PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

- 1 Experimental and Theoretical Studies on Aqueous-Phase Reactivity of Hydroxyl Radicals with
- 2 Multiple Carboxylated and Hydroxylated Benzene Compounds
- 3
- 4 Prepared for Physical Chemistry Chemical Physics (PCCP)
- 5
- 6 Daisuke Minakata^{1*}
- 7 Weihua $Song^2$
- 8 Stephen P. Mezyk³
- 9 William J. Cooper⁴
- 10
- 111. Department of Civil and Environmental Engineering, Michigan Technological University, 1400
- 12 Townsend Drive, Houghton, MI, 49931.
- 132. Department of Environmental Science and Engineering, Fudan University, Shanghai, P.R. China.
- 143. Department of Chemistry and Biochemistry, California State University Long Beach, Long
- 15 Beach CA 90840.
- 164. Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697.17
- 18 *Corresponding author. <u>dminakat@mtu.edu</u>, 906-487-1830

19 Abstract

20 In this study, we shed light on the initial addition of hydroxyl radicals (HO•) to multiple carboxylated and hydroxylated benzene compounds in aqueous-phase advanced oxidation processes (AOPs). We analyze 21 22 the experimentally measured transient spectra near neutral pH using quantum mechanical-based time-23 dependent density functional theory (TD-DFT). The ab initio DFT method was first used to find and 24 optimize aqueous-phase transition state structures, then the TD-DFT was used to analyze molecular 25 orbitals (MOs) of the optimized transition state structures to reveal the functional groups that are 26 responsible for the individual absorption peaks. The initial addition of HO• to the benzene ring produced 27 hydroxycyclohexadienyl radicals. Then, HO-adducts are generated from dimerization or 28 disproportionation of hydroxycyclohexadienyl radicals and represent their transient spectral peaks at 29 approximately 350 nm and 250 nm. As reaction proceeds, the HO-adducts are decreased depending on 30 the subsequent reactions. These investigations into the experimental transient spectra coupled with the 31 theoretical analysis using the TD-DFT enable us to visualize an initial transformation of organic 32 compounds induced by the aqueous phase HO• oxidation. Moreover, the experimental reaction rate 33 constants and the theoretically calculated aqueous phase free energies of activation provide quantitative 34 insights into the addition of HO• to multiple carboxylated and hydroxylated benzene compounds.

35 Introduction

Hydroxyl radicals (HO•) are electrophilic in nature and react with electron-rich sites of organic 36 compounds by complex reaction mechanisms involving free radicals. In the aqueous-phase, advanced 37 oxidation processes (AOPs) generate HO• at ambient temperature and atmospheric pressure,^{1,2} and in 38 many cases HO• can transform parent organic compounds into low molecular weight biodegradable 39 carboxylic compounds.³ AOPs are used in drinking water treatment,^{4,5} water reclamation,⁶ and industrial 40 wastewater treatment processes.^{7,8} In natural aquatic environments, the photolysis of natural organic 41 matter (NOM)^{9,10} and effluent organic matter (EfOM) from wastewater discharge¹¹ at the surface of the 42 water indirectly generates HO•, which again contributes to the fate and transformation of contaminant 43 chemical compounds.¹² In a water droplet in the atmosphere HO• are generated via nitrite and nitric 44 acid,¹³ and are involved in the atmospheric aqueous-phase chemical oxidation of anthropogenic carbon 45 and nitrogen, and in aerosol formation.¹⁴ Under physiological conditions, HO• are important 46 intermediates for the reactive oxygen species that cause cell damage.^{15, 16} 47 A number of previous studies have revealed the major reaction mechanisms of HO• in the 48 aqueous phase.^{13, 17} These mechanisms include: 1) H-atom abstraction from C-H bonds in aliphatic 49 compounds; 2) HO• addition to unsaturated carbons of alkenes and aromatic compounds, and 3) HO• 50 interactions with S-, N-, or P-containing compounds.¹⁷ Minakata *et al.* developed a comprehensive group 51 52 contribution method (GCM) that was able to predict the reaction rate constants of more than 500 reactions of HO• with organic compounds using parameters determined from experimental values that represent the 53

chemical reactivity and contributions of functional groups.¹⁸ The GCM predicts the aqueous-phase HO•
rate constants within a factor of 2.

Among the vast number of organic compounds, benzene compounds are an important group of compounds for reactions with HO• in water. Benzoic acid, its dissociated form benzoate, and benzene rings with multiple hydroxyl and carboxylate functional groups appear in NOM,^{19, 20} pharmaceutical and personal care products,²¹ and engineered nanomaterials.²² The hydroxyl group donates electron density to 60 the active sites (i.e., C-H and C=C bonds) of organic compounds, and hence, enhances the reactivity of 61 HO. The carboxylic or carboxylate functional groups are hydrophilic, producing hydrogen bonds with 62 water molecules. Because of their strong electron-withdrawing effect, these functional groups decrease 63 the overall reactivity of HO• with organic compounds. The calculated functional group contribution 64 factors for carboxylic and carboxylate functional groups in the GCM are 0.043 and 0.184, respectively, for H-atom abstraction from the C-H bond, and 0.234 for HO• addition to a benzene ring with a 65 66 carboxylic functional group. These values represent a strong electron withdrawing effect (note that the 67 smaller group contribution factors indicate stronger electron withdrawing effects) relative to other groups (e.g., 0.200 for Cl, 0.119 for F, 0.154 for CO) for H-atom abstraction and are consistent with the Taft 68 constants for aliphatic compounds and the Hammet constants for aromatic compounds.¹⁸ Error! Bookmark 69 not defined. 70 71 Although the second-order reaction rate constants describe the general reactivity of HO•, 72 examining how functional groups affect the reactivity of HO• in different organic compounds is 73 challenging. In experiments, we measure a reaction rate constant that combines the reaction rates of all of 74 the elementary reactions in which HO• participates. In addition to absolute kinetics, transient spectra that 75 represent the ultraviolet-visible (UV-VIS) absorbance for these short-lived radicals/products generated by 76 the reactions with HO• also can be readily determined. Although these transient spectra contain 77 information critical to the observed chemical reactivity, transformation, and stability, this information has 78 been under-utilized to investigate aqueous-phase chemical reactions in depth. When numerous active 79 sites/functional groups are present in the molecule, the transient spectrum represents synergic effects. 80 Therefore, experimental investigations only generate, but do not typically attempt to analyze, these 81 spectra. 82 Computational chemistry can be used to probe chemical reactivity and to analyze the changes in 83 the electronic properties of the reactants, transition states, and products as a reaction proceeds. The 84 dramatic improvement in computational power, and the development of sophisticated computational

chemistry suites with robust implicit solvation models, makes it now possible to analyze aqueous-phase 85 chemical reactions. Minakata and Crittenden²³ developed linear free energy relationships (LFERs) that 86 relate experimentally observed rate constants with the aqueous-phase free energies of activation for H-87 88 atom abstraction from the C-H bonds and HO• addition to an unsaturated alkene carbon atoms in 89 molecules. This approach was further developed for haloacetates to investigate their changes in the electrostatic potential and charges throughout the reaction process²⁴, and then extended to the subsequent 90 91 radical reactions (i.e., molecular oxygen addition to carbon-centered radicals, uni-molecular and disproportionation of peroxyl radicals) after the reactions of HO.²⁵ Nevertheless, there are few 92 applications of computational chemistry to aqueous phase chemical reactions involving HO^{•.26} 93 Time-dependent density functional theory (TD-DFT)²⁷ is robust computational technique that 94 enables us to investigate into the TD excited state electronic structures of various chemical compounds 95 96 under different physical chemical processes (e.g., ultraviolet-visible spectroscopy, nonlinear optics, and photochemistry). Successful application of the TD-DFT includes: 1) photovoltaic performance²⁸; 2) dye 97 chemistry²⁹; 3) electron transfer chemical reactions³⁰, and 4) spectroscopic investigations on transition 98 metal complexes³¹. TD-DFT makes it possible to examine the TD molecular orbitals (MOs) and 99 100 associated structural changes in chemical reactions.

Here we investigated aqueous-phase HO• reaction with multiple carboxylated and hydroxylated benzene compounds. The coupling of experimental measurements and theoretical investigations reveals how the carboxylate and/or hydroxyl functional groups affects the aqueous-phase chemical reactivity of HO• by determining the kinetic rate constants, thermochemical properties, and transient spectra.

105 Materials and Methods

106 **Pulse radiolysis experiments**

Electron pulse radiolysis experiments were conducted at the Notre Dame Radiation Laboratory
 using their 8-MeV Titan Beta model TBS-8/16-1S linear accelerator.³² This pulse radiation and transient
 absorption detection system have been previously described in detail.³³ Dosimetry was performed with

(2)

110 N₂O-saturated solutions of 1.00×10^{-2} M KSCN solutions at $\lambda = 472$ nm, (G $\epsilon = 5.2 \times 10^{-4}$ m² J⁻¹) with

- average doses of 3-5 Gy per 2-4 ns pulse. All experimental data were determined by averaging 12 to 15
- 112 replicate pulses in continuous flow mode.
- 113 The radiolysis of water is described in equation $1:^{17}$

114
$$H_2O \longrightarrow (0.28) HO_{\bullet} + (0.06) H_{\bullet} + (0.27) e_{aq}^- + (0.05) H_2 + (0.07) H_2O_2 + (0.27) H^+$$
 (1)

- where the numbers in parentheses are the G-values (yields) in units of μ mol J⁻¹. To study only the reactions of the HO• with multiple carboxylated and hydroxylated compounds, the solutions were presaturated with nitrous oxide (N₂O), which quantitatively converts the hydrated electrons and hydrogen atoms to HO• via the reactions¹⁷:
- 119 $e_{aq}^{-} + N_2O + H_2O \rightarrow N_2 + HO^{-} + HO^{-}$ $k_2 = 9.1 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$
- 120 $H \bullet + N_2 O \to HO \bullet + N_2$ $k_3 = 2.1 \times 10^6 M^{-1} s^{-1}$ (3)

All multiple carboxylated and hydroxylated benzene compound solutions were prepared in solution in the range of 0.5 to 1.0 mM. The solutions were adjusted to pH 6.9 to 7.1 using both 5.0 mM phosphate buffer and perchloric acid or sodium hydroxide. The reaction of HO• with phosphate has a negligible contribution to the rate constant being approximately five orders of magnitude lower than those for the benzene compounds.

126 *Quantum mechanics-based ab initio theoretical calculations*

All ab initio quantum mechanical calculations were performed with Gaussian 09 revision D.02³⁴ 127 using the Michigan Tech high performance cluster "Superior" unless otherwise specified. The electronic 128 structures of the molecules and radicals in the ground and transition states were optimized using density 129 functional theory (DFT) at the level of M06-2X/Aug-cc-pVDZ³⁵ with the implicit SMD solvation 130 model.³⁶ This approach was successfully applied to examining the HO• reactions with the single-131 functional benzene compounds in the aqueous-phase.²⁵ The transition state was verified by an imaginary 132 frequency factor. Once the electronic structures were optimized, the frequencies determined from the 133 optimization were used to calculate the aqueous-phase free energy of activation, $\Delta G_{aq calc}^{act}$, and the 134

volume of molecules or radicals using the same DFT method and level of basis set. Theoretically 135 136 calculated absorption spectra in the UV-VIS wavelength range were obtained from a TD-DFT analysis³⁷ of the optimized aqueous phase transition state structure at the level of M06-2X/cc-pVOZ and 137 138 wB97XD/cc-pVQZ with the SMD solvation model. The TD-DFT contained 20 singlet and 20 triplet-139 excitation states. To investigate the contributions from MOs to the peak of the UV-VIS spectra, MOs were determined using a natural population analysis (NPA) at the level of M06-2X/cc-pVQZ with the 140 141 SMD solvation model based on the optimized structure obtained at the level of M06-2X/Aug-cc-pVDZ with the SMD solvation model. 142

143 **Results and Discussions**

144 *Overall results for HO• addition to various multiple carboxylated benzene*

145 *compounds*

Table 1 shows the overall results for the addition of HO• to carboxylated and hydroxylated 146 benzene compounds and includes the experimental HO• reaction rate constants and the theoretically 147 calculated $\Delta G_{\text{aq,calc}}^{\text{act}}$, in kcal/mol. When the $\Delta G_{\text{aq,calc}}^{\text{act}}$ values are negative, increasing the temperature 148 causes a decrease in the reaction rate constant, which have seen in various nonintuitive phenomena (e.g., 149 protein folding kinetics³⁸). In these circumstances, the forward reaction is energetically favored by 150 151 overcoming the transition state but the entropy of the reaction is not favored with respect to the reactants. We have observed negative $\Delta G_{\text{ag,calc}}^{\text{act}}$ values for the aqueous phase HO• addition to aromatic compounds 152 with various single-functional groups and successfully developed the LFER for this class of compounds 153 154 as:

155
$$\ln k_{\text{chem}} = -0.14 \Delta G_{\text{ag calc}}^{\text{act}} + 20.30 \ (n = 15)$$
 (4)

where k_{chem} = chemical reaction rate constant that is determined, from the overall experimental rate constant.²⁵ The experimental overall reaction rate constant, *k*, can be expressed as in eq 5:³⁹

158
$$k = \frac{k_{\rm D} k_{\rm chem}}{k_{\rm D} + k_{\rm chem}}$$
(5)

159 $k_{\rm D}$ is the diffusion-limited rate constant. This $k_{\rm D}$ value was calculated using Smoluchowski's equation⁴⁰ in 160 eq 6:

161
$$k_{\rm D} = 4\pi D_J r N_0 / 1000$$
 (6)

where D_l is the aqueous-phase diffusion coefficient for the solute and radical (i.e., reactants), cm²/s, *r* is the sum of radius for reactants, Å, and N_0 is Avogardo's number. The diffusion coefficient of small molecules and radicals in the aqueous-phase can be calculated using the Hayduk-Laudie correlation⁴¹ as shown in eq 7:

166
$$D_l = \frac{13.26 \times 10^{-5}}{\left(\mu_{\pi}\right)^{1.14} \left(V_b\right)^{0.589}}$$
 (7)

where μ_{ϖ} is the viscosity of water, cP, (1 kg/m·s = 1000 cP), and V_b is the molar volume of the solute at the temperature at which a liquid boils at 1 atm of pressure, cm³/mol.

169 The LFER determined for only HO• reaction with multiple carboxylated and hydroxylated170 benzene compounds in this study is:

171
$$\ln k_{\text{chem}} = -0.19 \ \Delta G_{\text{an cale}}^{\text{act}} + 21.09 \ (n = 14)$$
 (8)

as shown in Figure 1 with the individual parameters for the kinetics and diffusion coefficients summarized in Table 1. There was difficulty in convergence for the transition state structure optimization and we were not able to find the optimized transition state structures for pyromellitic acid and 1,2,3,4,5pentacarboxylic acid. There is little difference observed between these two LFER expressions in eqs 4 and 8; however, the LFER established for the multiple carboxylated and hydroxylated benzene compounds has a slightly larger slope. When there were several positions available for the addition of HO• to the benzene ring, the overall $\Delta G_{aq,calc}^{act}$ was calculated using the Benson's thermochemical

additivity principle⁴² (i.e.,
$$\Delta G_{aq,calc}^{act} = \sum_{i} \Delta G_{aq,calc}^{act(i)}$$
, where *i* = the position where HO• was added). The

Physical Chemistry Chemical Physics

180	summation might have caused the slight differences in the slope. Nevertheless, the observed linear
181	correlation may be used to predict the rate constants given that there are limitations of calculating the
182	aqueous-phase second order reaction rate constants (accuracies of ±0.5 kcal/mol of the $\Delta G_{aq,calc}^{act}$ values are
183	required to calculate the rate constant within the difference of factor of 2 according to the transition state
184	theory ⁴³) directly. Detailed discussions of each reaction mechanism will be given in the following
185	sections.
186	(Table 1 goes here)
187	Overall experimental and calculated results for the addition of HO• to the hydroxylated and carboxylated
188	benzene compounds including the literature reported values such as Ashton et al. (1995) ⁴⁴ and Wander et
189	al. $(1968)^{45}$ for benzoic acid, Kwon et al. $(2009)^{46}$ for benzoate and Charbouillot et al. $(2011)^{47}$ for
190	terephthalic acid.
191	(Figure 1 goes here)
192	Linear Free Energy Relationships between experimental rate constants for the chemical reactions, k_{chem} ,
193	and theoretically calculated $\Delta G_{aq,calc}^{act}$. The error bar indicates the range of the literature reported values.
194	
195	Hydroxyl radical with benzoate and benzoic acid

196 Measured transient absorption spectra provide mechanistic insights into the TD structural changes 197 from the reactants to the molecular transition state. For example, Figure 2 indicates the time-dependent 198 transient spectra for the reaction of HO• with benzoate in the aqueous-phase. Experimental transient 199 spectra were obtained at reaction times of 1, 5, 50, and 100 µsec, at pH of 6.9. The transient spectra 200 indicate that the absorbance has a peak at approximately 330 nm and is seen to decrease as the reaction 201 proceeds. This significant decrease of the transient spectra after 100 µsec of reaction at both around 320 202 nm and 340 nm indicates that the hydroxycyclohexadienyl radical that is generated by the HO• reaction 203 with benzoate is being transformed into another product of radicals. This product in the N₂O-saturated 204 solution of this experiment is expected to be a higher molecular weight species resulting from the

205	dimerization or disproportionation of hydroxylcyclohexadienyl radicals as was postulated by the product
206	study for benzene compound. ⁴⁸ Simic et al. (1973) ⁴⁹ investigated the reaction of HO• with benzoate at pH
207	of 9.2 and obtained a peak maximum at 330 nm with a corresponding molar absorptivity of 3,800 M^{-1} cm ⁻
208	¹ , consistent with our experimental findings.
209	(Figure 2 goes here)
210	Experimental transient absorption spectra for the reaction of HO• with benzoate
211	
212	The theoretical calculations found and optimized the transition state structures for ortho, meta,
213	and para addition of HO• to benzoate, respectively. The TD-DFT analysis at the level of M06-2X/cc-
214	pVQZ revealed that the addition of HO• at the ortho and para positions of benzoate were associated with
215	the peaks at wavelengths, λ_{max} , of 322 nm and 324 nm, respectively, close to the peak of the measured
216	transient spectra at 330 nm. In contrast, the addition of HO• at the meta position showed two peaks at
217	wavelength, λ_{max} of 326 nm and 246 nm. To determine what MOs contribute to the different excited
218	states of the transition state radicals, we first calculated the energies for the lowest unoccupied molecular
219	orbital (LUMO)+1, LUMO, singly occupied molecular orbital (SOMO), and SOMO-1 orbitals. For
220	calculating these energies of MOs, we applied the TD-DFT at the levels of wB97XD/cc-pVQZ and M06-
221	2X/cc-pVQZ with the SMD solvation model. The wB97XD functional is known to contain empirical
222	dispersion functions ⁵⁰ and Wielopolski et al. (2014) successfully evaluated the lowest excited energy for
223	various dye molecules using this functional. ²⁸ We found the consistencies of energies calculated between
224	these two methods. Table 2 summarizes the SOMO-LUMO gap, energies at the lowest excited state, and
225	the oscillator strength (i.e., contribution of each MO to the excitation). The specific energies for
226	LUMO+1, LUMO, SOMO, and SOMO-1, and energies at the λ_{max} are summarized in Table S1 of
227	supporting information. For the HO• addition at the benzoate ortho-position, the energy at the lowest
228	excited state was calculated as 2.7 eV at the level of M06-2X/cc-pVQZ, which is close to the energy
229	difference (i.e., 2.4 eV) between SOMO-1 and SOMO for the alpha-spin. In comparison, the energy gap
230	between SOMO and LUMO was 6.9 eV. Accordingly, the excitation from SOMO-1 to SOMO is a major

231	driving factor for the excitation at the lowest state. The same contribution is also observed for the meta-
232	and para-position additions. Then, we investigate the contributions from MOs to the peak of the UV-VIS
233	spectra (Figure 3). The SOMO and SOMO-1 for the additions at both ortho and para positions indicate
234	that these orbitals are localized on the carboxylate functional group, whereas the LUMO shows the
235	localization on the hydroxyl group of hydroxycyclohexadienyl radicals that were generated by the
236	addition of HO•. The electron withdrawing effect of the carboxylate functional group promotes a spatial
237	localization of LUMO on the hydroxyl group and a decoupling from the SOMO. This decoupling
238	decreases of the transient spectra at around $340 \sim 350$ nm of wavelength. The LUMO+1 for both ortho
239	and para positions show the localization of these orbitals on the hydroxycyclohexadienyl radicals. In
240	contrast, the delocalized SOMO-1, SOMO, LUMO, and LUMO+1 throughout the entire structure for the
241	addition at the meta-position contribute more significantly to the decrease of the transient spectra at
242	around 320 nm.
243	(Table 2 goes here)
244	The SOMO-LUMO energy gap calculated at the level of wB97XD/cc-pVQZ and M06-2X/cc-pVQZ.
245	Values in () are by M06-2X/cc-pVQZ. The lowest excited state with the MO contributions calculated at
246	the level of M06-2X/cc-pVQZ for the aqueous-phase reaction of HO• with benzoate
247	
248	(Figure 3 goes here)
249	Molecular orbitals of SOMO-1, SOMO, LUMO, and LUMO+1 for the aqueous-phase reaction of HO•
250	with benzoate
251	
252	
253	Hydroxyl radical addition to multiple carboxylated benzene compounds
254	We extended both the experimental and theoretical investigations to multiple carboxylated
255	benzene compounds such as phthalic acid (1,2-dicarboxylic acid), terephthalic acid (1,4-dicarboxylic

257

258

259

260

acid), trimesic acid (1.3,5-tricarboxylic acid), pyromellitic acid (1.2,4,5-tetracarboxylic acid), and 1,2,3,4,5-pentacarboxylic acid. As shown in Table 1, the overall experimental reaction rate constants decreased as the number of carboxylate functional groups increased. The theoretically calculated $\Delta G_{
m ac, calc}^{
m act}$ values indicated that the position and number of carboxylate functional groups on the benzene ring significantly affect the reactivity of HO•. For example, the addition of HO• to phthalic acid at the 3

position corresponds to a $\Delta G_{ad, calc}^{act}$ of -4.85 kcal/mol, whereas a $\Delta G_{ad, calc}^{act}$ of -3.00 kcal/mol was required 261 for addition at the 4 position. This difference indicates that the steric effects from the carboxylate 262 263 functional group are less significant than the resonance effect for the addition of HO• to phthalic acid. For terephthalic acid, the required $\Delta G_{\text{ag,calc}}^{\text{act}}$ for the addition of HO• at any position was -7.61 kcal/mol, 264 265 which is much smaller than the values for phthalic acid. When three carboxylate functional groups are on the benzene ring at the 1, 3, and 5 positions, the $\Delta G_{aq,calc}^{act}$ was -6.12 kcal/mol for the addition of HO• at 266 the 2, 4, or 6 position. Only one reaction rate constant of HO• with terephthalic acid, $(4.0 \pm 0.1) \times 10^9 \text{ M}^{-1}$ 267 ¹s⁻¹, has been reported in the literature⁴⁷, consistent with our experimental value of $(4.95 \pm 0.28) \times 10^9$ M⁻¹s⁻¹ 268 1 269 270 Coupling the measured transient spectra for the addition of HO• to multiple carboxylated benzene compounds (Figure 4) with the theoretically calculated MOs (Figure 5) and associated energies 271 272 (Table 3) show how the positions and number of carboxylate functional groups affect the addition of HO•. 273 The measured transient spectra (Figure 4) for phthalic acid, terephthalic acid, trimesic acid, pyromellitic 274 acid, and 1,2,3,4,5-pentacarboxylic acid in neutral pH solution showed two major peaks at approximately 350 nm and 250 nm. More carboxylate functional groups blue-shifted the λ_{max} toward 400 nm. Analysis 275 of the MO contribution (Figure 5) indicates the localization of the molecular orbitals on one of 276 277 carboxylate functional groups at both levels of SOMO and SOMO-1 for all the multiple carboxylated 278 benzene compounds, as observed for the benzoate. The LUMO and LUMO+1 orbitals are localized on either the hydroxyl group of the hydroxycyclohexadienyl radicals. The analysis of the MO also revealed 279

Physical Chemistry Chemical Physics

280 that the excited state is LUMO at around 350 nm, whereas the combinations of various SOMO and 281 LUMO contribute to the peak at around 250 nm. This different orbital contributions are supported by the 282 fact that the transient spectral peaks at around 260 nm for terephthalic acid, pyromellitic acid and 283 1,2,3,4,5-pentacarboxylic acid are fewer in number than those for phthalic acid and trimesic acid. The 284 terephthalic acid, pyromellitic acid, and 1.2,3,4,5-pentacarboxylic acid produce symmetric 285 hydroxycyclohexadienyl radical structures regardless of the position of HO• addition. In contrast, the 286 asymmetric structures of hydroxycyclohexadienyl radicals are generated from phthalic acid and trimesic 287 acid (e.g., 3-hydroxy and 4-hydroxy cyclohexadienyl radicals for phthalic acid). We did not observe a 288 significant decrease in the transient spectra in reaction times between 1 µsec to 100 µsec for the reaction 289 of HO• with the multiple carboxylated benzene compounds. This result most likely occurred because 290 more stable transients of HO-adducts were generated from the slower reaction of HO• with the multiple 291 carboxylated benzene compounds than with benzoate or benzoic acid. 292 The theoretically calculated energies of various excited states indicate that the energy gaps 293 between SOMO and LUMO for the multiple carboxylated benzene compounds (i.e., 5.5~6.8 eV) are 294 smaller than those for the singly carboxylated compounds (i.e., $6.2 \sim 7.1 \text{ eV}$), which indicate the slower 295 kinetics due to synergic effect of electron-withdrawing ability of multiple-carboxylate functional groups. 296 The analysis on wavelength, energy, and the fraction at the lowest excited state for the multiple 297 carboxylated benzene compounds vary by the compounds and the position of HO• addition. (Table 3 goes here) 298 299 The SOMO-LUMO energy gap calculated at the level of wB97XD/cc-pVQZ and M06-2X/cc-pVQZ. 300 Values in () are by M06-2X/cc-pVQZ. The lowest excited state with the MO contributions calculated at 301 the level of M06-2X/cc-pVQZ for the addition of HO• to multiple carboxylated benzene compounds. 302 303 (Figure 4 goes here) 304 Experimental transient spectra for the addition of HO• to multiple carboxylated benzene compounds

Physical Chemistry Chemical Physics Accepted Manuscript

305	
306	(Figure 5 goes here)
307	Theoretically calculated MOs for the addition of HO• to multiple carboxylated benzene compounds
308	
309	Hydroxyl radical addition to multiple hydroxylated benzene compounds.
310	To investigate the effect of hydroxyl functional groups in benzoate compounds, we investigated
311	the HO• addition to: 1) mono-hydroxylated benzoic acid such as salicylic acid (2-hydroxybenzoic acid),
312	3-hydroxybenzoic acid, and 4-hydroxybenzoic acid; 2) di-hydroxybenzoic acids (2,3-, 2,4-, 2,5-, and 2,6-
313	dihydroxybenzoic acids), and 3) tri-hydroxybenzoic acids (2,3,4- and 3,4,5-trihydroxybenzoic acids) near
314	neutral pH. Figure 6 shows the TD transient spectra, Figure S1 of supporting information shows the MOs
315	for the excited states, and Table 4 shows the associated excited-state energies for the reactions of HO•
316	addition to multiple hydroxylated benzoic acids at various positions.
317	(Tables 4 goes here)
318	The SOMO-LUMO energy gap calculated at the level of wB97XD/cc-pVQZ and M06-2X/cc-pVQZ.
319	Values in () are by M06-2X/cc-pVQZ. The lowest excited state with the MO contributions calculated at
320	the level of M06-2X/cc-pVQZ for the reactions of HO• addition to multiple hydroxylated benzoic acids
321	(a) Excited state energies for the reactions of HO• addition to salicylic acid at 3-, 4-, 5-, and 6-positions
322	(b) Excited state energies for the reactions of HO• addition to 3-hydroxybenzoic acid at 3-, 4-, 5-, and 6-
323	positions
324	(c) Excited state energies for the reactions of HO• addition to 4-hydroxybenzoic acid at 2- and 3-positions
325	and to 2,3-dihydroxybenzoic acid at 4-, 5-, and 6-positions
326	(d) Excited state energies for the reactions of HO• addition to 2,4-dihydroxybenzoic acid at 3-, 5-, and 6-
327	positions and to 2,6-dihydroxybenzoic acid at 4- and 5-positions
328	(e) Excited state energies for the reactions of HO• addition to 2,5-dihydroxybenzoic acid at 3-, 4-, and 6-
329	positions and to 3,4-dihydroxybenzoic acid at 2- and 5-positions

Physical Chemistry Chemical Physics

330	(f) Excited state energies for the reactions of HO• addition to 2,3,4-trihydroxybenzoic acid at 5- and 6-
331	position, and to 3,4,5-trihydroxybenzoic acid at 2- or 6-position
332	
333	(Figure 6 goes here)
334	Time-dependent transient spectra for the reaction of HO• with multiple hydroxylated benzoic acids
335	
336	As shown in Table 1, the overall experimental reaction rate constants for all the hydroxylated
337	benzoic acids are larger than those for the multiple carboxylated benzene compounds examined above.
338	Electron-donating hydroxyl functional group(s) significantly enhance the overall reactivity of HO•. It is
339	noted that we did not consider a hydroxyl proton assisted electron transfer from the hydroxyl functional
340	groups to HO• in the $\Delta G_{aq,calc}^{act}$ calculations. This is because the hydroxyl functional group forms a
341	hydrogen bond with surrounding water molecule(s) and the past experimental observations on the
342	reactions between aliphatic alcohol compounds and HO• indicated that this electron transfer was
343	negligible in the aqueous phase. ⁵¹ The experimental rate constants for the di-hydroxybenzoic acids are
344	larger than those for the tri-hydroxybenzoic acids. This is attributed to the entropy term being more
345	dominant in the $\Delta G_{aq,calc}^{act}$ for the tri-hydroxybenzoic acids than for the di-hydroxybenzoic acids, and
346	therefore, less negative $\Delta G_{aq,calc}^{act}$ values were obtained. The $\Delta G_{aq,calc}^{act}$ values for all the hydroxybenzoic
347	acids fell in the close range from -13.0 kcal/mol to -18.0 kcal/mol except for salicylic acid (-23.4
348	kcal/mol). To investigate the differences in the chemical reactivity with HO•, we analyzed the
349	experimental transient spectra and calculated the MOs that contribute to the associated transient peak. An
350	introduction of hydroxyl functional group(s) on the benzoic acids indicates additional transient peaks that
351	have not been observed for the multiple carboxylated benzene compounds. For example, the transient
352	spectra for salicylic acid shows a broad peak at around 380 nm in addition to the two transient peaks that
353	were observed for carboxylic and 1,2-dicarboxylic benzoic acids at around 260 nm and 340 nm,
354	respectively. The analysis of MO using the TD-DFT revealed that the transient peak around 380 nm is

Physical Chemistry Chemical Physics Accepted Manuscript

355	associated with the LUMO of the 4-hydroxy-cyclohexadienyl radical generated from the HO• addition to
356	the salicylate at the 4-position (Figure 7). The other two peaks were found to be correlated with the MO
357	from the hydroxyl functional group of the hydroxycyclohexadienyl radicals. We also found the additional
358	transient peak at around 300 nm for the HO• addition to the 4 hydroxybenzoic acid. Similarly, we found
359	additional transient peak that associates with the LUMO and LUMO+1 for the other hydroxylated
360	benzene compounds. In these circumstances, the excited MOs are mainly localized on the hydroxyl
361	functional group of hydroxycyclohexadienyl radicals. The wavelength that is responsible for the
362	additional transient peak varies by the compounds and the structure of the associated
363	hydroxycyclohexadienyl radicals.
364	(Figure 7 goes here)
365	Theoretically calculated MO for the addition of HO• to the salicylic acid
366	
367	One distinctive difference in the observed reactivity for HO• addition to the multiple
368	hydroxylated benzene compounds is the stability of the HO-adduct generated from the
369	hydroxycyclohexadienyl radicals. As compared to the TD decrease in the transient spectra for the HO•
370	addition to the multiple carboxylated benzene compounds, the HO-adduct showed a significant decrease
371	of the TD transient spectra at specific wavelength. These differences are consistent with faster decay
372	kinetics for the hydroxylated benzene compounds, the larger observed rate constants, the smaller $\Delta G_{aq,calc}^{act}$
373	values, and the larger energy gap between SOMO and LUMO observed in Tables 4.
374	Conclusions
375	In this study, we investigated into the initial addition of HO• to multiple carboxylated and
376	hydroxylated benzene compounds by the pulse radiolysis technique and the TD-DFT based theoretical
377	calculations. The M06-2X/Aug-cc-pVDZ with the implicit SMD solvation model was successfully
378	applied to find and optimize the transition state structures for the addition of HO• on the benzene rings
379	and calculate the aqueous-phase free energies of activation. The LFER that relate the experimentally

Physical Chemistry Chemical Physics

determined HO• chemical reaction rate constants and the aqueous phase free energies of activation was 380 developed as: $\ln k_{\text{chem}} = -0.19 \Delta G_{\text{aq,calc}}^{\text{act}} + 21.09 (n = 14)$. The experimental transient spectra and the TD-381 DFT analysis on the UV-VIS spectra and the MOs enabled us to visualize an initial transformation of 382 hydroxycyclohexadienyl radicals induced by the aqueous phase HO• and stability of the HO-adduct 383 generated from the hydroxycyclohexadienyl radicals. It was found that the excited state of hydroxyl 384 385 group of cyclohexadienyl radicals contributed to the transient spectral peak at around 350 nm. The analysis of the MO revealed that the excited state is LUMO at around 350 nm, whereas the combinations 386 387 of various SOMO and LUMO contribute to the peak at around 250 nm. The MOs analysis also indicated the localization of the MOs on one of carboxylate functional groups at both levels of SOMO and SOMO-388 389 1, and the LUMO and LUMO+1 orbitals are localized on either the hydroxyl group of the hydroxycyclohexadienyl radicals. 390

391 Acknowledgement

392 DM appreciates support from the Michigan Tech HPC cluster "Superior". The authors appreciate the use

393 of the accelerator facilities at the University of Notre Dame Radiation Laboratory, which is supported by

394 Department of Energy. WJC and WS appreciate support from NSF CBET-1034555.

395 **References**

⁵ K. Li, D.R. Hokanson, J.C. Crittenden, R.R. Trussell, D. Minakata, Wat. Res. 2008, **42**, 5045.

⁶ P. Westerhoff, H. Moon, D. Minakata, J.C. Crittenden, Wat. Res. 2009, **43**, 3992.

¹ W.H. Glaze, Environ. Sci. Technol. 1987, **21**, 224.

² W.H. Glaze, J.W. Kang, J.AWWA. 1988, **80**, 57.

³ J. R. Bolton, S. R. Carter, Chap. 33, in G. R. Helz, R. G. Zepp, and D. G. Crosby (eds), *Aquatic and Surface Photochemistry*, CRC Press, Boca Raton, FL.

⁴ H. Yao, P. Sun, D. Minakata, J.C. Crittenden, C-H. Huang, Environ. Sci. Technol. 2013, 47, 4581.

⁷ L. Xing, Y. Xie, H. Cao, D. Minakata, Y. Zhang, J.C. Crittenden, C. Chemical Engineering Journal, 2014, **245**, 71-79.

⁸ H. Cao, L. Xing, G. Wu, S. Xie, S.Y. Zhang, D. Minakata, J.C. Crittenden, Applied Catalysis B: Environmental., 2014, **146**, 169.

- ⁹ G. McKay, M.M. Dong, J.L. Kleinman, S.P. Mezyk, F. Rosario-Ortiz, Environ. Sci. Technol. 2011, **45**, 6932.
- ¹⁰ B.S.B. Razavi, W. Abdelmelek, W. Song, W. J. Cooper, Water Res. 2011, 45, 625
- ¹¹ M.M. Dong, S.P. Mezyk, F.L. Rosario-Ortiz, Environ. Sci. Technol. 2010, 44, 5714.

¹² W.J. Cooper, R.G. Zika, Science, 1983, **220**, 711.

- ¹³ H. Herrmann, D. Hoffmann, T. Schaefer, P. Bräuer, A. Tilgner, ChemPhysChem. 2010, **11**, 3796.
- ¹⁴ Coeur, C.; Jacob, V.; Foster, P. Aerosol formation from the gas-phase reaction of hydroxyl radical with

the natural hydrocarbon bornyl acetate. Atmospheric Environment. 1999, 33(10), 1615-1620.

- ¹⁵ C.C. Winterbourn, Nature Chemical Biology, 2008, 4, 278.
- ¹⁶ C. Nathan, A. Ding, Cell, 2010, **140**, 952.e1.
- ¹⁷ V.B. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, A. B. J. Phys. Chem. Ref. Data. 1988, 17, 513.
- ¹⁸ D. Minakata, K. Li, P. Westerhoff, J. Crittenden, Environ. Sci. & Technol. 2009, **43**, 6220.

¹⁹ C. Steelink, Anal. Chem. 2002, **74**, 326A.

²⁰ K.M. Mostofa, C.-Q. Liu, M.A. Mottaleb, G. Wan, H. Ogawa, D. Vione, T. Yoshioka, F.

Wu, In Photobiogeochemistry of Organic Matter: Principles and Practices in Water Environments;

Mostofa, K. M. G.; Yoshioka, T.; Mottaleb, A.; Vione, D., Eds; Springer: Heidelberg 2013; pp 1-137.

²¹ S. D. Richardson, T.A. Ternes, Analytical Chemistry. 2014, **86**, 2813.

²² S.D. Snow, J. Lee, J-H. Kim, Environ. Sci. Technol. 2012, 46, 13227.

²³ D. Minakata, J. Crittenden, Environ. Sci. & Technol. 2011, 45, 3479.

²⁴ D. Minakata, W. Song, J. Crittenden, Environ. Sci. Technol. 2011, **45**, 6057.

²⁵ D. Minakata, S.P. Mezyk, J.W., Jones, B.R. Daws, J.C. Crittenden, Environ. Sci. Technol. 2014, **48**, 13925.

²⁶ T. An, Y. Gao, G. Li, P. Kamat, J. Peller, M.V. Joyce, Environ. Sci. Technol. 2014, 48, 641.

²⁷ Runge E.; Gross EKU. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984, 52, 997.

²⁸ M. Wielopolski, K.E. Linton, M. Marszatek, M. Gulcur, M.R. Bryce, J.E. Moser, PCCP, 2014, **16**, 2090.

²⁹ A.D. Laurent, C. Adamo, D. Jacquemin, Dye chemistry with time-dependent density functional theory. PCCP, 2014, **16**, 14334.

³⁰ D. Jacquemin, B. Mennucci, C. Adamo, PCCP, 2011, **13**, 16987.

³¹ M. Zlatar, M. Gruden-Pavlović, M. Güell, M. Swart, M. PPCP, 2013, 15, 6631.

³² K. Whitman, S. Lyons, R. Miller, D. Nett, P. Treas, A. Zante, R. W. Fessenden, M.D. Thomas, Y. Wang, In Proceedings of the '95 Particle Accelerator Conference and International Conference on High Energy Accelerators, Dallas, Texas, May 15, 1995. ³³ W. Song, W. J. Cooper, S.P. Mezyk, J. Greaves, B.M. Peake, Environ. Sci. Technol. 2008, 42, 1256. ³⁴ Gaussian 09, Revision D.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazvev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009. ³⁵ Y. Zhao, D.G. Truhlar, Theor. Chem. Acc., **120**, 215. ³⁶ A. V. Marenich, C. J. Cramer, D.G. Truhlar, D.G. J. Phys. Chem. B, 2009, **113**, 6378. ³⁷ F. Trani, G. Scalmani, G.S. Zheng, I. Carnimeo, M. J. Frisch, V. Barone, J. Chem. Theory Comput. 2011, 7, 3304-3313. ³⁸ W. Zheng, M. Andrec, E. Gallicchio, R.M. Levy, PNAS, 2007, **104**, 15340. ³⁹ P.L. Brezonik, Chemical Kinetics and Process Dynamics in Aqueous Systems; Lewis Publishers: Boca Raton, FL, 2002. ⁴⁰ M. von Smoluchowski, Z. Phys. Chem. 1917, **92**, 129. ⁴¹ W. Havduk, H. Laudie, AIChE J. 1974, **20**, 611. ⁴² S. W. Benson, Thermochemical Kinetics, 2nd ed.; Wiley Interscience: New York, 1976. ⁴³ H. Eyring, H. Gershinowitz, C.E. Sun, J. Chem. Phys. 1935, **3**, 786.

⁴⁴ L. Ashton, G.V. Buxton, C.R. Stuart, J. Chem. Soc. Fraday Trans. 1995, **91**, 1631.

⁴⁵ R. Wander, P. Neta, L. M. Dorfman, J. Phys. Chem. 1968, **72**, 2946.

⁴⁶ B. G. Kwon, S. Ryu, J. J. Yoon, Ind. Eng. Chem. 2009, **15**, 809.

⁴⁷ T. Charbouillot, M. Brigante, G. Mailhot, P.R. Maddigapu, C. Minero, D. Vione, J. Photochem. Photobiol. A. Chem. 2011, **222**, 70.

- ⁴⁸ G. Mark, H-P. Schuchmann, M.B. Schuchmann, L. Prager, C. von Sonntag, Environ. Sci. Technol. 2003, **37**, 372.
- ⁴⁹ M. Simic, M. Z. Hoffman, M. Ebert, The Journal of Phys. Chem. 1973, 77, 1117.
- ⁵⁰ J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, **10**, 6615.
- ⁵¹ K.-D. Asmus, H. Möckel, A. Henglein. J. Phys. Chem. 1973, 77, 1218-1221.

1	Experimental and Theoretical Studies on Aqueous-Phase Reactivity of Hydroxyl Radicals with
2	Multiple Carboxylated and Hydroxylated Benzene Compounds
3	
4	Prepared for Physical Chemistry Chemical Physics (PCCP)
5	
6	
7	Tables 1-4 and Figures 1-7
8	
9	
10	
11	Daisuke Minakata ^{1*}
12	Weihua Song ²
13	Stephen P. Mezyk ³
14	William J. Cooper ⁴
15	
161.	Department of Civil and Environmental Engineering, Michigan Technological University, 1400
17	Townsend Drive, Houghton, MI, 49931.
182.	Department of Environmental Science and Engineering, Fudan University, Shanghai, P.R. China.
193.	Department of Chemistry and Biochemistry, California State University Long Beach, Long
20	Beach CA 90840.
214.	Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697.
22	
23	*Corresponding author. dminakat@mtu.edu, 906-487-1830

24 Table 1

25	Overall experimental and calculated results for the addition of HO• to the hydroxylated and carboxylated
26	benzene compounds including the literature reported values such as Ashton et al. (1995) ⁴⁴ and Wander et
27	al. $(1968)^{45}$ for benzoic acid, Kwon et al. $(2009)^{46}$ for benzoate and Charbouillot et al. $(2011)^{47}$ for

28 terephthalic acid.

	$k_{\text{HO},\text{exp,}}$ $M^{-1} \text{ s}^{-1}$	$\lambda_{\max, exp}$ nm	pН	Reference	$\Delta G^{ m act}_{ m aq, calc,}$ kcal/mol	V_{calc} cm ³ /molecule	$k_{\rm D}, = M^{-1} {\rm s}^{-1}$	$k_{\text{chem}},$ M ⁻¹ s ⁻¹
Benzoic acid	1.80×10 ⁹			Ashton et al., 1995	1.43	87.10	1.13×10 ¹⁰	1.80×10 ⁹
	$(4.30 \sim 6.0) \times 10^9$			Wander et al., 1968				
Benzoate	(5.86±0.54)×10 ⁹ 2.50×10 ⁹	330 nm	6.9	This study Kwon et al., 2009	-10.30	87.00	1.13×10 ¹⁰	5.86×10 ⁹
Phthalic acid (1,2-Di)	(4.98±0.16)×109	330 nm	6.9	This study	-7.85	122.21	1.15×10 ¹⁰	4.98×109
Terephthalic acid (1,4-Di)	(4.95±0.28)×109	360 nm	6.9	This study	-7.61	126.81	1.16×10^{10}	4.95×10 ⁹
	(4.0±0.1)×109			Charbouillot et al., 2011				
Trimesic acid (1,3,5-Tri)	(3.53±0.35)×109	350 nm	6.9	This study	-6.12	132.70	1.16×10 ¹⁰	3.53×10 ⁹
Pyromellitic acid (1,2,4,5-Tetra)	(1.27±0.03)×109	370 nm	6.9	This study				
(1,2,3,4,5-Penta)	(7.55±0.17)×108	370 nm	6.9	This study				
Salicylic acid	$(1.07\pm0.07)\times10^{10}$	320 nm	7.0	This study	-23.4	101.823	1.14×10^{10}	1.78×10 ¹¹
3-hydroxybenzoic acid	(7.27±0.23)×109	360 nm	7.0	This study	-16.07	113.572	1.15×10^{10}	1.99×1010
4-hydroxybenzoic acid	(8.16±0.50)×109	370 nm	7.0	This study	-17.74	101.769	1.14×10^{10}	2.88×1010
2,3-dihydroxybenzoic acid	(9.90±0.40)×109	330 nm	7.0	This study	-15.08	105.298	1.14×10^{10}	7.49×1010
2,4-dihydroxybenzoic acid	(8.43±0.75)×109	330 nm	7.0	This study	-15.71	115.519	1.15×10^{10}	3.17×1010
2,5-dihydroxybenzoic acid	(5.51±0.50)×109	300 nm	7.0	This study	-13.34	109.959	1.14×10^{10}	1.06×1010
2,6-dihydroxybenzoic acid	(8.87±0.70)×109	350 nm	7.0	This study	-14.26	109.234	1.14×10^{10}	3.95×1010
2,3,4-trihydroxybenzoic acid	(7.87±0.28)×109	380 nm	7.0	This study	-12.94	92.366	1.13×10^{10}	2.58×1010
3,4,5-trihydroxybenzoic acid	(6.33±0.16)×109	410 nm	7.0	This study	-16.81	120.569	1.15×10^{10}	1.41×10^{10}

29 30

- 32 **Table 2**
- 33 The SOMO-LUMO energy gap calculated at the level of wB97XD/cc-pVQZ and M06-2X/cc-pVQZ.
- Values in () are by M06-2X/cc-pVQZ. The lowest excited state with the MO contributions calculated at
- the level of M06-2X/cc-pVQZ for the aqueous-phase reaction of HO• with benzoate.

	Co	mpounds						
	Positio	n of HO attack		Ortho		Meta		Para
	energy, eV SOMO-LUMO gap		Alpha-spin	Beta-spin	Alpha-spin	Beta-spin	Alpha-spin	Beta-spin
			8.65 (6.92)	7.97 (6.42)	8.85 (7.07)	7.7 (6.2)	8.5 (6.77)	8.37 (6.72)
		λ_{exc} , nm		460		472		440
	Lowest	Energy, eV		2.7		2.63		2.82
	excited	f		0.0057		0.0051		0.0004
	state		SOMO \rightarrow LUMO (-0.486)	SOMO-3 \rightarrow LUMO (0.215)	SOMO \rightarrow LUMO (-0.404)	SOMO-3 → LUMO (0.233)	SOMO \rightarrow LUMO (-0.578)	SOMO \rightarrow LUMO (0.794)
				SOMO \rightarrow LUMO (0.832)		SOMO-2 \rightarrow LUMO (-0.101)		
36						SOMO \rightarrow LUMO (0.866)		
37								
57								
20								
38								
20								
55								

41 Table 3

- 42 The SOMO-LUMO energy gap calculated at the level of wB97XD/cc-pVQZ and M06-2X/cc-pVQZ.
- 43 Values in () are by M06-2X/cc-pVQZ. The lowest excited state with the MO contributions calculated at
- the level of M06-2X/cc-pVQZ for the addition of HO• to multiple carboxylated benzene compounds.

Co	ompounds		Phthalic ac	Terephth	alic acid (1,4-Di)			
Positic	on of HO attack	:	3 position	4 position		2 or 3 position		
		Alpha-spin	Beta-spin	Alpha-spin	Beta-spin	Alpha-spin	Beta-spin	
energy, eV	SOMO-LUMO gap	8.04 (6.57)	7.98 (6.15)	7.62 (6.61)	5.23 (3.89)	8.29 (6.34)	7.64 (6.44)	
	λ, nm	490.73		1230		474.24		
Lowest	Energy, eV		2.5265		1.0079		2.61	
excited	f		0.0035		0.0008		0.0006	
state		SOMO → LUMO (0.483)	SOMO-6 \rightarrow LUMO (0.111)		SOMO \rightarrow LUMO (0.945)	SOMO \rightarrow LUMO (0.611)	SOMO-6 → LUMO (-0.192)	
			SOMO-5 → LUMO (-0.204)		SOMO \rightarrow LUMO+2 (-0.159)		SOMO \rightarrow LUMO (0.739)	
			SOMO \rightarrow LUMO (0.824)		SOMO \rightarrow LUMO+3 (0.148)			
Co	ompounds	Trimes	Trimesic acid (1,3,5-Tri)		1,2,3,4,5-Penta		mellitic acid	
Positic	on of HO attack	2 c	2 or 4 position			(1,2	2,4,5-Tetra)	
		Alpha-spin	Beta-spin	Alpha-spin	Beta-spin	Alpha-spin	Beta-spin	
energy, eV	SOMO-LUMO gap	8.31 (6.64)	7.37 (5.85)	8.51 (6.82)	7 (5.55)	8.15 (6.21)	7.35 (6.00)	
	λ, nm		504.73	521		502.91		
Lowest	Energy, eV		2.4564	2.38		2.4653		
excited	f		0.01696		0.211		0.0003	
state		SOMO \rightarrow LUMO (0.351)	SOMO \rightarrow LUMO (-0.202)	SOMO \rightarrow LUMO (0.287)	SOMO-15 → LUMO (0.207)	SOMO → LUMO (-0.577)	SOMO \rightarrow LUMO (-0.201)	
			SOMO → LUMO (0.890)		SOMO \rightarrow LUMO (0.917)		SOMO-12 → LUMO (0.771)	

46

45

3								
Э	Tables 4							
С	The SOMO-LUN	MO energy gap cal	culated at t	the level of wE	397XD/cc-pVQZ	and M0	6-2X/cc-pVQZ	
1	Values in () are b	by M06-2X/cc-pV	QZ. The lo	owest excited s	state with the MO) contribu	utions calculate	ed at
2	the level of M06	-2X/cc-pVQZ for	the reaction	ns of HO• addi	tion to multiple h	nydroxyl	ated benzoic a	cids
3	(a) Excited state	energies for the re	actions of l	HO• addition t	o salicylic acid a	t 3-, 4-, 5	5-, and 6-positi	ons
	Compounds		Salicylic ac	cid (2hydroxybenzoic acid)				
	Position of HO attack	3 position Alpha-spin Beta-spin	Alpha-spin	4 position Beta-spin	5 position Alpha-spin	Beta-spin	6 position Alpha-spin Bet	a-spin
L	energy, eV SOMO-LUMO gap	8.58 (6.85) 7.71 (6.14) 477.94 2.594 0.0096 · LUMO (0.431) SOMO-3 → LUMO (-0.16 SOMO → LUMO (0.875)	8.83 (7.09) 0) SOMO → LUMO (0.36	7.89 (6.24) 470.83 2.6333 0.0084 i1) SOMO → LUMO (0.915)	8.27 (6.52) 8 439 (449.88) 2.8237 (2.7559) 0.0001 (0.0003) SOMO → LUMO (-0.639) SOMO → SOMO →	3.05 (6.58) → LUMO (-0.224) S LUMO (0.708)	8.45 (6.69) 7.86 479.21 2.59 0.0077 OMO → LUMO (-0.460) SOMO → LU	(6.24) VIO (0.868)
		()				(
	(b) Excited state	energies for the re	actions of]	HO• addition t	to 3-hydroxybenz	oic acid	at 3-, 4-, 5-, ar	nd 6-
	·,·							
)	positions							
	Compounds	2 position	3-h	ydroxybenzoic acid	E position		Constition	
	Position of HO attack	Alpha-spin Beta-spin	Alpha-spin	Beta-spin	Alpha-spin	Beta-spin	Alpha-spin Bet	a-spin
	energy, eV SOMO-LUMO gap λmax	8.17 (6.42) 8.03 (6.36) 474.39	8.84 (7.10)	/.91 (6.25) 452.89 (468.17)	9.22 (7.44) 544.07 (548.24)	/.2/ (5.69)	457.6 (468.13)	. (6.87)
	Lowest Energy excited f	2.6135 0.0013		2.7376 (2.6483) 0.009 (0.0096)	2.2788 (2.2615) 0.0154 (0.0147)		2.709 (2.6485) 0.0249 (0.0283)	
	state SOMO →	LUMO (-0.583) SOMO → LUMO (0.793)	SOMO → LUMO (-0.36	59) SOMO-2 → LUMO (0.122) SOMO → LUMO (0.906)	SOMO \rightarrow LUMO (0.245) SOMO \rightarrow	LUMO (0.953) S	OMO → LUMO (0.871) SOMO → LU	VIO (-0.454)
	(c) Excited state	energies for the re	eactions of	HO• addition t	o 4-hydroxybenz	oic acid	at 2- and 3-pos	sitions
		and to 2.3-	dihvdroxvb	enzoic acid at	4-, 5-, and 6-pos	itions		
		and to 2,3-0	dihydroxyb	penzoic acid at	4-, 5-, and 6-pos	itions		
	Compounds Position of HO attack	and to 2,3-0	dihydroxyb 4-hydroxyt	benzoic acid at	4-, 5-, and 6-pos	itions		
	Compounds Position of HO attack	and to 2,3-0	dihydroxyb 4-hydroxyt Beta-spin	benzoic acid at	4-, 5-, and 6-pos	itions		
	Compounds Position of HO attack energy, eV SOMO-LUMO gap Jumax	and to 2,3-0	4-hydroxyb Beta-spin 7.22 (5.61)	benzoic acid at benzoic acid Alpha-spin 7.9 (6.21) aca 2	4-, 5-, and 6-pos	itions		
	Compounds Position of HO attack energy, eV SOMO-LUMO gap Lowest Amax excited Energy	2 position Alpha-spin 8.64 (6.88) 551.1 (561.14) 2.2498 (2.2095	dihydroxyb 4-hydroxyb Beta-spin 7.22 (5.61)	benzoic acid at benzoic acid Alpha-spin 7.9 (6.21) 464.2 2.67	4-, 5-, and 6-pos	itions		
	Compounds Position of HO attack energy, eV SOMO-LUMO gap Lowest Amax excited Energy state f	2 position Alpha-spin 8.64 (6.88) 551.1 (561.14) 2.2498 (2.2095 0.0201 (0.0138) 0.0201 (0.0138)	dihydroxyb 4-hydroxyl Beta-spin 7.22 (5.61)	benzoic acid at benzoic acid Alpha-spin 7.9 (6.21) 464.2 2.67 0.000 50400 AUMO (6.500)	4-, 5-, and 6-pos	itions		
	Compounds Position of HO attack energy, eV SOMO-LUMO gap Lowest Amax excited Energy state f Compounds	and to 2,3-4 2 position Alpha-spin 8.64 (6.88) 551.1 (561.14) 2.2498 (2.2095 0.0201 (0.0183 50MO → LUMO (-0.261) SOMO	dihydroxyb 4-hydroxyb Beta-spin 7.22 (5.61)) → LUMO (0.948)	benzoic acid at benzoic acid Alpha-spin 7.9 (6.21) 464.2 2.67 0.000 SOMO → LUMO (0.596) 2,3 dihydri	4-, 5-, and 6-pos position 8.05 (6.38) 1 (479.39) 7 (2.5863) 22 (0.0001) SOMO → LUMO (0.776) oxybenzoic acid	itions		
	Compounds Position of HO attack energy, eV SOMO-LUMO gap Lowest Energy excited Energy state f Compounds Position of HO attack	2 position 2 position Alpha-spin 8.64 (6.88) 551.1 (561.14) 2.2498 (2.2095 0.0201 (0.0183 50MO → LUMO (-0.261) 50MO 4 position	dihydroxyb 4-hydroxyb 8eta-spin 7.22 (5.61)) → LUMO (0.948) 8eta-spin	benzoic acid at benzoic acid 31 Alpha-spin 7.9 (6.21) 464.2 2.67 0.000 SOMO → LUMO (0.596) 2,3-dihydri 5 f Alpha-spin	4-, 5-, and 6-pos position 8.05 (6.38) 21 (479.39) 7 (2.5863) 20 (0.001) SOMO > LUMO (0.776) oxybenzoic acid position Beta-snin	itions	6 position	nin
	Compounds Position of HO attack energy, eV SOMO-LUMO gap Lowest Energy excited Energy state f Compounds Position of HO attack energy, eV SOMO-LUMO gap	and to 2,3-4 2 position Alpha-spin 8.64 (6.88) 551.1 (561.14) 2.2498 (2.2095 0.0201 (0.0183 50MO \rightarrow LUMO (-0.261) 50MO 4 position Alpha-spin 8.84 (7.11)	dihydroxyb 4-hydroxyb Beta-spin 7.22 (5.61)) → LUMO (0.948) Beta-spin 7.28 (5.66)	benzoic acid at benzoic acid 31 Alpha-spin 7.9 (6.21) 464.2 2.67 0.000 SOMO → LUMO (0.596) 2,3-dihydri 5 f Alpha-spin 8.49 (6.75)	4-, 5-, and 6-pos position <u>Beta-spin</u> 8.05 (6.38) 21 (479.39) 7 (2.5863) 20 (0.001) SOMO > LUMO (0.776) oxybenzoic acid position <u>Beta-spin</u> 7.65 (6.09)	Alpha-sp 8.02 (6.3	6 position pin Beta-sj 1) 7.82 (6.	pin 28)
	Compounds Position of HO attack energy, eV SOMO-LUMO gap Lowest Amax excited Energy state f Compounds Position of HO attack energy, eV SOMO-LUMO gap Amax Lowest Energy	and to 2,3-4 2 position Alpha-spin 8.64 (6.88) 551.1 (561.14) 2.2498 (2.2095 0.0201 (0.0183 50MO \rightarrow LUMO (-0.261) 50MO 4 position Alpha-spin 8.84 (7.11) 530.68 (544.71) 2.3363 (2.275)	dihydroxyt 4-hydroxyt Beta-spin 7.22 (5.61)) → LUMO (0.948) Beta-spin 7.28 (5.66)	benzoic acid at benzoic acid 31 Alpha-spin 7.9 (6.21) 464.2 2.67 0.000 SOMO → LUMO (0.596) 2,3-dihydri S19 Alpha-spin 8.49 (6.75) 483.8 2,55	4-, 5-, and 6-pos	Alpha-sp 8.02 (6.3	6 position bin Beta-si 11) 7.82 (6. 460.66 (459.41) 2 6016 (2 698)	oin 28)
	Compounds Position of HO attack energy, eV SOMO-LUMO gap Lowest Amax excited Energy state f Compounds Position of HO attack energy, eV SOMO-LUMO gap Amax Lowest Energy excited f	and to 2,3-4 2 position Alpha-spin 8.64 (6.88) 551.1 (561.14) 2.2498 (2.2095 0.0201 (0.0183 50MO \rightarrow LUMO (-0.261) SOMO 4 position Alpha-spin 8.84 (7.11) 530.68 (544.71 2.3363 (2.2761 0.0259 (0.0279)	dihydroxyt 4-hydroxyt 8eta-spin 7.22 (5.61)) → LUMO (0.948) 8eta-spin 7.28 (5.66))	benzoic acid at benzoic acid 31 Alpha-spin 7.9 (6.21) 464.2 2.67 0.000 SOMO → LUMO (0.596) 2,3-dihydri 51 Alpha-spin 8.49 (6.75) 483.8 2.562 0.000	4-, 5-, and 6-pos position Beta-spin 8.05 (6.38) 21 (479.39) 7 (2.5863) 20 (0.001) SOMO > LUMO (0.776) oxybenzoic acid position Beta-spin 7.65 (6.09) 11 (484.91) 27 (2.5568) 39 (0.0066)	Alpha-sp 8.02 (6.3	6 position bin Beta-sy 1 7.82 (6. 460.66 (459.41) 2.6915 (2.6988) 0.0075 (0.0048)	oin 28)
	Compounds Position of HO attack energy, eV SOMO-LUMO gap Max Lowest Energy state f Compounds Position of HO attack energy, eV SOMO-LUMO gap Max Lowest Energy excited f state s	and to 2,3-(dihydroxyb 4-hydroxyt 8eta-spin 7.22 (5.61)) → LUMO (0.948) 8eta-spin 7.28 (5.66)) → LUMO (0.959)	Denzoic acid at benzoic acid 31 Alpha-spin 7.9 (6.21) 464.2 2.65 0.000 SOMO → LUMO (0.596) 2,3-dihydr 8.49 (6.75) 483.8 2.562 0.008 SOMO → LUMO (-0.387)	4-, 5-, and 6-pos position Beta-spin 8.05 (6.38) 1 (479.39) 2 (2.5863) 2 (0.0001) SOMO → LUMO (0.776) 0 xybenzoic acid position Beta-spin 7.65 (6.09) 31 (484.91) 7 (2.5568) 39 (0.0066) SOMO → LUMO (0.896) S	Alpha-sp 8.02 (6.3 0MO → LUMO (0	6 position bin Beta-sj 11) 7.82 (6. 460.66 (459.41) 2.6915 (2.6988) 0.0075 (0.0048) 0.612) SOMO → LUMO SOMO → LUMO	oin 28) O (0.113) (0.755)
	Compounds Position of HO attack energy, eV SOMO-LUMO gap Lowest Energy state f Compounds Position of HO attack energy, eV SOMO-LUMO gap Jumax Lowest Energy excited f state S	and to 2,3-4 2 position Alpha-spin 8.64 (6.88) 551.1 (561.14) 2.2498 (2.2095 0.0201 (0.0183 50MO \rightarrow LUMO (-0.261) 50MO 4 position Alpha-spin 8.84 (7.11) 530.68 (544.71 2.3363 (2.2761 0.0269 (0.0279 50MO \rightarrow LUMO (-0.191) 50MO \rightarrow LUMO (-0.191) 50MO \rightarrow LUMO (-1.27)	dihydroxyb 4-hydroxyt 8eta-spin 7.22 (5.61)) → LUMO (0.948) 8eta-spin 7.28 (5.66)) → LUMO (0.959)	Denzoic acid at benzoic acid 31 Alpha-spin 7.9 (6.21) 464.2 2.67 0.000 SOMO → LUMO (0.596) 2,3-dihydri 8.49 (6.75) 483.8 2.562 0.000 SOMO → LUMO (-0.387)	4-, 5-, and 6-pos position Beta-spin 8.05 (6.38) 21 (479.39) 7 (2.5863) 22 (0.0001) SOMO → LUMO (0.776) 0 xybenzoic acid position 7.65 (6.09) 31 (484.91) 7 (2.5568) 39 (0.0066) SOMO → LUMO (0.896) S	<u>Аlpha-sp</u> 8.02 (6.3 ОМО → LUMO (0	6 position Beta-sj 14 0.66 (459.41) 2.6915 (2.6988) 0.0075 (0.0048) 0.0075 (0.0048) SOMO → LUMO	oin 28) O (0.113) (0.755)
	Compounds Position of HO attack energy, eV SOMO-LUMO gap Lowest Energy state f Compounds Position of HO attack energy, eV SOMO-LUMO gap Amax Lowest Energy excited f state S	and to 2,3-4 2 position Alpha-spin 8.64 (6.88) 551.1 (561.14) 2.2498 (2.2095 0.0201 (0.0183 50MO \rightarrow LUMO (-0.261) 50MO 4 position Alpha-spin 8.84 (7.11) 5.30.68 (544.71 2.3363 (2.2761 0.0269 (0.0279 50MO \rightarrow LUMO (-0.191) 50MO \rightarrow LUMO (-0.191) 50MO \rightarrow LUMO (-1.127)	dihydroxyb 4-hydroxyt 8eta-spin 7.22 (5.61)) → LUMO (0.948) 8eta-spin 7.28 (5.66)) → LUMO (0.959)	Denzoic acid at benzoic acid 31 Alpha-spin 7.9 (6.21) 464.2 2.67 0.000 SOMO → LUMO (0.596) 2,3-dihydri 8.49 (6.75) 483.8 2.562 0.000 SOMO → LUMO (-0.387)	4-, 5-, and 6-pos position Beta-spin 8.05 (6.38) 12 (479.39) 22 (0.0001) SOMO → LUMO (0.776) 0xybenzoic acid position 7.65 (6.09) 31 (484.91) 7.65 (6.09) 50MO → LUMO (0.896) SOMO → LUMO (0.896)	<u>Аlpha-sp</u> 8.02 (6.3 омо → LUMO (0	6 position bin Beta-sj 10 7.82 (6. 460.66 (459.41) 2.6915 (2.6988) 0.0075 (0.0048) 0.0075 (0.0048) 1.612) SOMO-4 → LUMO SOMO → LUMO	Din 28) 0 (0.113) (0.755)
•	Compounds Position of HO attack energy, eV SOMO-LUMO gap Lowest Energy state f Compounds Position of HO attack energy, eV SOMO-LUMO gap Amax Lowest Energy excited f state S (d) Excited state	and to 2,3-($\frac{dihydroxyt}{4-hydroxyt}$ $\frac{8eta-spin}{7.22(5.61)}$ $\rightarrow LUMO (0.948)$ $\frac{8eta-spin}{7.28(5.66)}$ $\rightarrow LUMO (0.959)$ $\Rightarrow actions of 1$	benzoic acid at $\frac{Alpha-spin}{7.9 (6.21)}$ $\frac{464.2}{2.67}$ $\frac{2.67}{0.000}$ SOMO \rightarrow LUMO (0.596) 2,3-dihydri Alpha-spin 8.49 (6.75) 483.8 2.562 0.000 SOMO \rightarrow LUMO (-0.387) HO• addition t	4-, 5-, and 6-pos	<u>Аlpha-sp</u> 8.02 (6.3 омо → шмо (0 Denzoic a	6 position bin Beta-sj 460.66 (459.41) 2.6915 (2.6988) 0.0075 (0.0048) 0.612) SOMO-4 → LUMO SOMO → LUMO Accid at 3-, 5-, at	o (0.113) (0.755) nd 6-
3 9) L	Compounds Position of HO attack energy, eV SOMO-LUMO gap Lowest Energy state f Compounds Position of HO attack energy, eV SOMO-LUMO gap Amax Lowest Energy excited f state state (d) Excited state	and to 2,3-(dihydroxyb 4-hydroxyt 8eta-spin 7.22 (5.61)) → LUMO (0.948) 8eta-spin 7.28 (5.66)) → LUMO (0.959) ⇒ LUMO (0.959)	Denzoic acid at benzoic acid at Alpha-spin 7.9 (6.21) 464.2 2.67 0.000 SOMO \rightarrow LUMO (0.596) 2,3-dihydra 8.49 (6.75) 483.8 2.562 0.008 SOMO \rightarrow LUMO (-0.387) HO• addition t	4-, 5-, and 6-pos position Beta-spin 8.05 (6.38) 21 (479.39) 7(2.5863) 20 (0.0001) SOMO → LUMO (0.776) 000 beta-spin 7.65 (6.09) 31 (484.91) 7.65 (6.09) 32 (0.0066) SOMO → LUMO (0.896) S SOMO → LUMO (0.896) S	itions <u>Аlpha-sp</u> 8.02 (6.3 омо → шмо (о Denzoic a	6 position Din Beta-sj 460.66 (459.41) 2.6915 (2.6988) 0.0075 (0.0048) 0.0075 (0.0048) 1.612) SOMO-4 → LUMO SOMO → LUMO Accid at 3-, 5-, at	o (0.113) (0.755) nd 6-

Compounds		2,4-dihydroxybenzoic acid							
Position of HO attack		3 position		5 position		6 position			
		Alpha-spin	Beta-spin	Alpha-spin	Beta-spin	Alpha-spin	Beta-spin		
energy, eV	SOMO-LUMO gap	7.99 (6.33)	7.83 (6.18)	7.98 (6.28)	8.09 (6.52)	8.66 (6.89)	7.29 (5.67)		
Lowest	λmax	344.47 (491.16)		450.	450.25 (461.35)		533.66 (540.13)		
excited	Energy	3.5992 (2.5243)		2.75	2.7537 (2.6874)		2.3233 (2.2955)		
state	f	0.1098 (0.0025)		0.00	0.0017 (0.0011)		0.0231 (0.0208)		
		SOMO \rightarrow LUMO (0.819)	SOMO \rightarrow LUMO (0.537)	SOMO \rightarrow LUMO (0.689)	SOMO-2 \rightarrow LUMO (0.112)	SOMO \rightarrow LUMO (0.275)	SOMO \rightarrow LUMO (0.945)		
					SOMO \rightarrow LUMO (0.685)				
-									
Co	mpounds		2,6-dihydro	xybenzoic acid					
Co Positio	mpounds n of HO attack	4	2,6-dihydro position	xybenzoic acid 5	position				
Co Position	mpounds n of HO attack	4 Alpha-spin	2,6-dihydro position Beta-spin	xybenzoic acid 5 Alpha-spin	position Beta-spin	_			
Co Position energy, eV	mpounds n of HO attack SOMO-LUMO gap	4 Alpha-spin 9.28 (7.53)	2,6-dihydro position Beta-spin 3.04 (5.36)	kybenzoic acid 5 Alpha-spin 8.08 (6.39)	position Beta-spin 8.06 (6.54	_			
Co Position energy, eV Lowest	mpounds n of HO attack SOMO-LUMO gap λmax	4 Alpha-spin 9.28 (7.53) 595.4	2,6-dihydro position Beta-spin 3.04 (5.36) 43 (601.53)	xybenzoic acid 5 Alpha-spin 8.08 (6.39) 442.	position Beta-spin 8.06 (6.54 98 (448.87)	_			
Co Position energy, eV Lowest excited	mpounds n of HO attack SOMO-LUMO gap λmax Energy	4 Alpha-spin 9.28 (7.53) 595./ 2.08	2,6-dihydro position 3.04 (5.36) 43 (601.53) 23 (2.0611)	xybenzoic acid 5 Alpha-spin 8.08 (6.39) 442. 2.79	position Beta-spin 8.06 (6.54 98 (448.87) 88 (2.7621)	_			
Co Position energy, eV Lowest excited state	mpounds n of HO attack SOMO-LUMO gap λmax Energy f	4 Alpha-spin 9.28 (7.53) 595. 2.08 0.02	2,6-dihydro position 3.04 (5.36) 43 (601.53) 23 (2.0611) 33 (0.0229)	xybenzoic acid 5 Alpha-spin 8.08 (6.39) 442. 2.79 0.00	Beta-spin 8:06 (6.54 98 (448.87) 88 (2.7621) 33 (0.0034)	-			
Co Position energy, eV Lowest excited state	mpounds n of HO attack SOMO-LUMO gap Amax Energy f	4 Alpha-spin 9.28 (7.53) 595. 2.08. 0.02 SOMO → LUMO (0.171)	2,6-dihydro position 3.04 (5.36) 43 (601.53) 23 (2.0611) 33 (0.0229) SOMO -> LUMO (0.970)	xybenzoic acid <u>Alpha-spin</u> 8.08 (6.39) 442. 2.79 0.00 SOMO → LUMO (0.712)	Beta-spin 8.06 (6.54) 98 (448.87) 88 (2.7621) 33 (0.0034) SOM0-2 → LUMO (0.135)	-			

- 64 (e) Excited state energies for the reactions of HO• addition to 2,5-dihydroxybenzoic acid at 3-, 4-, and 6-
- 65 positions and to 3,4-dihydroxybenzoic acid at 2- and 5-positions

Compounds		2,5-dihydroxybenzoic acid								
Position of HO attack		3 position		4 position		6 position				
		Alpha-spin	Beta-spin	Alpha-spin	Beta-spin	Alpha-spin	Beta-spin			
energy, eV	SOMO-LUMO gap	9 (7.28)	7.32 (5.72)	9.04 (7.30)	7.37 (5.76)	8.64 (6.90)	7.38 (5.79)			
Lowest	λmax	528.18 (529.77)		522.92 (523.92)		518.23 (519.41)				
excited	Energy	2.3474 (2.3404)		2.371 (2.3665)		2.3924 (2.487)				
state	f	0.019 (0.0181)		0.0143 (0.0133)		0.024 (0.0196)				
		SOMO \rightarrow LUMO (-0.251)	SOMO \rightarrow LUMO (0.952)	SOMO \rightarrow LUMO (0.234)	SOMO \rightarrow LUMO (0.953)	SOMO \rightarrow LUMO (-0.302)	SOMO \rightarrow LUMO (0.934)			
			3,4-dihydroxybenzoic acid							
Co	mpounds			3,4-dihydi	roxybenzoic acid					
Co Positio	mpounds n of HO attack	2	position	3,4-dihydi 5	roxybenzoic acid position	6 r	osition			
Co Positio	mpounds n of HO attack	2 p Alpha-spin	position Beta-spin	3,4-dihydi 5 Alpha-spin	roxybenzoic acid position Beta-spin	6 p Alpha-spin	osition Beta-spin			
Co Positio energy, eV	mpounds n of HO attack SOMO-LUMO gap	2 ; Alpha-spin 8.57 (6.82)	position Beta-spin 7.21 (5.59)	3,4-dihydi 5 Alpha-spin 8.28 (6.56)	roxybenzoic acid position Beta-spin 7.45 (5.81)	6 p Alpha-spin 7.69 (5.98)	Beta-spin 8.35 (6.75)			
Co Positio energy, eV Lowest	mpounds n of HO attack SOMO-LUMO gap λmax	2 s Alpha-spin 8.57 (6.82) 552.1	Beta-spin 7.21 (5.59) 15 (568.52)	3,4-dihydi 5 Alpha-spin 8.28 (6.56) 525.	roxybenzoic acid position Beta-spin 7.45 (5.81) 74 (543.49)	6 p Alpha-spin 7.69 (5.98) 457.4	bosition Beta-spin 8.35 (6.75) 7 (469.36)			
Co Position energy, eV Lowest excited	mpounds n of HO attack SOMO-LUMO gap λmax Energy	2 (Alpha-spin 8.57 (6.82) 552.1 2.245	Beta-spin 7.21 (5.59) 15 (568.52) 55 (2.1808)	3,4-dihydi 5 Alpha-spin 8.28 (6.56) 525. 2.35	roxybenzoic acid position 7.45 (5.81) 74 (543.49) 83 (2,2813)	6 ¢ Alpha-spin 7.69 (5.98) 457.4 2.710	8.35 (6.75) 7 (469.36) 2 (2.6415)			
Co Position energy, eV Lowest excited state	mpounds n of HO attack SOMO-LUMO gap λmax Energy f	2 (Alpha-spin 8.57 (6.82) 552.1 2.245 0.02	Beta-spin 7.21 (5.59) 15 (568.52) 55 (2.1808) 5 (0.0236)	3,4-dihydi 5 Alpha-spin 8.28 (6.56) 525. 2.35 0.01	roxybenzoic acid position 7.45 (5.81) 74 (543.49) 83 (2,2813) 42 (0.0137)	6 p Alpha-spin 7.69 (5.98) 457.4 2.710 0.021	Beta-spin 8.35 (6.75) 7 (469.36) 2 (2.6415) 6 (0.0257)			

66

67 (f) Excited state energies for the reactions of HO• addition to 2,3,4-trihydroxybenzoic acid at 5- and 6-

68 position, and to 3,4,5-trihydroxybenzoic acid at 2- or 6-position

Compounds		2,3,4-trihydroxybenzoic acid				3,4,5-trihydroxybenzoic acid	
Position	of HO attack	5 p	5 position 6 position		2 or 6 position		
		Alpha-spin	Beta-spin	Alpha-spin	Beta-spin	Alpha-spin	Beta-spin
energy, eV	SOMO-LUMO gap	8.38 (6.68)	7.72 (6.14)	8.39 (6.69)	7.51 (5.60)	7.74 (6.09)	7.93 (6.32)
Lowest	λmax	457.78 (469.08)		494.38 (480.47)		462.79 (469.71)	
excited	Energy	2.6505 (2.6432)		2.5079 (2.5805)		2.6791 (2.6396)	
state	f	f 0.0033 (0.0037)		0.0091 (0.0059)		0.0044 (0.0049)	
		SOMO \rightarrow LUMO (0.427) SOMO \rightarrow LUMO+1 (0.143)	SOMO \rightarrow LUMO (0.871)	SOMO \rightarrow LUMO (0.353)	SOMO \rightarrow LUMO (0.916)	SOMO → LUMO (0.705)	SOMO \rightarrow LUMO (-0.679)

69 70

71

-

72

73

74

- 76 Figure 1
- The Linear Free Energy Relationships between experimental rate constants for the chemical reactions, k_{chem} ,
- and theoretically calculated $\Delta G_{aq,calc}^{act}$. The error bar indicates the range of the literature reported values.

81 Figure 2

82 Experimental transient absorption spectra for the reaction of HO• with benzoate

83

- 85 Figure 3
- 86 Molecular orbitals of SOMO-1, SOMO, LUMO, and LUMO+1 for the aqueous-phase reaction of HO•
- 87 with benzoate

88

89

92 Figure 4

93 Experimental transient spectra for the addition of HO• to multiple carboxylated benzene compounds

107 Figure 5

108 Theoretically calculated MOs for the addition of HO• to multiple carboxylated benzene compounds

- 109
- 110

111

Physical Chemistry Chemical Physics Accepted Manuscr

(c) 4-hydroxybenzoic acid

112 Figure 6

113 Time-dependent transient spectra for the reaction of HO• with multiple hydroxylated benzoic acids

(d) 2,3-dihydrobenzoic acid

118 119

(e) 2,4-dihydrobenzoic acid

121 (g) 2,6-dihydrobenzoic acid

(f) 2,5-dihydrobenzoic acid

- 124
- 125

Figure 7 126

Theoretically calculated MO for the addition of HO• to the salicylic acid 127

- 129
- 130