory15. All of these early treat-
ments curtailed their realism by ignoring direct tun-
neling between the metal nanoparticles and the quan-
tum dot. More recently, sophisticated methods like
Zubarev’s Green functions16 and pseudoparticle nonequi-
librium Green functions17 have been invoked to explore
the evolution of Fano resonance for a single molecule18,19

and a molecular dimer19 attached to metal nanospheres.

However, none of these previous investigations took
into account the electron spin explicitly and it is our aim
in the present work to address this shortcoming. We
will study a Coulomb blockaded single diatomic molecule
coupled to metallic nanoparticles. We will consider each
atom of the molecule composed of a single spin de-
generate discrete level whose double occupancy by two
electrons of opposite spins is prevented by the strong
Coulomb repulsion occurring naturally due to the con-
fined geometry. In particular, we will be concerned with
the role of an intricate many body phenomenon called
the Kondo effect on the formation of the Fano resonance
in the absorption spectrum. We will show that the cotun-
neling events that give rise to the Kondo resonance can
turn on and off the formation of plasmon-exciton cou-
pling. This results in the emergence and disappearance
of the Fano resonance in the absorption spectrum. Our
results should have direct relevance for the experiments
conducted at low temperatures.
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II. THEORY

An excitonic diatomic molecule coupled to metal
nanoparticles supporting plasmon resonances can be de-
scribed with a Hamiltonian which can be explicitly writ-
ten as

H =
∑

K∈{L,R},σ

εKσc
†
KσcKσ +

∑
s∈{g,e},σ

εsc
†
sσcsσ

+
∑
α

εαa
†
αaα +

∑
K∈{L,R},σ

(
VK,g(e)c

†
Kσcg(e)σ + h.c.

)
+

∑
K∈{L,R}

εpKb†KbK + J
∑
σ

(
c†gσceσ + h.c.

)
+

∑
K∈{L,R},α

(
Wα,Ka†αbK + h.c.

)
+

U

2

∑
s∈{g,e}

nsσnsσ′

+
∑

K∈{L,R},σ

(
∆Kc†eσcgσbK + h.c.

)
, (1)

where c†Kσ(cKσ) and c†sσ(csσ) create(annihilate) an elec-
tron with spin σ in the metal nanoparticles and in the
spin degenerate discrete state of each atom within the
molecule respectively. We denote these spin degenerate
levels with | g > and | e > whose energy difference is
| εe − εg |. εα is the energy of the radiation field with
mode α and εpK is the dipolar plasmon energy in the
left(K=L) and right(K=R) metal nanoparticle. J and
VK,g(e) are the electron tunneling amplitudes between the
states | g > and | e > and between the metal nanopar-
ticles and the state | s ∈ {g, e} > respectively. Further-
more, Wα,K and ∆K denote the amplitudes of coupling
between the radiation field with mode α and the dipo-
lar plasmons of each nanoparticle and between the exci-
ton within the molecule and the same dipolar plasmon
modes. Finally, U term represents the Coulomb repul-
sion energy within the discrete states | g > and | e >
with nsσ denoting the number operator. In this work,
we will ignore the contribution of the quadrupolar plas-
mon modes since it has been shown previously that its
presence does not alter the formation and evolution of
the Fano resonance we will explore19.

Due to the short range nature of the Coulomb inter-
action within each atom, U term in the Hamiltonian is
much larger than the other energy scales in this model. It
also overwhelms the thermal energy scale in the temper-
ature range where the Kondo correlations prevail. Con-
sequently, we can assume that U → ∞. In order to
tackle this situation we perform the slave boson trans-
formation. This procedure involves writing the electron
operators acting on the states | g > and | e > in terms of
a pseudofermion and a massless boson as

cg(e)σ = b†g(e)fg(e)σ

cg(e)σ = f†
g(e)σbg(e), (2)

satisfying the condition that

QB,g(e) = b†g(e)bg(e) +
∑
σ

f†
g(e)σfg(e)σ = 1. (3)

The last condition is introduced to restrict the occupancy
of | g > and | e > to unity. We can discard the U term
and rewrite the transformed Hamiltonian as

H =
∑

K∈{L,R},σ

εKσc
†
KσcKσ +

∑
s∈{g,e},σ

εsf
†
sσfsσ

+
∑

K∈{L,R},σ

(
VK,g(e)c

†
Kσb

†
g(e)fg(e)σ + h.c.

)
+

∑
K∈{L,R}

εpKb†KbK + J
∑
σ

(
f†
gσbgfeσb

†
e + h.c.

)
+
∑
α

εαa
†
αaα +

∑
K∈{L,R},α

(
Wα,Ka†αbK + h.c.

)
+

∑
K∈{L,R},σ

(
∆Kf†

eσbefgσb
†
gbK + h.c.

)
(4)

Green function of the dipolar plasmon mode is given
by

P (τ, τ ′) = −i < TcD(τ)D†(τ) > (5)

where D(τ) = bL(τ) + bR(τ) and Tc is the contour or-
dering operator acting along a contour c in the complex
plane which we take as the Kadonoff-Baym contour. We
obtain the physical real-time correlation function P (t, t′)
by analytical continuation using an approach introduced
by Langreth20.

The particular choice of D(t) necessitates the absorp-
tion of the photons of the incident laser in the same
phase by the metal nanoparticles and it is justified if
the incident laser is perpendicular to the axis connect-
ing the metal nanoparticles. Moreover, we assume that
the system is pumped by a single laser mode ε0 which
is only directly coupled to the dipolar mode. Since
the molecule cannot absorb energy from the laser in
this case, the J term in the Hamiltonian will be taken
to be zero. Based on these assumptions, we will take
the dipolar plasmon energy of each metal nanoparticle
equal as εpL = εpR = εp. By the same token, we will
be involved with only symmetrical plasmon-exciton and
plasmon-laser couplings, yielding ∆L = ∆R = ∆ and
W0,L = W0,R = W0 respectively in line with the previ-
ous work18,19.

The Dyson equations for the retarded and less than
projections of the plasmon Green function can be written
as[
i
∂

∂t
− εp

]
P r(t, t′) = δ(t−t′)+

∫ ∞

−∞
dt1ξ

r(t, t1)P
r(t1, t

′)

(6)
and[

i
∂

∂t
− εp

]
P>(t, t′) =

∫ ∞

−∞
dt1(ξ

r(t, t1)P
>(t1, t

′) +

ξ>(t, t1)P
a(t1, t

′)), (7)
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3

where εp represents the dipolar plasmon energy.

P r(a)(t, t′) and P>(t, t′) are the retarded(advanced) and
the greater than projections of the plasmon Green func-
tion. The missing ingredient to solve these Dyson equa-
tions is the plasmon self energy ξ(t, t′). We will resort to
the non-crossing approximation to obtain the self energy.

e 

e 

g 

g 

FIG. 1: This figure illustrates the self energy of the plasmon
propagator arising due to the plasmon-exciton coupling. Red
(dashed) lines represent the plasmon propagator, whereas or-
ange (dot-dashed) and green (solid) lines denote the slave bo-
son and the pseudofermion propagators for the atom shown
in the label respectively.

The self energy of the plasmon due to the plasmon-
exciton coupling is shown in Fig. 1. Based on this di-
agram, the less than and greater than projections are
given by

ξ<pe(t, t
′) =| ∆ |2 G<

e (t, t
′)B<

g (t, t′)G>
g (t

′, t)G>
e (t

′, t) (8)

and

ξ>pe(t, t
′) =| ∆ |2 G>

e (t, t
′)B>

g (t, t′)G<
g (t

′, t)G<
e (t

′, t). (9)

In order to obtain the retarded projection of the self en-
ergy, we utilize

ξrpe(t, t
′) = −iΘ(t− t′){ξ>(t, t′)− ξ<(t, t′)}. (10)

After some tedious algebra, the retarded self energy turns
out to be

ξrpe(t, t
′) = [G>

e (t, t
′)Br

g(t, t
′)G<

g (t, t
′)B<

e (t′, t)

−Gr
e(t, t

′)B<
g (t, t′)G>

g (t
′, t)B>

e (t′, t)

+G>
e (t, t

′)B<
g (t, t′)G<

g (t
′, t)Ba

e (t
′, t)

−G>
e (t, t

′)B<
g (t, t′)Ga

g(t
′, t)B>

e (t′, t).(11)

On the other hand, the less than and greater than pro-
jections of the plasmon self energy due to the plasmon-
laser coupling are

ξ<pl(t, t
′) = W ⋆

0 (t)D
<(t− t′)W0(t

′) (12)

and

ξ>pl(t, t
′) = W ⋆

0 (t)D
>(t− t′)W0(t

′) (13)

respectively. In these expressions, D<(t − t′) is the
Fourier transform of the laser induced mode population
D<(ε) given by

D<(ε) = N(ε) =
1

π

δ2

(ε− ε0)2 + δ2
, (14)

where δ is the laser bandwidth and D>(t − t′) = δ(t −
t′)+D<(t− t′). Consequently, the retarded projection of
the self energy due to the plasmon-laser coupling turns
out to be

ξrpl(t, t
′) = −iΘ(t− t′){ξ>pl(t, t

′)− ξ<pl(t, t
′)}

= −iΘ(t− t′)W ⋆
0 (t)(D

>(t− t′)−D<(t− t′))W0(t
′)

= −iΘ(t− t′)W ⋆
0 (t)W0(t

′)δ(t− t′) (15)

We now want to simplify our calculations by introduc-
ing

Br
g(e)(t, t

′) = −iΘ(t− t′)
[
B>

g(e)(t, t
′)−B<

g(e)(t, t
′)
]

:= −iΘ(t− t′)bg(e)(t, t
′) (16)

for the slave boson retarded Green functions. This leaves
us with

B>
g(e)(t, t

′) = bg(e)(t, t
′) +B<

g(e)(t, t
′). (17)

We can repeat the same procedure for the pseudofermion
retarded Green functions such that

Gr
g(e)(t, t

′) = −iΘ(t− t′)
[
G>

g(e)(t, t
′) +G<

g(e)(t, t
′)
]

:= −iΘ(t− t′)gg(e)(t, t
′). (18)

which results in

G>
g(e)(t, t

′) = gg(e)(t, t
′)−G<

g(e)(t, t
′). (19)

Using the same notation, we can rewrite the plasmon
Green functions as

P r(t, t′) = −iΘ(t− t′)p(t, t′)

P a(t, t′) = iΘ(t′ − t)p(t, t′). (20)

We can now insert the self energies we obtained and
the redefined Green functions into the Dyson equations.
Ignoring any explicit time dependency of the plasmon-
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g(e) g(e) g(e) 

L(R) 

L(R) 

g(e) 

g(e) g(e) 

(a) 

(b) 

FIG. 2: Panel a and b of this figure illustrate the self en-
ergy of each atom’s pseudofermion and slave boson propa-
gator respectively due to the molecule-nanoparticle coupling.
Green (dashed) lines represent the pseudofermion propagator,
whereas orange (dot-dashed) and blue (solid) lines denote the
slave boson propagator for the same atom and the electron
propagator in the nanoparticle to which the pseudofermion
tunnels respectively.

laser coupling we end up with

[
∂

∂t
+ iεp

]
p(t, t′) = −

∫ t

t′
dt1 | ∆ |2 bg(t, t1)×

(ge(t, t1)− G̃<
e (t, t1))G̃

<
g (t, t1)B̃

<
e (t1, t)p(t1, t

′) +∫ t

t′
dt1 | ∆ |2 ge(t, t1)(gg(t1, t)− G̃<

g (t1, t))B̃
<
g (t, t1)

×(be(t1, t) + B̃<
e (t1, t))p(t1, t

′) +

∫ t

t′
dt1 | ∆ |2 ×

(ge(t, t1)− G̃<
e (t, t1))B̃

<
g (t, t1)G̃

<
g (t1, t)b

⋆
e(t, t1)p(t1, t

′)

−
∫ t

t′
dt1 | ∆ |2 B̃<

g (t, t1)(ge(t, t1)− G̃<
e (t, t1))g

⋆(t, t1)

×(be(t1, t) + B̃<
e (t1, t))p(t1, t

′)− | W0 |2 p(t, t′) (21)

and[
∂

∂t
+ iεp

]
P>(t, t′) = −

∫ t

−∞
dt1 | ∆ |2 G̃<

g (t, t1)

×bg(t, t1)(ge(t, t1)− G̃<
e (t, t1))B̃

<
e (t1, t)P

>(t1, t
′) +∫ t

−∞
dt1 | ∆ |2 ge(t, t1)B̃

<
g (t, t1)(gg(t1, t)− G̃<

g (t1, t))

×(be(t1, t) + B̃<
e (t1, t))P

>(t1, t
′) +

∫ t

−∞
dt1 | ∆ |2 ×

(ge(t, t1)− G̃<
e (t, t1))B̃

<
g (t, t1)G̃

<
g (t1, t)b

⋆
e(t, t1)×

P>(t1, t
′)−

∫ t

−∞
dt1 | ∆ |2 (ge(t, t1)− G̃<

e (t, t1))×

B̃<
g (t, t1)g

⋆
g(t, t1)(be(t1, t) + B̃<

e (t1, t))P
>(t1, t

′)

− | W0 |2 P>(t, t′) +

∫ t′

−∞
dt1 | ∆ |2 G̃<

g (t1, t)×

(ge(t, t1)− G̃<
e (t, t1))(bg(t, t1) + B̃<

g (t, t1))B̃
<
e (t1, t)

×p(t1, t
′) +

∫ t′

−∞
dt1 | W0 |2 D<(t− t1)p(t1, t

′) +

| W0 |2 p(t1, t
′). (22)

The retarded pseudofermion and slave boson Green
functions in Eq. 21 and Eq. 22 are determined by solving
the relevant Dyson equations given by[

∂

∂t
+ iεg(e)

]
gg(e)(t, t

′) =

−
∫ t

t′
dt1K

>
g(e)(t, t1)bg(e)(t, t1)gg(e)(t1, t

′) (23)

and

∂

∂t
bg(e)(t, t

′) =

−
∫ t

t′
dt1K

<
g(e)(t1, t)gg(e)(t, t1)bg(e)(t1, t

′). (24)

In Eq. 23 and Eq. 24, the pseudofermion and slave boson
self energies are expressed with the aid of the diagrams
shown in Fig. 2. Consequently K>

g(e)(t, t
′) and K<

g(e)(t, t
′)

are written as

K<
g(e)(t, t

′) = Γ̄

∫ D

−D

dε

2π
ρ(ε)

1

1 + eβε
eiε(t−t′)

K>
g(e)(t, t

′) = Γ̄

∫ D

−D

dε

2π
ρ(ε)

eβε

1 + eβε
eiε(t−t′), (25)

where ρ(ε) represents the density of states of the metal
nanoparticles with a half bandwidth of D and Γ̄ = 2π |
VK,g(e)(εf ) |2. In this expression, εf denotes the Fermi
level of the metal nanoparticles. We ignore any explicit
time and energy dependence of the tunneling matrix ele-
ments and take VK,g(e)(ε) = VK,g(e)(εf ). We will con-
sider a symmetrically coupled molecule in this paper
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where VL,g(e) = VR,g(e). Furthermore, we assume that
the coupling of each atom to the nanoparticles is equal
implying VK,g = VK,e. We also define Γ(ε) = Γ̄ρ(ε) and
take Γ as the value of Γ(ε) at εf . Left and right nanopar-
ticles are assumed to be identical hence their density of
states is the same. For simplicity, we will use parabolic
density of states with D=9Γ in our calculations. In prin-
ciple, we have the capability to take into account the
realistic band structure of the metal nanoparticles21–23.
However, this requires an extra ab initio calculation and
it is beyond our scope in this paper.
After obtaining the retarded pseudofermion and slave

boson Green functions in this manner, the less than pro-
jections of these Green functions can be obtained by solv-
ing [

∂

∂t
+ iεg(e)

]
G<

g(e)(t, t
′) =∫ t′

−∞
dt1K

<
g(e)(t, t1)B

<
g(e)(t, t1)gg(e)(t1, t

′)

−
∫ t

−∞
dt1K

>
g(e)(t, t1)bg(e)(t, t1)G

<
g(e)(t1, t

′) (26)

and

∂

∂t
B<

g(e)(t, t
′) =

∫ t′

−∞
dt1K

>
g(e)(t1, t)G

<
g(e)(t, t1)bg(e)(t1, t

′)

−
∫ t

−∞
dt1K

<
g(e)(t1, t)gg(e)(t, t1)B

<
g(e)(t1, t

′). (27)

The values of all Green functions are stored in a square
matrix. The details of the discretization and numerical
solution of the Dyson equations have been reported in
detail previously24,25. We insert the values of pseud-
ofermion and slave boson Green functions into Eq. 21
and Eq. 22 to obtain the plasmon Green functions. The
matrix size of the plasmon Green function is chosen to
be the same as the pseudofermion and slave boson Green
functions. The matrix size is gradually increased and
the matrix is propagated along the diagonal direction to
achieve convergence.
When the discrete energy levels εg and εe lie below

the Fermi level of the metal nanoparticles εf , the density
of states of each discrete level at sufficiently low tem-
peratures exhibits two distinct features. One of them
is a broad resonance with a linewidth Γ centered around
each discrete level. This resonance is called Breit-Wigner
resonance and originates from the hybridization of the
discrete levels with the metal nanoparticles. Therefore,
it is a noninteracting phenomenon and will exist even
in the absence of any Coulomb interactions. The sec-
ond feature is a quite sharp resonance situated slightly
above the Fermi level of the metal nanoparticles εf with
a linewidth on the order of

TK,g(e) ∝
(
DΓ

4

) 1
2

exp

(
−
π | εg(e) |

Γ

)
. (28)

This resonance is called the Kondo resonance and its
linewidth which is an energy scale is the Kondo tempera-
ture. The formation of the Kondo resonance is related to
the cotunneling processes at ambient temperatures be-
low TK,g(e) where two electrons with different spins tun-
nel simultaneously giving rise to an effective spin flip at
the discrete levels. The Kondo resonance is an elegant
trademark of the many body physics and it is completely
absent in the noninteracting limit.

A crucial point while inserting the pseudofermion and
slave boson Green functions into Eq. 21 and Eq. 22 is that
we obtain the less than Green functions in the wide band
limit and plug those values into the Dyson equations.
This means they do not incorporate a Kondo resonance
and correspond to the noninteracting limit. These Green
functions are denoted with a tilde on top to differentiate
them from the interacting retarded ones.

Despite its seemingly drastic nature, this is not an ad-
ditional approximation and is required because of the
projection into QB,g(e)=1 subspace. The underlying rea-
son is the QB,g(e) dependency of the various Green func-
tions. The retarded and less than plasmon Green func-
tions are of the order Q0

B,g(e). Consequently, the self

energies multiplying them in Dyson equations must be
of the order Q0

B,g(e) too. The retarded pseudofermion

and slave boson Green functions are of the order Q0
B,g(e)

while the less than ones are of the order Q1
B,g(e). In

order to maintain Q0
B,g(e) dependency of the both sides

of Eq. 21 and Eq. 22, we calculate the less than pseud-
ofermion and retarded Green functions in the wide band
limit which amounts to noninteracting limit and renders
them on the order of Q0

B,g(e). Eq. 21 and Eq. 22 are the

main results of this paper and we will explore their ram-
ifications for the optical absorption of the system in the
next section.

III. RESULTS AND DISCUSSION

Optical absorption at steady state for the laser energy
ε0 is given by19

Iabs(ε0) = −
∫ ∞

0

dε

2π
γ(ε)N(ε)ImP>(ε), (29)

where the total plasmon dissipation rate is defined as

γ(ε) = 2π
∑

K∈{L,R}

| W0,K |2 δ(ε− ε0), (30)

with N(ε) as the laser induced mode population in Eq. 14
and P>(ε) is the Fourier transform of the greater than
plasmon Green function P>(t, t′).

We take the dipolar plasmon energy εp=3.49 eV, the
laser bandwidth δ=1 meV and coupling of the dipolar
plasmon to the laser γL(R) = 2π | W0,L(R) |2=86 meV

in conjunction with the previous studies18,19. Moreover,
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6

we will keep the coupling of the electrons to the contacts
constant by taking Γ̄=0.2 eV and Γ=0.8 eV.
We start with calculating the optical absorption spec-

trum of a system where the singly occupied discrete en-
ergy levels are taken to be εg=-4.8 eV and εe=-1.6 eV.
This results in an emitter resonance energy of 3.2 eV
which is equal to the energy gap between the discrete
states. The plasmon-exciton coupling is initially kept as
a fixed parameter with ∆L(R)=20 meV in line with earlier

work18,19.
The optical absorption spectrum of a metal nanopar-

ticle dimer-molecule system for various ambient temper-
atures is shown in Fig. 3. There are two prominent fea-
tures of this spectrum. One of them is the dipole plasmon
resonance centered around εp. The other is the Fano res-
onance located around the emitter energy. We would
like to note that the quadrupole plasmon mode would
also appear as a shoulder on the right hand side of the
dipole plasmon18, however, we ignore it in this work be-
cause it has been shown that its presence does not affect
the formation of the Fano resonance19.
The most striking highlight of Fig. 3 is the tempera-

ture sensitivity of the Fano resonance. It is quite robust
below 20 K. However, it starts to shrink as the tempera-
ture is increased above this value and it almost vanishes
completely above 40 K. On the other hand, the plasmon
resonance appears to be quite resilient during this transi-
tion and it stays intact at any temperature. The Kondo
temperature of εe turns out to be about 23 K according
to Eq. (28) whereas the Kondo temperature of εg is zero
for all practical purposes.
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FIG. 3: This figure shows the optical absorption spectrum of
the molecule-metal nanoparticle dimer system as a function of
the incident laser energy ε0 with εg=-4.8 eV and εe=-1.6 eV
for ambient temperatures of T=12 K (red dotted), T=24 K
(purple solid), T=36 (black dashed) K and T=48 K (blue dot-
dashed) respectively assuming a plasmon-exciton coupling of
∆=20 meV.

We then calculate the optical absorption spectrum of
the same molecule-metal nanoparticle dimer system with
the same parameters in Fig. 3 except that we take εg=-

4.95 eV this time. The results are shown in Fig. 4. The
plasmon resonance is again located around the dipole
plasmon energy and quite robust against a temperature
sweep. On the other hand, the Fano resonance shifts to
a slightly higher energy since the emitter resonance en-
ergy increased in this case. Despite this, we observe that
the same temperature sensitivity prevails here too. Even
though the Fano resonance is fully formed below 20 K,
it starts to diminish once the temperature is increased
above this and disappears when it exceeds 40 K just like
the previous situation. This implies that the value of εg
has hardly any influence in this bevahivour of the Fano
resonance.
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FIG. 4: This figure shows the optical absorption spectrum of
the molecule-metal nanoparticle dimer system as a function of
the incident laser energy ε0 with εg=-4.95 eV and εe=-1.6 eV
for ambient temperatures of T=12 K (red dotted), T=24 K
(purple solid), T=36 (black dashed) K and T=48 K (blue dot-
dashed) respectively assuming a plasmon-exciton coupling of
∆=20 meV.

We now want to explore the influence of tuning the
value of εe on the development of the Fano resonance. To-
wards this end, we choose three different molecule-metal
nanoparticle dimer systems which have the same emitter
resonance energy. This enables a direct comparison since
each system has a different εe. We will refer to the config-
urations where εe=-1.6 eV and εg=-4.8 eV as system 1,
εe=-1.8 eV and εg=-5.0 eV as system 2, εe=-2.0 eV and
εg=-5.2 eV as system 3 in the following discussion. The
results for all these sytems at various ambient tempera-
tures are shown in Fig. 5. Only the close vicinity of the
Fano resonance is displayed here since the plasmon res-
onance has been found to be insensitive to temperature
fluctuations above.

First of all, the Fano resonance is located around the
same energy value for all three systems due to the equiv-
alence of the emitter resonance energy. However, this is
where the similarity ends and we see that the Fano reso-
nance behaves differently for all the systems studied. The
Fano resonance of the system 1, where the Kondo tem-
perature of εe is around 23 K, turns out to be the most
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7

resilient against increasing temperature. On the other
hand, the Fano resonance of system 2 is significantly in-
hibited at 24 K and vanishes for higher temperatures.
We estimate that the Kondo temperature of εe is around
11 K for this system. The Fano resonance of the system
3 turns out to be the least resilient against ramped up
temperature. It dwindles even at 12 K and it is com-
pletely wiped off at 24 K and any temperature above it.
The Kondo temperature of εe is estimated to be around
5 K for system 3.

a

b

c

3.00 3.05 3.10 3.15 3.20 3.25 3.30
0

10

20

30

40

50

60

¶0HeVL

ab
so

rp
ti

on
Ha

rb
.u

ni
ts
L

FIG. 5: This figure shows the optical absorption spectrum of
the molecule-metal nanoparticle dimer system as a function
of the incident laser energy ε0 for system 1 (green dashed),
system 2 (red dotted) and system 3 (blue solid) described in
the text at T=24 K (panel a), T=12 K (panel b) and T=6 K
(panel c) assuming a plasmon-exciton coupling of ∆=20 meV.
The curves in panels a and b have been shifted upwards to
enable comparison at same ambient temperature values.

These results suggest that the Kondo temperature of εe
is a critical parameter that determines the survival of the
Fano resonance of the molecule-metal nanoparticle dimer
system when the ambient temperature goes up. A higher
Kondo temperature for εe by positioning it closer to the
Fermi level of the metal nanoparticles ensures that the
Fano resonance can stay intact at elevated temperatures.
We finally want to investigate whether elevating the

plasmon-exciton coupling can mitigate inhibition of the
Fano resonance at temperatures above the Kondo tem-
perature of εe. Towards this end, we revisited the sys-
tem studied in Fig. 4 and calculated the optical absorp-
tion spectrum by increasing the plasmon-exciton cou-
pling value to ∆=40 meV. The results are shown in Fig. 6.
At first glance, one can notice that this results in a deeper
trough between the Fano resonance and the plasmon res-
onance causing a more pronounced separation between
these two peaks in line with earlier results18. Apart from
this obvious fact, we still witness the gradual collapse of
the Fano resonance with increasing ambient temperature
leading to its eventual disappearance at temperatures sig-
nificantly above the Kondo temperature of εe just like
Fig. 4. This means that even elevated plasmon-exciton

coupling values fail to ensure the survival of the Fano res-
onance and its formation is somehow intrinsically linked
to the existence of the Kondo resonance around εe.
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FIG. 6: This figure shows the optical absorption spectrum of
the molecule-metal nanoparticle dimer system as a function of
the incident laser energy ε0 with εg=-4.95 eV and εe=-1.6 eV
for ambient temperatures of T=12 K (red dotted), T=24 K
(purple solid), T=36 (black dashed) K and T=48 K (blue dot-
dashed) respectively assuming a plasmon-exciton coupling of
∆=40 meV.

Finally, we would like to present a microscopic sce-
nario which provides a tangible explanation for our re-
sults in this paper. The emergence of the Fano reso-
nance in the optical absorption spectrum is enabled by
the plasmon-exciton coupling which requires the tunnel-
ing of an electron residing in | g > to | e > when the
plasmon is destroyed in one of the metallic nanoparticles
or vice versa. However, this process is not allowed in
sequential tunneling regime since the double occupancy
of either discrete state is forbidden. Therefore, the Fano
resonance gets rapidly suppressed above TK,e. Once the
ambient temperature is reduced below this scale, cotun-
neling events start taking place at | e >, whereby the
electron occupying this level can tunnel into one of the
metal nanoparticles leaving it empty momentarily. This
breaks the blockade of plasmon-exciton coupling and the
another electron with opposite spin occupying | g > can
tunnel to | e >. This gives rise to an effective spin flip
process at | e > producing a sharp Kondo resonance in its
density of states. Consequently, a Fano resonance devel-
ops in the optical absorption spectrum in tandem. The
reverse electron transport process takes place when the
plasmon is created again. Since the laser is only coupled
to the metallic nanoparticles, the plasmon resonance has
no temperature dependency.

A major drawback of our results is that one may need
to go to quite low ambient temperatures in a strongly
correlated system to be able to observe the Fano reso-
nance in the absorption spectrum. The simplest way of
circumventing this problem is to study a system which is
not Coulomb blockaded. In such a system, the plasmon-
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exciton coupling can take place at any ambient tempera-
ture because an electron can sequentially tunnel between
the discrete states that can be doubly occupied. There-
fore, it is possible to observe the Fano resonance even
at room temperature in that case. However, the only
way of overcoming this hurdle in a Coulomb blockaded
system that we considered here is to increase the value
of TK,e by shifting | e > towards the Fermi level of the
metallic nanoparticles as much as possible. The adverse
affect of performing this would be a possible merger of
the Fano resonance with the plasmon resonance if | g >
stays far away from the Fermi level. This is simply be-
cause this action would increase the emitter resonance
energy by itself. Consequently, the realignment of | e >
must be accompanied by an equal amount of upward shift
of | g > towards the Fermi level to keep the separation
between the two resonances constant. This would en-
sure the survival and observation of the Fano resonance
in experiments performed at non cryogenic ambient tem-
peratures.
We also would like to mention a possible complication

that can arise in an experiment. The laser illumination
of metal nanoparticles can lead to heat generation and
therefore may prevent one from reaching low ambient
temperatures below the Kondo temperature. It has been
shown that this adverse effect can be overcome by using a
laser whose pulse duration is much longer than 100 ps26.
This curbs the temperature rise in the molecule-metal
nanoparticle dimer system significantly by diffusing the
heat to the environment.

IV. CONCLUSION

In this paper, we developed a novel theory to account
for the strong electron correlations in a molecule-metal
nanoparticle dimer system which exhibits a Fano reso-

nance in the optical absorption spectrum due to the cou-
pling of the plasmon resonance of the metallic nanopar-
ticles to the molecular excitons. We thoroughly investi-
gated the evolution of the Fano resonance as a function of
the ambient temperature by expressing the plasmon self
energy via the non-crossing approximation and solving
the relevant Dyson equations.

We determined unambiguously that the formation of
the Fano resonance is closely linked to the development
of the Kondo resonance around the singly occupied dis-
crete state with the higher energy. This conclusion stems
from the fact that the Fano resonance gets inhibited at
ambient temperatures above the Kondo temperature of
this state and even boosting the plasmon-exciton cou-
pling fails to revive it.

We proposed a microscopic scenario to explain these
results based on the spin-flip processes that give rise
to the formation of the Kondo resonance. We con-
cluded that the exciton formation is blocked within the
molecule without these spin-flip processes since both dis-
crete states of the molecule are Coulomb blockaded. Con-
sequently, we put forward a scenario where the discrete
state εe should be positioned as close as possible to the
Fermi levels of the metal nanoparticles in order to ob-
serve the Fano resonance at elevated ambient tempera-
tures. Moreover, the emitter resonance should also be
kept constant towards this end in order to prevent the
merger of the Fano resonance with the plasmon reso-
nance. We hope to motivate further experiments in this
rapidly evolving field with our results.
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The author thanks Tübitak for generous financial sup-
port via grants 111T303 and 114F195 and to Dr. Hüseyin
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