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The energies of the canonical (standard, amino-keto) and tautomeric (non-standard, imino-enol) charge-neutral forms of the

adenine-thymine base pair (A-T and A*-T*, respectively) are calculated using density functional theory. The reaction pathway

is then computed using a transition state search to provide the asymmetric double-well potential minima along with the barrier

height and shape, which are combined to create the potential energy surface using a polynomial fit. The influence of quantum

tunnelling on proton transfer within a base pair H-bond (modelled as the DFT deduced double-well potential) is then investigated

by solving the time-dependent master equation for the density matrix. The effect on a quantum system by its surrounding

water molecules is explored via the inclusion of a dissipative Lindblad term in the master equation, in which the environment

is modelled as a heat bath of harmonic oscillators. It is found that quantum tunnelling, due to transitions to higher energy

eigenstates with significant amplitudes in the shallow (tautomeric) side of the potential, is unlikely to be a significant mechanism

for the creation of adenine-thymine tautomers within DNA, with thermally assisted coupling of the environment only able to

boost the tunnelling probability to a maximum of 2× 10−9. This is barely increased for different choices of the starting wave

function or when the geometry of the potential energy surface is varied.

1 Introduction

In their seminal work1, Watson and Crick proposed that the

genetic code is stored in the form of hydrogen-bonds be-

tween the canonical purine and pyrimidine nucleic acid bases:

adenine–thymine (A-T) and cytosine–guanine (C-G), which

form the chains of the double helix structure of the DNA

molecule. They recognised that tautomerization alters the

hydrogen-bonding patterns and therefore could lead to mis-

matches in the canonical base pairs. The rare tautomer hy-

pothesis of spontaneous mutatgenesis thus states that muta-

tions can arise through the spontaneous formation of high en-

ergy tautomers. However, accurate quantitative studies of the

probability of proton transfer along the hydrogen bonds be-

tween the bases have only been possible in recent years once

detailed knowledge of the potential energy surface felt by the

protons could be accurately mapped. It is generally accepted

that this surface is in the shape of an asymmetric double-well

potential, allowing for the proton to be transferred either via

classical over-the-barrier hopping or via quantum tunnelling

through the barrier.

The likelihood of quantum tunnelling occurring within

DNA and the question of whether this is a significant contrib-

utor to spontaneous point mutations has been the subject of
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much research over the past few decades2–15. It has become

more prominent in recent years as more sophisticated compu-

tational methods for investigating the problem have become

feasible. In addition, it is now known that the external envi-

ronment, such as the presence of water molecules, also plays

a role in the stability and structure of DNA. The question of

interest in this study is the extent to which the environment

might play a role in promoting or inhibiting proton transfer in

the H-bonds in A-T and C-G base pairs.

Many studies have focussed on the hydrogen transfer itself

without considering whether tunnelling is the cause. Some

have claimed that tunnelling in DNA7,16,17 is either not pos-

sible or so unlikely as to be statistically negligible . Others

claim it is a reasonable possibility18. In the case of DNA base

pairs, Löwdin2 correctly declared in 1963 that once a DNA

replication event had occurred, the protons in the connecting

hydrogen bonds would be in one of several quantum states,

some or all of which could lead to potential tunnelling events,

affecting any future replication events.

The canonical forms of the DNA base pairs are very sta-

ble, as would be required of the molecules responsible for the

storage of the genetic information of life. However, one early

study by Parker and Van Everv4 calculated the energy levels

of both standard DNA base units (A-T and G-C) and a non-

standard DNA base unit (G-T). They estimate that if the pro-

ton is initially in the ground state of the double well potential,

then tunnelling across from the deeper well to the shallow well

is extremely unlikely due to the large asymmetry. By using a

simple semi-classical WKB approximation they conclude that
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the only way to promote tunnelling is through incoming radi-

ation that can excite the proton to higher energy levels.

This conclusion was supported and expanded upon by Vil-

lani in a series of papers between 2005 and 2012, investigat-

ing whether the tautomeric Watson-Crick configurations are

stable enough to exist for reasonable lengths of time18–21. He

identifies that mapping a potential energy surface is a suitable

approach to model hydrogen atom transfer, and that a double

hydrogen transfer that preserves electro-neutrality, as is the

case with A-T and the tautomeric A*-T*, requires a double

well with relatively large asymmetry. Florián et al. had earlier

studied the stability of the canonical and tautomeric structures

in 19947 and concluded that the difference in energy between

the potential energy barrier and the A*-T* configuration is

very small and thus A*-T* reverts to A-T very quickly.

In his 2007 paper, Villani shows using a two-dimensional

model that the probability of the A*-T* tautomer existing at

any given time is around 4× 10−4, although the probability

of other tautomers that exhibit charge separation occur with a

slightly higher probability19. In the four-dimensional model

(with the four degrees of freedom being the two lengths of

the hydrogen bonds, and the two out-of-plane positions of the

hydrogen atoms in the hydrogen bridges), the probability is

closer to 3× 10−3, but this does not change his main conclu-

sion that A*-T* does not appear often enough to be considered

“a mutation point in the DNA chain”.

One of the most comprehensive studies of the suitability

of various theoretical frameworks for solving the adenine-

thymine system was published by Bende in 200922. Var-

ious types of DFT calculations using different exchange-

correlation functionals were compared to results from ab initio

MP2 (second-order Møller-Plesset perturbation theory)23,24,

which is more precise but more computationally expensive

than DFT. An important conclusion of this work is that DFT

produces very good results for this type of system when us-

ing certain functionals such as BLYP25,26, B3LYP27, and BH-

LYP28, with the latter two performing the best. Lower-level

functionals such as PBE29,30 and KMLYP31 did not perform

so well, particularly in the case of the hydrogen bond lengths

and interaction energies. The choice of exchange-correlation

functional is very important when using DFT to find energies

and optimise molecular geometries.

A further illuminating study was carried out by Brovarets

and Hovorun in 201317, which also compares MP2 and var-

ious types of DFT calculation, but in addition considers tun-

nelling and its potential impact on the appearance of adenine-

thymine tautomers within DNA strands. They showed that the

tautomerisation of A-T to A*-T* via double hydrogen transfer

is both concerted and asynchronous; that is, the reaction path-

way (found using the Hessian-based predictor-corrector inte-

gration algorithm32–34) does not feature an intermediate step,

but the hydrogen atoms move one at a time.

Curiously, they demonstrate a step-wise double hydrogen

transfer where the hydrogen atom on the N-N bridge moves

across first, followed by that of the O-N bridge, counter to

what Villani had found three years earlier20. It is possible that

there are various reaction pathways and that different models

lead to different pathways being more prominent. Crucially,

however, Brovarets and Hovorun also considered the effect of

the surrounding environment: when modelling the hydropho-

bic interfaces of protein-nucleic acid interactions using a low

dielectric constant (ε = 4), the stability and lifetime of A*-

T* was not improved significantly enough for A*-T* to occur

very often. This is counter to various studies35–38 that put the

instance rate of A*-T* tautomers at between 10−3 and 10−6.

Hence, they conclude that tautomerisation cannot be a source

of spontaneous mutations during the DNA replication process,

in agreement with Florián et al.7. In addition, they claim that

the appearance of A*-T* tautomers does not occur via proton

tunnelling but instead by above-barrier vibrations.

In 2010, Pérez et al. studied the stability of the Watson-

Crick base pair tautomers and found that, although previous

studies based on classical mechanics had declared them stable,

when taking into account quantum effects, they were found to

be dynamically metastable (i.e. stable enough to have rea-

sonable lifetimes)39. In that work, several versions of density

functional theory were used, as well as methods such as MP2

and Hartree-Fock. They showed that Hartree-Fock performs

poorly for DNA base pairs and, in agreement with Bende22,

DFT using hybrid functionals such as PBE0 and B3LYP pro-

duce good results.

2 The H-bonds in A-T

A double hydrogen bond exists between A and T, with C being

joined to G via a triple hydrogen bond. This makes the A-T

bond somewhat easier to model (Fig. 1(a)). When DNA under-

goes replication, the weak hydrogen bonds between the bases

of the nucleotides break and are free to recombine with new

nucleotides in the nucleoplasm, assisted by the enzyme DNA

polymerase40. However, if the canonical forms of the nu-

cleotides become tautomeric due to a proton tunnelling event

in the hydrogen bond, the base pair is said to consist of new

nucleotides, known as A* and T* (Fig. 1(b)). If a DNA strand

splits, A* will no longer combine with T and it is far more en-

ergetically favourable for it to combine with C instead. Like-

wise, T* will almost certainly combine with G. If this error

makes it past the error correction processes such that neither

new DNA strand matches the original, a mutation is said to

have occurred.

Such a hydrogen bond can be modelled as a superposition

of quantum states inside a double well potential. To get from a

canonical to a tautomeric state a proton transfer would have to

take place. Various studies attempt to describe this process as
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the two well minima positioned such that they are equidistant

from x = 0, placing them at ζ = ±1. (Note that, due to the

asymmetry in the potential, the peak of the barrier may not

be exactly at ζ = 0.) The nature of a fourth order polyno-

mial is similar to that of a quartic well and produces the high

well walls necessary for outer-box boundary conditions. The

resulting polynomial is described in Equation 1 and appears

alongside the energies found during the CASTEP transition

state search in Fig. 4. Note that the 8065.73 factor is to con-

vert eV to cm−1.

V (ζ ) = 8065.73
(

−4464.49+0.429ζ −1.126ζ 2

−0.143ζ 3 +0.563ζ 4
)

(1)

In Fig. 4 the potential energy scale has been adjusted such

that the energy of the canonical state EA−T = 0 since only the

relative energies of the barrier and minima, and the well shape,

are important.
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Fig. 4 Polynomial fit applied to the results of CASTEP’s transition

state search for stable and optimised forms of A-T & A*-T*.

4 Time evolution of the density matrix

The density matrix operator describing a single proton in a

1-D double-well potential is defined as

ρ̂ = |ψ〉〈ψ|= ∑
i j

αiα
∗
j |φi〉〈φ j| , (2)

where the time-dependent state vector for the system, |ψ(t)〉,
is expanded in the well’s energy eigenstate basis

Ĥ0 |φi〉= Ei |φi〉 , (3)

where

Ĥ0 =
−h̄2

2ma2

d2

dζ 2
+V (ζ ) (4)

and m is the mass of the proton.

In order to model an open (dissipative) system, coupling to

the environment (in the limit of weak coupling to a Markovian

bath) can be included in the generalised Liouville Equation

that include a dissipative (Lindblad) term on the right hand

side58,59

∂ ρ̂

∂ t
=

1

ih̄
[Ĥ, ρ̂]+ L̂ρ̂, (5)

where the extra term is generally written in the form58–62:

L̂ρ̂ = ∑
i j

(

Âi jρ̂Â
†
i j −

1

2

[

Â
†
i jÂi j, ρ̂

]

+

)

, (6)

where

Âi j =
√

Wi j |φi〉〈φ j| (7)

and Wi j are environment induced transition rates between well

states |φi〉 and |φ j〉.
Substituting the above back into Equation (5) leads to diag-

onal and off-diagonal density matrix elements

ρ̇i j =
1

ih̄
(Ei −E j)ρi j −

1

2
ρi j ∑

k

(

Wki +Wk j

)

, i 6= j

ρ̇ii = ∑
k

(Wikρkk)−ρii ∑
k

(Wki) . (8)

There are a number of ways of calculating the transition

matrix elements, Wi j. They are derived here using the micro-

scopic theory of Meyer and Ernst63. We begin with the full

system+bath Hamiltonian,

Ĥ = Ĥ0 + Ĥb +∆Ĥ , (9)

where Ĥ0 is the internal Hamiltonian of the A-T system de-

fined in Equation (3) and Ĥb is the bath Hamiltonian defined

as a sum of harmonic oscillators

Ĥb =
1

2
∑
m

(

p2
m +ω2

mq2
m

)

, (10)

where m is the set of bath oscillators, pm are their momenta,

qm are their spatial positions and ωm their frequency. Finally,

∆Ĥ = ζ ∑
m

fmqm is the interaction between the system and bath,

with coupling constant, fm.

The transition probability Wi j between states i and j is de-

fined as

Wi j =
1

h̄2

∞
∫

−∞

dte−iωi jtCi j(t) , (11)

Wj j =−∑
i 6= j

Wi j, (12)
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where ωi j is a transition frequency depending on the energy of

the eigenstates i and j,

ωi j =
(Ei −E j)

h̄
. (13)

The correlation functions, Ci j(t), required in Equation (11)

are calculated from an appropriately chosen power spectral

density function of the active bath displacement:

Jrr(ω) =
4
√

2 ∆VR h̄ωp ω3

(

ω4
p +ω4

)(

eh̄ω/kBT −1
) , (14)

where T is temperature, ωp is a characteristic phonon fre-

quency of the heat bath and ∆VR is the rearrangement energy

gained by the bath oscillators upon displacement from Qm = 0

to their optimal values for configurations ζ = ± 1 of the tun-

nelling system near its potential minima63. In summary, this

standard definition of the power spectral density function62–64

is related to the chosen model for the bath oscillators, using

Debye theory.

The power spectral density function can be transformed to

give two correlation functions, one for the active bath dis-

placement

Crr(t) = (2π)−1

∞
∫

−∞

dωeiωtJrr(ω), (15)

and another for the active bath momentum (the force of the

heat bath on the quantum system)

Css(t) = (2π)−1

∞
∫

−∞

dωeiωtω−2Jrr(ω), (16)

A final correlation function, Ctun, for the active bath rear-

rangement, is given by

Ctun(t;d2) = ed2h̄−2(Css(t)−Css(0)), (17)

where d is the transfer distance between any two energy

eigenstates (or doublets):

d = |ζ ′
ii −ζ

′
j j|. (18)

Here ζ
′
i j is obtained through a transformation of the ζ ma-

trix, which comprises elements

ζi j =

∞
∫

−∞

(φ ∗
i ζ φ j)dζ . (19)

The diagonal elements of this matrix are simply the position

expectation values of the energy eigenfunctions of the quan-

tum system, 〈φi|ζ |φi〉. The transformation used to obtain the

ζ
′

matrix is defined to be that which diagonalises ζ for pairs

of states that are considered tunnel doublets. These involve

states of nearly-equal local vibrational excitation in each of

the two wells, where the only direct method to shift from one

to the other is to tunnel through the barrier.

Finally, the correlation function

Ci j(t) =
(

ζ
′
i j

)2

Crr(t)C
tun(t;d2) (20)

controls the rate of transition between states i and j and can

be entered into Equation 11 to find transition probabilities for

each eigenstate pair. Note that these correlation functions are

explicit for baths consisting of simple harmonic oscillators

within this model; they can be thought of as defining how

the bath oscillators behave when interacting with the quantum

system. However, the power spectral density function given

by Equation 14, Jrr, can be thought of as describing the fun-

damental properties of the heat bath and these are typically

altered to fit experimental data. Changes to the power spectral

density would affect the system-bath interaction but the for-

mula used here is based on the general form typically found in

textbooks62–64.

Unfortunately, transition probabilities are not trivial to cal-

culate for this system because the difference between each en-

ergy eigenvalue is relatively large, and as the difference in en-

ergy between eigenstates i and j increases, the smaller the val-

ues for Crr(t) and Css(t) become around t = 0. For numerical

integration, many of these smaller values must be summed,

and they are less prominent compared with the already small

values at more extreme values of t. Fortunately, an analyti-

cal approach for calculating these correlation functions using

the residue theorem can be be used to solve the troublesome

integrals, Css(t) and Crr(t).

The analytic solutions of Css(t) and Crr(t) are shown below:

Crr(t ≥ 0) =
iα

4

[

e−γt/c

(

eiγt/c

eγ eiγ −1
+

e−iγt/c

e−γ eiγ −1

)

− i
∞

∑
n=1

(

γ3
n e−γnt/c

γ4 + γ4
n
4

)]

, (21)

Crr(t ≤ 0) =
−iα

4

[

eγt/c

(

eiγt/c

eγ e−iγ −1
+

e−iγt/c

e−γ e−iγ −1

)

+ i
∞

∑
n=1

(

γ3
n eγnt/c

γ4 + γ4
n
4

)]

, (22)
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Css(t ≥ 0) =
α

4

[

e−γt/c

ω2
p

(

eiγt/c

eγ eiγ −1
− e−iγt/c

e−γ eiγ −1

)

− c2
∞

∑
n=1

(

γne−γnt/c

γ4 + γ4
n
4

)]

, (23)

Css(t ≤ 0) =
α

4

[

eγt/c

ω2
p

(

eiγt/c

eγ e−iγ −1
− e−iγt/c

e−γ e−iγ −1

)

− c2
∞

∑
n=1

(

γneγnt/c

γ4 + γ4
n
4

)]

, (24)

where γ = h̄ωp/√2kBT
, c = h̄/kBT , α = 4

√
2∆V Rh̄ωp, and γn =

2πn. With analytic solutions for Crr(t) and Css(t), the ex-

pression for Ci j(t) also becomes analytic. However, there is

a single case, at Crr(t = 0), where the infinite sum is diver-

gent, leading to numerical difficulty when solving the Fourier

transform integral over time in Equation 11. However, there

is a way around this. The infinite sum in Equations 21 and 22

only contributes to the real part of Crr(t). With this in mind,

it is useful to find a means of solving the FT integral for Wi j

without requiring the real component of Ci j(t).
To this end, Wi j is split into its real and imaginary con-

stituents as follows:

Wi j =
1

h̄2

∞
∫

−∞

dt e−iωi jtCi j(t), i 6= j. (25)

Since Wi j is a parameter, this can be simplified to

Wi j =
1

h̄2

∞
∫

−∞

dt

[

CRe
i j (t)cos(ωi jt)+CIm

i j (t)sin(ωi jt)

]

, (26)

where Ci j = CRe
i j + iCIm

i j and both CRe
i j and CIm

i j are real func-

tions of t.

Equation 26 still includes the real component of Ci j(t) and

so doesn’t solve the divergent-sum problem entirely. How-

ever, there are several useful identities and relations that can

be employed to solve this. Since ωi j = h̄−1 (Ei −E j) =−ωi j,

then Ci j(t) =Ci j(t). Also, the transition probabilities between

energy eigenstates must conform to the principle of detailed

balance63,

Wji

Wi j

= e(Ei−E j)/kBT = βi j, (27)

due to the fact that the Hamiltonian for the system-bath inter-

action is not Hermitian but has Hermitian-like symmetry, i.e.

(∆Hk j)
† =∆H i j

63. If we rewrite Wji using the above relations,

we can see that it is nearly identical to Wi j,

Wji =
1

h̄2

∞
∫

−∞

dt

[

CRe
i j (t)cos(ωi jt)−CIm

i j (t)sin(ωi jt)

]

, (28)

with the only difference between Equations 28 and 26 be-

ing that the two terms in the integral are subtracted instead of

added. This is helpful because by substituting for Wi j and Wji

into Equation 27 we can rearrange to write Wi j in terms of the

known quantity, βi j,

Wi j =
2

(1−βi j)h̄
2

∞
∫

−∞

CIm
i j (t)sin(ωi jt) dt, (29)

This means we do not need to know the real part of Ci j(t)
and therefore the troublesome real part of Crr(t)). The above

integral is easy to solve numerically and converges with rea-

sonable limits (t =±1 ps).

5 Results

The energy eigenstates for the adenine-thymine double poten-

tial well, shown in Fig. 4, were calculated using the DSTEV

function included in the LAPACK library65. The first eight

eigenstates are shown in Fig. 5.
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Fig. 5 Energy eigenstates of adenine-thymine base pair 1-D model.

The most important feature to note here is that the first five

eigenstates are wholly localised in the deeper well on the left

(i.e. the canonical state). The 6th eigenstate is the first that is

localised in the shallower well (the tautomeric state). The 5th

and 6th eigenstates have sufficiently close energy eigenvalues

to be considered a tunnel doublet. The same is true for the 7th

and 8th eigenstates. The 12th energy eigenstate (not shown in

figure), at 7407 cm−1 (or 0.92 eV), is the first one above the

barrier, which means there are six eigenstates below the barrier

with energies high enough to allow for tunnelling between the

wells.
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With the eigenstates known, the time evolution of the den-

sity matrix can be computed using Equation 5. The proton

is chosen to be initially in the ground state and the initial

wave function is thus (|ψ(t = 0)〉 = |φ1〉). This is a reason-

able choice since the ground state probability amplitude in

such an asymmetric double well is almost entirely in the deep

well anyway, where we would wish to start the proton in. Of

course it should be noted here that without a dissipative Lind-

blad term in Equation 5 there would be no tunnelling since

this is a stationary state. The effect of the dissipative term

is therefore to allow transitions between eigenstates and it is

only the coupling to the higher states (6th to 11th) that leads to

any significant probability of finding the proton in the shallow

well.

The values of several parameters in the Lindblad term are

now required. The temperature of the environment, appearing

in the spectral density function, was fixed at 320 K. The other

two parameters, ∆VR and ωp, relate to the properties of the heat

bath of harmonic oscillators. However, without experimental

data for this system it is difficult to choose appropriate values

and it is instructive to carry out computations over a range of

values. Fortunately, since the double hydrogen-bond in the A-

T system shares its properties with that of a much simpler and

better studied molecule, the benzoic acid dimer66–68, it was

decided to use parameters from the latter (∆VR = 44 cm−1,

h̄ωp = 186 cm−1)69 as a benchmark around which to explore.

The time evolution was computed over a range of 10 ns

and repeated for ∆VR = 10,20,44,100,400 cm−1 and h̄ωp =
20,100,500 cm−1. The probability of tunnelling is plotted

over time in Fig. 6. Each sub-figure is for a specific value

of ωp with curves for different values of ∆VR. The probability

of the wave function being in the shallow well at each time

interval required for outputted results was calculated from the

diagonal elements of the density matrix in the position basis,

|ψ(ζ )|2, then normalising this wave function and integrating

over the relevant range along the ζ -axis that covers the width

of the shallow well. We feel that this is a more informative

quantity to calculate in our approach than the equivalent tun-

nelling times (for example using a semi-classical WKB ap-

proach) or transition rates (using Fermi’s golden rule).

The key feature of these plots is that the probability of find-

ing the proton in the shallow well increases over time (very

slowly in comparison with rate of tunnelling itself – several

nanoseconds compared typically with around a tenth of a pi-

cosecond), but this probability reaches a plateau of around

1.6×10−9 for all parameters used; in fact, the only parameter

that affects the maximum tunnelling probability is tempera-

ture. We showed in a previous study68 that for the case of the

benzoic acid dimer the tunnelling rate is reduced at lower tem-

peratures since the weaker coupling to the environment means

it is less likely that there will be strong transitions between

eigenstates, particularly those at energies above the bottom
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Fig. 6 Tunnelling probability in adenine-thymine nucleobase pair

for |ψ(t = 0)〉= |φ1〉, T = 320 K, and varying Lindblad parameters.

∆VR has units cm−1.

of the shallow well. Secondly, both ωp and ∆VR affect how

quickly the system reaches equilibrium.

Next we investigated the sensitivity of the tunnelling prob-

ability to the A-T well geometry. Firstly, the height of the
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barrier above to the deeper well, EB, was reduced by 30%.

This adjusted potential and its energy eigenstates are shown in

Fig. 7. The first 7 eigenstates are now wholly localised in the

deeper well, with the 7th & 8th and 9th & 10th states forming

tunnel doublets. The 8th eigenstate is the lowest in the shallow

well, but even this state is partially in the deep well because

the barrier is so close in energy to the shallow well minimum.

The tunnelling probability in this potential are shown in Fig. 8.
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Fig. 7 Energy eigenstates of adenine-thymine base pair 1-D model

with EB reduced by 30%.
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Fig. 8 Tunnelling probability in adenine-thymine nucleobase pair

for |ψ(t = 0)〉= |φ1〉, T = 320 K, and varying Lindblad parameters.

The height of the potential barrier compared to the deeper well

minimum has been reduced by 30%. ∆VR has units cm−1. This

figure should be compared with Fig. 6 (a).

There are two important differences to note here. Firstly,

the time it takes for an equilibrium to be reached is much re-

duced in all cases, being rarely greater than 100 ps. Secondly,

the maximum tunnelling probability has increased slightly to

2.4×10−9.

Next, the original adenine-thymine potential was adjusted

by increasing the depth of the shallow well compared to the

potential barrier, EB −∆E, by 50%. This adjusted potential

and its energy eigenstates are shown in Fig. 9. There are now

3 pairs of tunnel doublets (states 4 & 5, 6 & 7, and 8 & 9)

and there are more localised eigenstates in the shallow well,

starting with the 4th. The tunnelling probability results for this

new potential are shown in Fig. 10.
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Fig. 9 Energy eigenstates of adenine-thymine base pair 1-D model

with ET−C reduced by 50%.
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Fig. 10 Tunnelling probability in adenine-thymine nucleobase pair

for |ψ(t = 0)〉= |φ1〉, T = 320 K, and varying Lindblad parameters.

The depth of the shallow well compared to the potential barrier has

been increased by 50%. ∆VR has units cm−1. This figure should be

compared with Fig. 6 (c).

Now, the time taken to reach equilibrium is dramatically

increased compared to the standard adenine-thymine model,

being approximately an order of magnitude greater. However,

the tunnelling probability is increased significantly to almost

4×10−7. This still represents a very low chance of tunnelling

having taken place, but is nearly 250 times higher than for the

original adenine-thymine potential.

Finally, it was decided to alter the initial (t = 0) wave func-
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tion from the ground state to a Boltzmann distribution in order

to simulate an “average” starting wave function based on the

density of states:70

|ψ(t = 0)〉= ∑
i

√

e−Ei/kBT

∑i e−Ei/kBT
|φi〉 , (30)

where Ei is the ith energy eigenvalue. Fig. 11 shows the tun-

nelling probability when the system is set up in this way with-

out any environment interaction present.
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Fig. 11 Tunnelling probability in adenine-thymine nucleobase pair

when the starting wave function, ψ(t = 0), is set to a Boltzmann

distribution with no environment coupling.

Now the tunnelling probability oscillates rapidly due to the

complex nature of the wave function. The probability of tun-

nelling is still extremely low at ∼1.6× 10−9, which is due to

the fact that the first energy eigenstate (being localised to the

deep well) is by far the largest contributor, having a coefficient

of 0.9936. Including the effect of the environment makes no

difference to the resulting tunnelling probability and is negli-

gible compared to the complex oscillations due to interference

between the system’s eigenfunctions.

It is worth noting that even when starting the proton in the

highest excited state below the bottom of the shallow well

(|ψ(t = 0)〉 = |φ5〉), mimicking similar tests carried out by

Gobbo et al.42, the transitions between eigenstates due to the

environmental coupling bring the tunnelling probability down

to 1.6×10−9. This takes approximately 70 ns with default pa-

rameters, during which time the tunnelling probability briefly

reaches a peak of 8× 10−5. Whilst this is much higher than

when the proton is in the ground state (which is to be expected

since the barrier is relatively lower), it still cannot account for

a large percentage of occurring tautomers.

6 Summary and Conclusions

An improved method for discovering transition probabilities

was devised and applied to the adenine-thymine potential.

These were calculated and applied in order to find that the tun-

nelling probability, even with an environment present, is very

low in this model. It thus seems unlikely that the instance rate

of A*-T* is due to proton tunnelling in any significant way,

with other mechanisms being more important. The effect of

changing the asymmetry and barrier height of the potential is

small, although the former is the more potent factor of the two.

In addition, altering the mass parameter to simulate a deuter-

ated molecule has a minimal effect on the tunnelling probabil-

ity and thus it seems unlikely that any change in the instance

rate of A*-T* due to deuteration is because of tunnelling.

The main purpose of this study has been to add to the body

of work on the influence of quantum tunnelling on proton

transfer within DNA base pair H-bonds. Although previous

studies have looked at the stability, lifetimes, and instance

rates of tautomeric Watson-Crick adenine-thymine base pairs

within DNA2,7,16–21,35–39,42,71, few have look specifically at

tunnelling, particularly in the absence of external radiation ex-

citing the protons to higher energies where tunnelling would

be more likely. Even the notion that base pair tautomers ex-

ist for any meaningful length of time within DNA is yet to be

settled, with some indications that A*-T* is metastable and

others that it reverts to the canonical A-T form too quickly to

have any influence during DNA replication.

The adenine-thymine potential was created using DFT

with the B3LYP functional. The results obtained compared

favourably with those in the existing literature, particularly in

the case of the energy difference between the canonical state

and tautomeric state. An initial wave function was set up in

both the ground state (|ψ(t = 0)〉 = |φ1〉) and in a Boltzmann

distribution, then transition probabilities were calculated using

an improved, mostly analytical, method to include the dissipa-

tive effects of coupling to an external heat bath. The density

matrix was then allowed to evolve in time and it was found

that tunnelling was promoted by the environmental coupling,

but by a very low amount (2× 10−9). It was confirmed in an

earlier work68 that the effect of the dissipative Lindblad term

is to induce thermally assisted tunnelling, but (crucially) not

to encourage classical over the barrier hopping. This was de-

termined in that work, which was applied to proton tunnelling

in the benzoic acid dimer molecule, by comparing the proba-

bility of finding the proton in the shallow well in two eigen-

state basis calculations. In the first, a large basis set of energy

eigenstates was used, which included many eigenstates with

energies above the barrier. In the second, a smaller basis set

was used, restricted to just those eigenstates below the bar-

rier, some of which could support tunnelling if their energies

were above the base of the shallow well. Hardly any change
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to the tunnelling probability was found between the two cal-

culations, implying that tunnelling is the dominant mechanism

(namely, that the only way for the proton to find its way to the

shallow well was via quantum tunnelling rather than classi-

cal over the barrier hopping. The reason for this is that the

transition probabilities Wi j between eigenstates that link to the

above barrier states were negligibly small. This is key be-

cause it demonstrates that the primary effect of dissipation is

not to allow classical over-the-barrier hoping but to increase

the likelihood of tunnelling below the barrier. We have made

the assumption that this argument also holds for the case of

proton transfer in A-T. However, it may be that further work

is necessary to confirm this.

To test the sensitivity of the outcomes to the input parame-

ters, various adjustments were made to the potential and envi-

ronment parameters. The only environment parameter to ac-

tually affect the maximum tunnelling rate was temperature,

thus confirming that future adjustments to the other parame-

ters would not drastically affect the conclusions of this work.

Despite this, it would be interesting to generate more accu-

rate parameters for the nucleoplasm environment using exper-

imental data and then repeat the procedure. In terms of the po-

tential itself, both the depth of the shallow well and the height

of the barrier were adjusted and it was found that the asymme-

try was by far the most important factor (even more so than the

particle mass) for determining the increase in tunnelling prob-

ability in this model. Therefore, the range of barrier heights in

the literature, which is fairly large (3200-18600 cm−1 or 0.4-

2.3 eV), is unlikely to be critical; even if the barrier height is

dropped significantly (by 30%), the affect on tunnelling rates

remains relatively small.

A comparison between the method used here, where first a

static potential is generated via a DFT approach and then the

time-dependent master equation for an open quantum system

is solved, with a fully time-dependent DFT approach would be

of interest and could prove useful in testing our conclusions.

Finally, even if quantum tunnelling really does not play an im-

portant role in point mutations in DNA, there is still the poten-

tial for utilising the tools developed here in other biochemical

processes, such as those involving proton transfer promoted

by enzyme catalysis.
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