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Abstract 

Recent predictions of absolute binding free energies of host-guest complexes in aqueous 

solution using electronic structure theory have been encouraging for some systems, while 

other systems remain problematic. In this paper I summarize some of the many factors 

that could easily contribute 1-3 kcal/mol errors at 298 K: three-body dispersion effects, 

molecular symmetry, anharmonicity, spurious imaginary frequencies, insufficient 

conformational sampling, wrong or changing ionization states, errors in the solvation free 

energy of ions, and explicit solvent (and ion) effects that are not well-represented by 

continuum models. While I focus on binding free energies in aqueous solution the 

approach also applies (with minor adjustments) to any free energy difference such as 

conformational or reaction free energy differences or activation free energies in any 

solvent.   
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Introduction 

The prediction of accurate absolute binding energies in aqueous solution is one of the 

holy grails of computational chemistry, mainly because of the potential use in rational 

drug design. “Accurate” is typically taken to be 1 kcal/mol, which roughly corresponds to 

predicting the binding constant within an order of magnitude at room temperature and it 

is understood that the method must be generally applicable. The recent blind prediction 

challenge SAMPL4 has shown that this goal has yet to be met even for host-guest 

complexes that are significantly smaller than proteins (Muddana et al. 2014). 

Interestingly, the entry that arguably performed best for one of the hosts (curcurbit[7]uril 

or CB7) was, for the first time, based on the rigid rotor-harmonic oscillator (RRHO) 

approximation and electronic structure theory and involved no direct parameterization 

against experimental binding free energies (Sure et al. 2014). This method reproduced 14 

experimental CB7-guest binding free energies with a mean absolute deviation of 2.02 

0.46 kcal/mol suggesting that, perhaps, the holy grail is within reach. However, the mean 

absolute error was significantly larger for another host-guest system indicating that there 

remains some work to be done.  

 

In this paper I summarize why electronic structure/RRHO-based approaches are starting 

to yield accurate binding free energies. I also discuss many of the possible sources of 

error when computing aqueous binding free energies with electronic structure theory and 

how to correct for them.   

 

General approach 

The general approach for predicting the standard free energy of binding (∆Gb,aq

o
) of a 

receptor (R or host) and ligand (L or guest) molecule in aqueous (aq) solution  

 

R(aq)+ L(aq) � RL(aq)     (Rx 1) 

 

using electronic structure theories is through a thermodynamic cycle (Figure 1) 

 

∆Gb,aq

o =Gaq

o (RL)−Gaq

o (R)−Gaq

o (L)
    

 (1)

  

where  

 

 
Gaq

o (X) = Egas(X)+Ggas,RRHO

o (X)+ ∆Gsolv

o (X)

=Ggas

o (X)+ ∆Gsolv

o (X)
 (2) 

 

Egas(X) , Ggas,RRHO

o (X), and ∆Gsolv

o (X) is the electronic energy, rigid rotor-harmonic 

oscillator (RRHO), and solvation free energy, respectively, of molecule X. Note that 

Ggas,RRHO

o (X) contains the zero point energy. The standard state (denoted by “o”) 

throughout this paper is 1 M, unless otherwise noted.  The solvation free energy is 

typically computed using a continuum solvation model as described in detail below. 

 

±
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Figure 1. Thermodynamic cycle for computing the binding free energy in aqueous 

solution for a ligand (L) binding to a receptor (R) to form a complex (RL). 

 

The Electronic Energy 

One of the reasons electronic structure-based approaches are starting to yield accurate 

binding free energies is the use of dispersion corrections (Grimme et al. 2010) in the 

evaluation of the electronic energy and the structure (as well as the vibrational 

frequencies as discussed below). Grimme (2012) has shown that dispersion typically 

makes a very big (>10 kcal/mol) contribution to binding free energies of host-guest 

complexes. Dispersion corrections are therefore a must if DFT is used to compute the 

electronic binding energy. Furthermore, Grimme has shown that three-body dispersion 

makes a non-negligible (2-3 kcal/mol) contribution to the electronic binding energy.  For 

convergent methods this effect is only included in rather expensive methods that involve 

triple-excitations such as MP4 and CCSD(T). 

 

Interestingly, it has been found that dispersion corrected, and short-range corrected, 

semiempirical methods such as DFTB or PM6, yield binding energies with accuracies 

similar to conventional DFT calculations with large basis sets.  For example, Muddana 

and Gilson (2012) used PM6-DH+ to compute reasonably accurate relative binding 

energies for CB7-ligand complexes. On the other hand, Yilmazer and Korth (2013) found 

significant deviations for PM6-DH+ and similar methods when applied to larger protein-

ligand models. Whether these minimal basis set-based methods are sufficiently flexible to 

handle large many-body polarization effects involving many charged groups remains to 

be determined. In any case, Grimme and co-worker have computed Egas(X)at the 

PW6B95-D3(BJ)/def2- QZVP//TPSS27-D3(BJ)/def2-TZVP level of theory with good 

results (Sure et al. 2014). 

 

Molecular Thermodynamics 

The translational, rotational and vibrational thermodynamic contribution to the binding 

free energy is very large (>10 kcal/mol) and must be included for accurate results. Some 

years ago there was a bit of confusion in the literature about whether the RRHO approach 

was appropriate for condensed phase systems, but Zhou and Gilson (2009) have clarified 

this beautifully. The accuracy of the dispersion and hydrogen bond-corrected semi-

empirical methods mentioned above has now made it feasible to compute the vibrational 

frequencies for typical host-guest complexes and this is another reason why electronic 
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structure-based approaches are starting to yield accurate binding free energies. (They 

appear to be a qualitative step forward in accuracy compared to standard force fields in 

this regard.)  For example, Grimme has computed Ggas,RRHO

o (X) with PM6-D3H (Grimme 

2013) and HF-3c (Sure et al. 2014) with good results. 

 

The standard state. Most electronic structure codes compute the RRHO energy 

corrections for an ideal gas, where the standard state is a pressure of 1 bar. As I’ll discuss 

further below the solvation free energies are computed for a 1 M standard state so the gas 

phase free energy must be corrected accordingly 

 

Ggas,RRHO

o (X) =Ggas,RRHO

o (1 bar) (X)− RT ln(V −1)   (3)
 

 

where V is the volume of an ideal gas a temperature T and R is the ideal gas constant. At 

298K this correction increases the free energy by 1.90 kcal/mol.  

 

It is tempting to argue that since the volume change in solution is negligible one should 

use the Helmholtz free energy Agas,RRHO

o (X) instead of the Gibbs free energy.  However, as 

I discuss below, the solvation free energy corrects for the change in volume on going 

from the gas phase to solution, so the Gibbs free energy change should be used 

throughout. 

 

The vibrational enthalpy for NDDO based semiempirical methods. NDDO based 

semiempirical methods such as PM6 are parameterized against experimental standard 

enthalpies of formation (∆H f,gas

o
). However, in the case of intermolecular interactions 

such as hydrogen binding the parameterization was done by fitting ∆∆H f,gas

o
 to ∆Egas

values computed using electronic structure theory (Stewart 2007).  The same is true for 

dispersion and hydrogen bond corrected PM6 methods. Thus, if a PM6 based method is 

used to compute the interaction energy the RRHO enthalpy corrections should still be 

included, i.e. 

 

Gaq

o (X) = ∆H f,gas

o (X)+Ggas,RRHO

o (X)+ ∆Gsolv

o (X)  (4) 

 

Molecular symmetry. Many host molecules and some guest molecules are symmetric 

and this affects the rigid-rotor rotational entropy ( SRR
) through the symmetry number (σ), 

which is a function of the molecular point group. 

 

SRR = R ln
8π 2

σ
2πekT

h2







3/2

I1I2I3









      (5) 

 

Here h and k are Planck’s and Boltzmann’s constant, respective and Ix is the moment of 

inertia for principal axis x. In practice it can be very difficult to build large molecules 

with the correct point group and most studies use C1 symmetry. In this case the effect of 

symmetry must be added manually to the free energy 
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 5

 

 Ggas,RRHO

o (X) =Ggas,RRHO

o (C1 ) (X)+ RT ln(σ X )    (6)
 

 

As an example, CB7 has D7h symmetry and a corresponding σ value of 14, in which case 

the correction contributes 1.56 kcal/mol to the free energy at 298K. 

 

Anharmonicity and low frequency modes. Host-guest complexes can exhibit very low 

frequency vibrations on the order of 50 cm
-1

 or less, which tend to dominate the 

vibrational entropy contribution (Grimme 2013).  Many researchers have questioned 

whether the harmonic approximation is valid for such low frequency modes and this is an 

open research question.  The main problem is that it is very difficult to compute the 

vibrational entropy exactly.  Most methods for computing anharmonic effects are 

developed to obtain the 1 or 2 lowest energy states, but for very low frequency modes 10-

20 states are likely significantly populated at room temperature and therefore contribute 

to the entropy. 

 

In the absence of theoretical benchmarks, comparison to experiment can prove 

constructive. Kjærgaard and co-workers (Bork et al. 2014a and 2014b) have recently 

measured standard binding free energies for small gas phase compounds and compared 

them to CCSD(T)/aug-cc-pV(T+d) calculations. For example, in the case of acetronitrile-

HCl the measured binding free energy at 295K is between 1.2 and 1.9 kcal/mol, while the 

predicted value is 1.9 kcal/mol using the harmonic approximation (Bork et al. 

2014b).  Since the errors in ∆E and the rigid-rotor approximation presumably are quite 

low, this suggest and error in the vibrational free energy of at most 0.7 kcal/mol, despite 

the fact that the lowest vibrational frequency is only about 30 cm
-1

.  Furthermore, the 

error can be reduced by 0.4 kcal/mol by scaling the harmonic frequencies by anharmonic 

scaling factors suggested by Shields and co-workers (Temelso et al. 2011; Temelso & 

Shields 2011). Similar results were found for dimethylsulfide-HCl (Bork et al. 

2014a).  So there are some indications that the harmonic approximation yields free 

energy corrections that are reasonable and possibly can be improved upon by relatively 

minor corrections. 

 

On the other hand in a recent study Piccini and Sauer  (2014) show that anharmonic 

effects need to be included to obtain agreement with the experimental binding free energy 

of methane to H-CHA zeolite.  Specifically, they compute the vibrational binding free 

energy by computing the 1-dimensional potential energy surface for each low frequency 

mode and compute the vibrational energy levels and corresponding partition function 

numerically (as opposed to using the anharmonic fundamental frequency together with 

the harmonic oscillator partition function).  This decreases the binding free energy by 2.5 

kcal/mol compared to the standard harmonic oscillator treatment.   

 

Grimme (2012) has taken a different approach by arguing that low-frequency modes 

resemble free rotations and using the corresponding entropy term for low frequency 

modes.  This changes the RRHO free energy correction by 0.5 - 4 kcal/mol, depending on 

the system. 
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Low frequencies are especially susceptible to numerical error and it is not unusual to see 

1 or 2 imaginary frequencies of low magnitude in a vibrational analysis of a host-guest 

complex.  Since imaginary frequencies are excluded from the vibrational free energy this 

effectively removes 1 or 2 low frequency contributions to the vibrational free energy. For 

example, a 30 cm
-1

 frequency contributes about 1.7 kcal/mol to the free energy at 298K.  

 

Imaginary frequencies resulting from a flat PES and numerical errors can often be 

removed by making the convergence criteria for the geometry optimization and electronic 

energy minimization more stringent and making the grid size finer in the case of DFT 

calculations. If the Hessian is computed using finite difference it is important to use 

central-differencing.  If all else fails, it is probably better to pretend that the imaginary 

frequency is real and add the corresponding vibrational free energy contribution. 

However, this needs to be systematically tested. 

 

Conformations. One of the main problems in computing accurate binding free energies 

is to identify the structures of the host, guest and (especially) the host-guest complex with 

the lowest free energy. Because both the RRHO and solvation energy contributions 

contribute greatly to the binding free energy change, simply finding the structure with the 

lowest electronic energy and computing the free energy only for that conformation is 

unlike to result in the global free energy minimum. 

 

For a molecule (X) with Nconf conformations the standard free energy is 

 

Gaq

o (X) =Gaq

o (Xref )− RT ln 1+ e
−∆Gaq

o (Xi )/RT

i=1
i≠ref

Nconf −1

∑














 (7)

 

where 
 

∆Gaq

o (Xi ) = Gaq

o (Xi )−Gaq

o (Xref ) (8) 

 

and where Xref is some arbitrarily chosen reference geometry - for example the global 

minimum.  With that choice for Xref, conformations with free energies higher than 1.36 

kcal/mol contribute less than 0.1 to the sum at 298K. So a significant number of very low 

free energy structures are needed to make even a 0.5 kcal/mol contribution to the free 

energy. Conformations related by symmetry should not be included here as their effects 

are accounted for in the rotational entropy (see above). Note that if the binding 

measurements are done for racemic mixtures then all stereoisomers must be included in 

the sum.  

 

Molecular charge and pH 

Virtually all binding measurements in aqueous solution are performed in a buffer with a 

constant pH and many ligands and or receptors contain one or more ionizable groups. 

The charge (q) of an ionizable (acid/base) group in aqueous solution depends on its 

pKa and the pH: 
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 7

  

 q =
1

1+10pH−pKa
−δ       (9)

 
 

where δ is 1 for an acid and 0 for a base.  This is an average charge for all the molecules 

in solution and will not be an integer.  This section describes how to handle charges that 

different significantly from an integer value and/or change as a result of binding. The 

pKa can be computed using electronic structure theory or empirically using software such 

as Marvin (2014). However, if the pKa value is perturbed by the binding the situation may 

be complicated further. Here I illustrate this point for a simple example where the ligand 

has a basic group that is neutral when deprotonated and the receptor is non-ionizable. 

 

 R(aq)+ L(H+ )(aq) � RL(H+ )(aq)       Rx 2 

 

The apparent equilibrium constant is then (throughout this paper I assume ideal solutions 

where the activity is equal to the concentration) 

 

 ′K =
[RL]+ [RLH+ ]

[R] [L]+ [LH+ ]( )
    (10) 

 

and the corresponding binding free energy is 
 

∆ ′Gaq

o = ∆Gaq

o (+)− RT ln
1+10pH−pKa

c

1+10pH−pKa
f









 = ∆Gaq

o (0)− RT ln
1+10pKa

c−pH

1+10pKa
f −pH









    (11) 

 

where ∆Gaq

o (+)  and ∆Gaq

o (0) is the binding free energy computed using the charged 

(protonated) and neutral form of the ligand and pKa
c
 and pKa

f
 are the pKa values the 

ligand bound to the receptor and the free ligand, respectively. 

 

For example, Koner et al. (2011; Kim et al. 2014) have shown that binding of 

benzimidazole and derivatives to CB7 can increase the pKa  of the ligand by as much as 4 

pH units (from pKa
f
 = 4.6 and pKa

c
 = 8.6) which results in a 3.3 kcal/mol pH-dependent 

correction to the binding free energy at pH 7.  Put another way, using pKa
f
 to determine 

the protonation state of the bound ligand would result in an 3.3 kcal/mol error in the 

binding free energy.  

 

For many ligands of interest the pKa
f
 can be estimated fairly accurately in a matter of 

second using programs such as Marvin. The effect of binding on pKa
f
 can often be 

estimated by chemical intuition since hydrogen bonds to charged acid and basic groups 

tend to, respectively, lower or raise the pKa even further.  For example, if an amine with 

pKa
f
 = 9 binds to the receptor via hydrogen bonding, then pKa

c
 is likely higher than 9 

and ∆ ′Gaq

o ≈ ∆Gaq

o (+) is a good approximation.  However, if pKa
f
 is close to 7 then 

pKa
c
 should be computed.  Also, it is possible for charged ligands to change to their 
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 8

neutral state if they bind to hydrophobic or similarly charged receptors. 

 

If pKa
f
 is known with some degree of confidence (e.g. from experiment or Marvin) then 

pKa
c
 can be estimated by 

 

pKa

c = pKa

f −
∆G∆pK ,aq

o

RT ln(10)
 (12) 

 

where

 

 ∆G∆pK ,aq

o
is the free energy change for this reaction (Li et al. 2014) 

 

 RLH+ (aq)+ L(aq) � RL(aq)+ LH+ (aq)     Rx 3 
 

However, if one suspects that empirical pKa predictors such as Marvin give inaccurate 

results for pKa
f
  then this value can be computed using quantum chemistry. Ho and Coote 

(2010) have written a very useful summary of different approaches to such predictions.  

The accuracy for phenol and carboxyl pKa  values are as low at 1 pH units (unfortunately 

they did not give a value for amines).  However, if the pKa value is close to the pH of 

interest a 1 pH unit-error can lead to prediction of the wrong protonation and result in 

errors in the binding free energy on the order of 1-3 kcal/mol. 

 

If there are several (Nionz) ionizable groups then Eq (11) generalizes to 

 

 ∆ ′Gaq

o = ∆Gaq

o (− / +)− RT ln
1+10

si pH−pKa,i
c( )

1+10
si pH−pKa,i

f( )
i=1

N ionz

∑












    (13) 

 

where ∆Gaq

o (− / +) is the binding free energy when all acids and bases are deprotonated 

and protonated, respectively, the sum runs over all ionizable groups and si is 1 and -1 

if i is a base or acid, respectively.  

 

However, this assumes that the ionizable groups titrate independently of one another, i.e. 

that the pKa value of one group is independent of the protonation states of all other 

ionizable groups.  If that is not the case then it is difficult to give a general expression for 

the pH-dependent free energy correction in terms of pKa values (though it can be derived 

for a specific case). Next I present an alternative approach, but note that in practice 

because one can obtain more accurate relative pKa values (using Eq (12) or similar (Ho 

and Coote 2010)) than absolute pKa values it may be worth the extra effort to derive the 

pH-dependent free energy correction in terms of pKa values. 

 

Legendre transformed free energies. Instead a general expression can be written in 

terms of Legendre transformed free energies as suggested by Alberty (Alberty 2005, 

Alberty et al. 2011) and modified here to electronic structure calculations (Jinich et al. 

2014): 
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 9

 ′Gaq

o (X) = −RT ln e
− ′Gaq

o
(Xi )/RT

i=1

2Nionz

∑






    (14)

 

 

where X  denotes an average over several protonation states of X,  is the number of 

possible protonation states given Nionz sites and  

 

 ′Gaq

o(Xi ) =Gaq

o (Xi )− ni (H
+ ) ∆Gsolv

o (H+ )− RT ln(10)pH( )     (15)
 

 

where ni(H
+
) is the number of ionizable protons in protonation state i, and ∆Gsolv

o (H+ ) is 

the solvation free energy of the proton.  So in the case of ligand L considered 

above, ni(H
+
) is 0 and 1 for L and LH

+
, respectively.  

 

∆Gsolv

o (H+ )is usually taken from the literature where estimates vary between -264 

and -266 kcal/mol (Kelly et al. 2006), which can add to the uncertainty in the predicted 

binding free energy change. There are at least two ways of reducing the error.  One way 

is to maximize error cancelation by computing ∆Gsolv

o (H+ ) (using explicit solvent 

molecules as discussed below) using the same level of theory method use to compute 

∆Gb,aq

o
. The other way is to choose the value of ∆Gsolv

o (H+ ) used as reference for the 

experimental solvation free energies of ions that are used to parameterize the continuum 

solvation model you use (Table 1).  The first way is best if explicit solvent molecules are 

used to compute the solvation free energies of ions in the binding study and otherwise the 

second method is best.    

 

Using Legendre transformed free energies, Eq (1) can be rewritten as 

 

∆ ′Gb,aq

o = ′Gaq

o (RL)−Gaq

o (R)− ′Gaq

o (L)   (16) 

 

Since the electronic energy contribution to the standard free energy can be very large in 

magnitude this form is more easily evaluated 

 

′Gaq

o (X) = ′Gaq

o (Xref )− RT ln 1+ e
−∆ ′Gaq

o
(Xi )/RT

i=1
i≠ref

2Nionz −1

∑














 

(17)

 

where 

 

∆ ′Gaq

o (Xi ) = ′Gaq

o (Xi )− ′Gaq

o (Xref )  
(18)

 
 

2
N ionz
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and where Xref is some arbitrarily chosen reference protonation state, for example that for 

which ni(H
+
) = 0.  The sum can be combined with that over different conformations [Eq 

(7)] as discussed below. 

 

Other ions and Ionic Strength. If the ligand and/or hosts contain ionizable groups then 

the binding measurements were likely performed in a buffer, with a certain ionic strength, 

to regulate pH. It is possible to include this effect in continuum solvation models such as 

the PCM method (Cossi et al 1998).  However, given the relatively low (10-100 mM) 

concentrations usually used in the experiments this will only have a noticeable (> 0.5 

kcal/mol) effect on the energetics involving multiply charged ions. As discussed below, 

the error in the computed solvation energy for such ions are already large and it is not 

clear whether it is worth including non-specific ionic strength effects in the 

computations. At high ion concentrations, it is possible that these ions bind at certain sites 

in the ligand, receptor, or ligand-receptor complex with sufficient probability that they 

must be included in the thermodynamics. If so the exact same equations and 

considerations outlined above for H
+
 also apply to, e.g. Cl

−
 and pCl

− 
(computed from the 

specified buffer concentration) is used instead of pH. 

 

Solvation thermodynamics 

Background. Most continuum models (CMs) of solvation compute the solvation free 

energy as the difference between the free energy in solution (Gsoln,E

o, CM (X)) and the gas 

phase electronic energy (Egas(X)) 

 

 
∆Gsolv

o (X) =Gsoln,E

o, CM (X)− Egas(X)
     

(19)
 

 

Gsoln,E

o, CM (X)
 
typically contains energy terms describing the electrostatic interaction of the 

molecule and the continuum as well as the van der Waals interactions with the solvent 

and free energy required to create the molecular cavity in the solvent (cavitation). The 

electrostatic interaction with the solvent alters the molecular wavefunction and is 

computed self-consistently. Usually the gas phase structure of X is used for the 

computation of Gsoln,E

o, CM (X) , though for COSMO-RS the structure is optimized in solution. 

There is typically no explicit RRHO contribution for Gsoln,E

o, CM (X)  so the computational cost 

is comparable to that for Egas(X). 

 

Some software packages automatically compute ∆Gsoln,E

o, CM (X)and Egas(X) in one run, while 

other packages only compute Gsoln,E

o, CM (X) . Also, some programs just compute the 

electrostatic component of Gsoln,E

o, CM (X)
 
by default.  However, the van der Waals and, 

especially, the cavitation component can make sizable contributions to the binding free 

energy and must be included for accurate results.  It is worth noting that any hydrophobic 

contribution to binding will derive primarily from the change in cavitation energy 

(Cramer & Truhlar 1991 and references therein). 
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Gsoln,E

o, CM (X)
 
contains parameters (e.g. atomic radii) that are adjusted to reproduce 

experimentally measured solvation free energies 

 

 
∆Gsolv

o, exp (X) =Gsoln

o, exp (X)−Ggas

o, exp(X)
   

(20)
 

 

The standard state for both Gsoln

o, exp (X) and Ggas

o, exp (X) is generally chosen to 1 M (Ben-

Naim 1978; Ben-Naim & Marcus 1984).  The latter is the reason a 1 M reference state 

also must be used when computing Ggas,RRHO

o (X). 

 

Notice that the volume on going from the gas phase to solution is included in the 

solvation free energy 

 

∆Gsolv

o, exp (X) = ∆Asolv

o, exp (X)+ po (∆Vsolv −Vgas)  (21) 

 

where ∆Vsolv is the volume change in solution due to addition of the solute X to the neat 

solvent. For an ideal gas (p
o
Vgas = RT) it follows that  

 

∆∆Gsolv

o = ∆∆Asolv

o + po∆∆Vsolv − RT  (22) 

 

and 

 

∆Gb,aq

o = ∆Ab,aq

o + po∆Vsoln 
(23) 

 

because the –RT term is cancelled by a corresponding term in the translational enthalpy 

contribution to ∆Ggas,RRHO

o
. ∆Vsoln = ∆∆Vsolv  is the change in the volume of the solution on 

upon binding. 

 

Atomic radii. The solvation energy is computed using a set of atomic radii that define 

the solute-solvent boundary surface. These radii are usually obtained by fitting to 

experimentally measured solvation energies. Accurate solvation energies should not be 

expected from methods that use iso-electron density surfaces or van der Waals radii 

without additional empirical fitting. When using fitted radii one should use the same level 

of theory for the solute as was used in the parameterization (Table 1). 

 

Ions. For neutral molecules solvation free energies can be measured with an accuracy of 

roughly 0.2 kcal/mol and reproduced theoretically to within roughly 0.5-1.0 kcal/mol, 

depending on the method. However, the solvation energies of ions cannot be directly 

measured and must be indirectly inferred relative to a standard (usually the solvation 

energy of the proton). The experimentally obtained solvation energies are typically 

accurate to within 3 kcal/mol and can be reproduced computationally with roughly the 

same accuracy (Kelly et al. 2006).  The solvation energy of ions are therefore an 

especially likely source of error in binding free energies - especially if the ionic regions 

of the molecules become significantly desolvated due to binding.  
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 12

 

Table 1. Common continuum solvation models used with electronic structure theory, the 

level of theory used for parameterization and the solvation energy of the proton used as a 

reference for the experimental solvation energies of ions used in the parameterization. 

Adapted from Ho 2015. 

Method Level of theory used for 

parameterization 

Solvation energy of proton 

used as reference for ions 

IEFPCM-MST
a
 HF/6-31+G(d) -264.0 kcal/mol 

DPCM-UAHF
b
 HF/6-31(+)G(d)

c
 -261.4 kcal/mol 

PCM-UAKS
d
 PBE1PBE/6-31G(d) unknown 

IEFPCM-SMD
e,f

 M05-2X98/MIDI!6D  

M05-2X/6-31G* 

M05-2X/6-31+G** 

M05-2X/cc-pVTZ  

B3LYP/6-31G* 

HF/6-31G* 

-265.9 kcal/mol 

COSMO-RS
g
 BP/TZVP Not specifically parameterized 

for ions 

SM8
h
 Independent of level of theory -265.9 kcal/mol 

a
Curutchet et al. 2005. IEF and CPCM give virtually identical results for water. 

b
Barone 

et al. 1997. UAHF spheres have been used with CPCM with good results. 
c
Diffuse 

functions are used only for anions. 
 d

This parameterization has not been published and the 

information is taken from the Gaussian09 manual. The method has been benchmarked for 

CPCM by Takano and Houk (2005). 
e
Marenich et al. 2009. 

f
The parameterization was 

performed by minimizing the error  for all six methods simultaneously and any of the six 

methods can be used with the same parameter set. 
g
Eckert & Klamt 2002. 

h
Marenvich et 

al. 2007. 

  

 

Gas phase vs solution optimization.  The fitting of the radii described above is usually 

done using gas phase optimized structures only, i.e. any change in structure and 

corresponding rotational and vibrational effects are "included" in the radii via the 

parameterization.  However, for ionic species gas phase optimization can lead to 

significantly distorted structures or even proton transfer and in these cases solution phase 

optimizations and, hence, vibrational frequency calculations, tend to be used. However, 

numerical noise in the continuum models can make it necessary to increase (i.e. make 

less stringent) the geometry convergence criteria and can lead to more imaginary 

frequencies than in the gas phase. One option is to compute the vibrational contribution 

to ∆Ggas,RRHO

o

 
using gas phase optimized structures as Grimme has done (Sure et al. 

2014). 

 

When using solution phase geometries the gas phase single point energies needed to 

evaluate ∆Gsolv

o (X)represent added computational expense one option is to use solution 

phase free energies to evaluate the binding free energies 
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 13

 
∆Gb,aq

o = ∆Gb,soln,E

o,CM + ∆Gb,soln,RRHO

o,CM

   
(24) 

 

One problem with this approach is that ∆Gb,soln,E

o,CM , unlike ∆Egas
, is not systematically 

improveable due to the empirical parameterization.  For a more thorough discussion of 

this issue see Ho et al. 2010, Ribeiro et al. 2011 and Ho 2015. 

 

Cavities. The atomic radii and corresponding cavity generation algorithms are 

parameterized for small molecules. For more complex molecules such as receptors this 

can lead to continuum solvation of regions of molecules, e.g. deep in the binding pocket, 

that are not accessible to the molecular solvent. Furthermore, any solvent molecule inside 

such pocket is likely to be quite "un-bulk-like" and not well-represented by the bulk 

solvent or fixed by the underlying parametrization.  However, how big an error this may 

introduce to the binding free energy is not really known, but certain models for the 

cavitation energy have been shown to give unrealistically large contributions to the 

binding free energy (Genheden et al. 2010; Genheden & Ryde 2012). 

 

Explicit water molecules. Adding explicit solvent molecules to the receptor and/or 

ligand can potentially lead to more accurate results. For example, including explicit water 

molecules around ionic sites reduces the strong dependence of the solvation energy on 

the corresponding atomic radii. Also, "un-bulk-like" water molecules now are treated 

more naturally and the risk of solvating non-solvent-accessible regions is reduced 

somewhat.  However, adding explicit solvent molecules increases the computational cost 

by increasing the CPU time needed to compute energies, perform conformational 

searches, and compute vibrational frequencies.  

 

There are several approaches to include the effect of explicit solvent molecules in the 

binding free energy.  Bryantsev et al. (2008) suggest computing the solvation energy by 

 

 
Gaq,n

o (X) =Ggas

o (X)+ ∆Gsolv,n

o (X)
    

(25)
 

 

where

 
 

 
∆Gsolv,n

o (X) = ∆Ggas

o (X(H2O)n )+ ∆Gsolv

o (X(H2O)n )− ∆Gsolv

o ((H2O)n )
 

(26)
 

 

(note that
 
∆Gsolv,0

o (X) = ∆Gsolv

o (X)) and 

 

 
∆Ggas

o (X(H2O)n ) =Ggas

o (X(H2O)n )−Ggas

o (X)−Ggas

o ((H2O)n )
     

(27)
 

 

and 

 

 
∆Gsolv

o (liq)((H2O)n ) = ∆Gsolv

o ((H2O)n )+ RT ln [H2O] / n( ) (28)
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with "o (liq)" referring to a standard state of 55.34 M (the concentration of liquid water at 

298K), respectively.  The term RTln([H2O]/n) is the free energy required to change the 

standard state of (H2O)n from 1 M to 55.34/n M. 

 

Bryantsev et al. have shown that using this water cluster approach leads to a smooth 

convergence of the solvation free energy with respect to the cluster size n.  The optimum 

choice of n is this one where an additional water molecule changes the solvation energy 

by less than a certain amount defined by the user.  One can thereby compute the optimum 

number of water molecules for the receptor (n), ligand (m) and receptor-ligand complex 

(l) and then compute the change in solvation free energy as 

 

 
∆∆Gb,solv,x

o = ∆Gsolv,l

o (RL)− ∆Gsolv,n

o (L)− ∆Gsolv,m

o (R)
 
(29)

 
 

and computing ∆Egas and ∆Ggas,RRHO

o

 
as before.  One can show that this corresponds to the 

free energy change for this reaction 

 

 R(H2O)m (aq)+ L(H2O)n (aq)+ (H2O)l (liq) � RL(H2O)l (aq)+ (H2O)n (liq)+ (H2O)m (liq) 
(Rx 4) 

 

In principle, the free energy is zero for 

 

 
(H2O)l (liq) � (H2O)n (liq)+ (H2O)m (liq)+ sgn(d)(H2O)

d
(liq)   (Rx 5)

 
 

where d = l − m − n and sgn(d) returns the sign of d. So the free energy change for 

Reaction 4 can also be computed as the free energy change for 

 

 
R(H2O)m (aq)+ L(H2O)n (aq) � RL(H2O)l (aq)+ sgn(d)(H2O)

d
(liq)    (Rx 6)

 
 

However, this is only approximately true in practice due to errors in the computed gas 

phase and solvation free energies. Furthermore, Reaction 6 does not really lead to any 

significant reduction in CPU time because the water cluster free energies only have to be 

computed once. However, if Reaction (6) is used then one must add an additional term 

correcting for the indistinguishability of water molecules 

 

 
Ggas,RRHO

o (X(H2O)n )→Ggas,RRHO

o (X(H2O)n )− RT ln(n!)
       

(30)
 

 

and similarly for the water clusters. Using Reaction (4) leads to a cancellation of this term 

and also maximizes error cancellation in the other energy terms. Similar considerations 

apply to when using individual water molecules to the balance the reaction instead of 

water clusters 

 

 R(H2O)m (aq)+ L(H2O)n (aq) � RL(H2O)l (aq)+ d(H2O)
d
(liq)   (Rx 7) 
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One of the main reasons Reaction 4 maximizes error cancellation is that the number and 

type of hydrogen bonds involving water molecules are very similar on each side of the 

equilibrium. This can also be achieved when using Reaction 6 or 7 by ensuring that l = m 

+ n, in which case the error cancellation may be comparable and will depend on the 

nature of the ligand, host, and water arrangement. However, Eq (30) must still be used 

when using Reaction 6 or 7 in this way. 

 

When using many explicit water molecules the error in the continuum solvation energies 

can be reduced by ensuring that the continuum solvation energy of a single water 

molecule matches the experimental value of -6.32 kcal/mol at 298.15K as close as 

possible. 

 

Enthalpy and entropy contributions to the binding free energy 

It is often instructive to decompose the binding free energy into enthalpy and entropy 

contributions.  The standard enthalpy and entropy of molecule X in aqueous solution is 

 

Haq

o (X) = Egas(X)+ Hgas,RRHO

o (X)+ ∆Hsolv

o (X)
 
  (31)

 
 

and 

 

Saq

o (X) = Sgas,RRHO

o (X)+ ∆Ssolv

o (X)
   

 (32)
 

 

where the standard state Eq [(3)] and symmetry correction [Eq (6)] is applied to the 

entropy term. Thus, in order to compute these quantities one must compute the enthalpy 

and entropy of solvation, which can be done by the COSMO-RS (Eckert & Klamt 2002) 

and SM8T (Chamberlin et al. 2008) solvation methods. Chamberlin et al. (2008) have 

noted that most of the temperature dependence of the aqueous solvation free energy 

comes from the non-polar term so simply including the effect of temperature on the 

dielectric constant is unlikely to give accurate results.  Plata and Singleton (2015) have 

recently shown that ∆Ssolv

o (X)
 
can make an appreciable contribution to the energy change 

for reaction energies. 

 

For a molecule (X) with Nconf conformations the standard enthalpy and entropy is 

 

Haq

o (X) = Haq

o (Xi )
i=1

Nconf

∑ p(Xi )
 

 (33)

 

and 

 

Saq

o (X) = Saq

o (Xi )
i=1

Nconf

∑ p(Xi )− R p(Xi )ln p(Xi )( )
i=1

Nconf

∑
    

(34)

 

where  
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p(Xi ) =
e
−∆Gaq

o (Xi )/RT

e
−∆Gaq

o (Xi )/RT

i=1

Nconf

∑
     

(35)

 
 

and ∆Gaq

o (Xi )is computed relative to the conformation with the lowest free energy.  

 

The Legendre transformed entropy and enthalpy is  

 

′Saq

o (Xi ) = −
∂ ′Gaq

o (Xi )

∂T







p,pH

= Saq

o (Xi )− ni (H
+ ) ∆Ssolv

o (H+ )+ R ln(10)pH( )
    

 (36)

 

and 

 

′Haq

o (Xi ) = ′Haq

o (Xi )− ni (H
+ )∆Hsolv

o (H+ )  (37) 

 

When comparing computed enthalpy and entropy changes to experimental measurements 

on systems with ionizable groups note that the observed values will depend on the buffer 

used if protonation states change upon binding (see e.g. Dullweber et al. 2001). Unless 

the experimental study has corrected for this effect by repeating the measurements in 

different buffers, this effect can contribute to the difference between the computed and 

experimental values. 

 

A Concrete Example 

In this section I apply the key equations discussed above to a specific example: p-

xylylenediamine (L, Figure 2) binding to CB7 (R) for which a binding free energy of -9.9 

± 0.1 kcal/mol has been measured at pH 7.4 and 298K (Muddana et al. 2014). The 

conformations and other details such as the number of water molecules are just selected 

and constructed for illustration purposes only using the Avogadro program (Hanwell et 

al. 2012) and the MMFF force field and should not be considered accurate.  

 

CB7 has one conformation with D7h symmetry and no ionizable groups.  It is assumed 

that the solvation energy can be computed accurately without explicit water molecules.  

Thus, the free energy is aqueous solution is 

 

 
Gaq

o (R) =Gaq,0

o (R) =Ggas

o (R)+ ∆Gsolv

o (R)+ RT ln(14)
       

(38)
 

 

where Ggas

o (R)  is computed in C1 symmetry and
 
14 is the symmetry number (σ) 

corresponding to the
 
D7h point group. 
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Figure 2. Representative conformations of ligand L (p-xylylenediamine), receptor R 

(CB7), and a receptor-ligand complex RL used to illustrate the use of the equations 

presented in this paper. (a) La, (b) Lb, (c) LH
+
b, (d) LH2

2+
b, (e) R, and (f) RLH2

2+
a. The 

coordinates for the structures are available here: 

http://dx.doi.org/10.6084/m9.figshare.1290639 

 

 

Ligand L has two basic groups and is assumed to have two conformations a and b for 

each protonation state.  The pKa values for the basic groups are 9.2 and 9.8 according to 

Marvin, so both groups are likely 100% protonated at pH 7.  However, for illustration 

purposes I will include all three protonation states in the computation of the free energy.  

Furthermore, I will assume that each charged amine group is microsolvated by three 

explicit water molecules.   

 

The free energy of conformer a of the doubly protonated state (LH2
2+

) is thus 

 

 

Gaq,6

o (LH2

2+a) =Ggas

o (LH2

2+ (H2O)6a)+ ∆Gsolv

o (LH2

2+ (H2O)6a)

−Ggas

o ((H2O)6 )− ∆Gsolv

o ((H2O)6 )− RT ln([H2O] / 6)− RT ln(2)
     

(39)

  

where the gas phase energy is computed in C1 symmetry and 2 is the symmetry number 

of the C2 point group.  The lowest energy structure of (H2O)6 suggested by Bransyev et 
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al. can be used for compute Gaq,n

o ((H2O)6 ) , or the effect of additional conformations can 

be included using Eq (7). Finally, the Legendre transformed free energy [Eq (15)] at pH 7 

is computed by 

 

   
′Gaq,6

o (LH2

2+a) =Gaq,6

o (LH2

2+a)− 2 ∆Gsolv

o (H+ )− RT ln(10)pH( )
      

(40)

 
 

The corresponding free energy of conformer b, ′Gaq,6

o (LH2

2+b) , which has C2v symmetry 

and for which � is also 2, is computed in the same way. Notice that each conformation in 

principle can have different numbers of water associated with them.  Similarly, the free 

energies of the singly protonated and neutral ligand (with C1 and C2 symmetry) is 

computed by  

 

′Gaq,3

o (LH+a) =Ggas

o (LH+ (H2O)3a)+ ∆Gsolv

o (LH+ (H2O)3a)

−Ggas

o ((H2O)3)− ∆Gsolv

o ((H2O)3)− RT ln([H2O] / 3)

− δGsolv

o
(H

+
)− RT ln(10)pH( )

 

(41)

 

 

and 

 

Gaq,0

o (LHa) =Ggas

o (La)+ ∆Gsolv

o (La)+ RT ln(2)
 

(42)

 
 

(here for conformer a and similarly for conformer b). Finally, the free energy of L 

averaged over conformations and protonation states is

  

′Gaq,x

o (L) = Gaq,0

o (La)− RT ln 1+ e
−∆Gaq,0

o (Lb )/RT + e
−∆ ′Gaq,3

o (LH+a)/RT + e
−∆ ′Gaq ,3

o (LH+b )/RT(
+e

−∆ ′Gaq ,6
o (LH2

2+a )/RT + e
−∆ ′Gaq,6

o (LH2
2+b)/RT )

  

(43)
 

where 

 

∆Gaq,0

o (Lb) =Gaq,0

o (Lb)−Gaq,0

o (La)
 

(44)
 

 

and similarly for the remaining terms in the sum.  Notice that for each conformation there 

are three protonation states rather than (2
2
) because the two singly protonated structures 

are equivalent. 

 

For the host-guest complex I have assumed that each conformation can bind CB7 in only 

one way and that two explicit water molecules per protonated group is lost upon binding, 

so that  
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′Gaq,x

o (RL) = Gaq,0

o (RLa)− RT ln 1+ e
−∆Gaq ,0

o (RLb)/RT + e
−∆ ′Gaq,1

o (RLH+a )/RT + e
−∆ ′Gaq,1

o (RLH+b )/RT(
+e

−∆ ′Gaq,2
o (RLH2

2+a)/RT +e
−∆ ′Gaq,2

o (RLH2
2+b)/RT )

 (45)

 

 

Note that the effect of the 28 equivalent binding modes to other oxygen atoms for e.g. 

LH2
2+

a (Figure 2f) is accounted for by the symmetry factors.  Finally, the binding free 

energy is computed using Eq (16). 

 

Protein-Ligand Binding 

In order for the electronic structure approach to be used in drug design corresponding 

calculation have to be carried out on proteins, which are significantly larger than the 

hosts that have been used to benchmark the approach so far. QM/MM is of course the 

obvious choice for computing the geometries and gas phase energies, although linear 

scaling all QM methods such as the FMO (Fedorov et al. 2012) method is also possible.  

Furthermore, continuum methods such as PCM have been adapted for large systems and 

interfaced to both QM/MM (Li et al. 2003) and the FMO method (Fedorov et al. 2006).  

Of course as the system size increases conformational sampling will become a bigger 

practical issue. 

 

The main issue is the computation of vibrational frequencies for the protein and protein-

ligand complex. The fast semi-empirical methods currently used for computing the 

vibrational frequencies (dispersion and hydrogen bond-corrected PM6 and DFTB as well 

as HF-3c) must be made interfaced with QM/MM codes and/or be implemented in a 

linear scaling approach that allow for frequency calculations.  Dispersion-corrected PM6 

and DFTB are already implemented in AMBER, a FMO implementation of DFTB has 

recently been added to GAMESS (Nishimoto et al. 2014) and a similar HF-3c/FMO 

implementation is forthcoming from my lab.  

 

Most QM/MM studies of enzyme catalysis constrain the geometry of a significant portion 

of the system to avoid spurious structural fluctuation far away from the active site 

contributing to the barrier. This may well be necessary for binding free energy 

calculations as well, in which case the effect of the constraints on the vibrational 

frequencies must be accounted for (Ghysels et al. 2007). Alternatively, only the Hessian 

of the un-constrained region can be computed (Li & Jensen 2002). 

 

So while there is some code-adjustment to be done it may well be that the promising 

developments in electronic structure-based prediction of aqueous binding free energies 

may also be brought to bear on drug design within the next few years. 

 

Summary and outlook 

Recent predictions of absolute binding free energies of host-guest complexes in aqueous 

solution using electronic structure theory have been encouraging for some systems. It is 

interesting to consider the underlying innovations that have lead to the recent increase in 

accuracy in predicted binding free energies. Advances in computer hardware and coupled 

cluster algorithms made it possible to construct benchmark sets of accurate electronic 
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binding energies for a diverse set of molecules. These benchmarks sets were then used to 

develop the dispersion corrections needed for accurate DFT-based electronic binding 

energies and the short-range (hydrogen bond) corrections to the semi-empirical methods 

needed to compute accurate vibrational frequencies for the RRHO free energy 

corrections.  In fact methods like HF-3c (Sure & Grimme 2013), while containing 

empirical corrections, was developed without reference to any experimental data. 

Another interesting observation is that the dispersion and RRHO free energy 

contributions to the binding free energy have roughly the same magnitude, but opposite 

signs. So including just one of the corrections is likely to significantly increase the error 

relative to experiment and lead to the wrong conclusions regarding their importance. 

 

While there have been reasonably accurate predictions for some host-guest systems, other 

systems remain problematic. In paper I summarize some of the many factors that could 

easily contribute 1-3 kcal/mol at 298 K: three-body dispersion effects, molecular 

symmetry, anharmonicity, spurious imaginary frequencies, insufficient conformational 

sampling, wrong or changing ionization states, errors in the solvation free energy of ions, 

and explicit solvent (and ion) effects that are not well-represented by continuum models. 

  

While I focus on binding free energies in aqueous solution it is worth noting that the 

approach also applies to any free energy difference in solution, such as conformational 

and reaction free energy differences or activation free energies.  Furthermore, the 

equations apply to solvents other than water as long as the concentration of liquid water, 

the solvation free energy of the proton changed, and the parameterization of the 

continuum solvation model are changed to match the solvent of interest. Furthermore, 

while the recent successes with electronic structure-based approaches have been for host-

guest complexes they can be extended to protein-ligand complexes with a few 

methodological improvements (mainly related to the computation of vibrational 

frequencies).  Thus, it may well be that the promising developments in electronic 

structure-based prediction of aqueous binding free energies may also be brought to bear 

on drug design within the next few years 
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