PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

Cite this: DOI: 10.1039/c0xx00000x

ARTICLE TYPE

Towards efficient photoinduced charge separation in carbon nanodots and TiO₂ composites in visible region

Mingye Sun,^{ab} Songnan Qu,^a Wenyu Ji,^a Pengtao Jing,^a Di Li,^a Li Qin,^a Junsheng Cao,^a Hong Zhang,^c Jialong Zhao^a and Dezhen Shen^a

5 Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

In this work, photoinduced charge separation behaviors in non-long-chain-molecule-functionlized carbon nanodots (CDs) with visible intrinsic absorption (CDs-V) and TiO₂ composites were investigated. Efficient photoinduced electron injection from CDs-V to TiO₂ with rate of 8.8×10^8 s⁻¹ and efficiency of

- ¹⁰ 91% was achieved in the CDs-V/TiO₂ composites. The CDs-V/TiO₂ composites exhibited excellent photocatalytic activity under visible light irradiation, superior to pure TiO₂ and the CDs with main absorption band in ultraviolet region and TiO₂ composites, which indicated that visible photoinduced electrons and holes in such CDs-V/TiO₂ composites could be effectively separated. The incident photon-to-current conversion efficiency (IPCE) results of the CD-sensitized TiO₂ solar cells also agreed with
- ¹⁵ efficient photoinduced charge separation between CDs-V and TiO_2 electrode in the visible range. These results demonstrate that non-long-chain-molecule-functionlized CDs with visible intrinsic absorption band could be a proper candidate for photosensitizers and offer a new possibility for the development of well performanced CD-based photovoltaics.

Introduction

- ²⁰ Carbon-based nanomaterials, including fullerene, graphene, carbon nanotubes, and carbon nanodots (CDs), have been regarded as a viable alternative to organic dyes and traditional semiconductor quantum dots (QDs) in bioimaging and biosensing, photocatalysis, optoelectronics, and photovoltaics (PVs).^{1–8}
- ²⁵ Especially, CDs, owing to their superior performance in water solubility, stability, toxicity, resistance to photobleaching, and biocompatibility, have recently drawn significant attention.⁹⁻¹⁵ The electron injection from CDs to TiO₂ was demonstrated feasible and the CD-sensitized TiO₂ photoelectrodes have been
- ³⁰ applied in photocatalysis and PVs.^{10,16-21} However, it is still a challenge to achieve efficient electron injection from CDs to TiO₂ under sunlight,²¹ which is a primary photophysical process in generating photocurrent in CD-based PVs.^{22,23} Up to now, the power conversion efficiency of CD-based PVs is only 0.13%, as
- ³⁵ reported by Mirtchev and co-workers.²¹ The authors pointed out that the low energy conversion efficiency was possibly due to inferior electron injection from CDs to TiO_2 . Most of the CDs, such as those prepared by laser ablation, electrochemical oxidation, and hydrothermal synthesis, have main absorption
- ⁴⁰ band in ultraviolet region,¹⁰ which is unfavorable for efficient absorption of solar energy. The CDs used by Mirtchev *et al.* in the CD-based PVs have absorption band mainly in ultraviolet region with tail in visible region.²¹ The long tail absorption band possibly arises from surface defect states.^{24,25} The surface defects
- ⁴⁵ are unstable and dissipative in energy, which are unfavorable for efficient electron injection in PVs.^{23,26–28} In addition, the reported

CDs are generally passivated with insulating long chain molecules, ^{10,12,29} which act as tunneling barrier and are against efficient electron injection and well performanced CD-based ⁵⁰ optoelectronic devices.^{22,30} To realize efficient CD-sensitized TiO₂ PVs under sunlight, the CDs should exhibit intrinsic absorption in visible region and can be integrated effectively with TiO₂. Thus, it is of significant interests to exploit such photoelectrodes based on CD/TiO₂ composites to demonstrate the ⁵⁵ possibility of well performanced CD-based PVs.

Previously, we prepared non-long-chain-moleculefunctionlized CDs with a strong and specific absorption band in the visible region (CDs-V) extending to 500 nm, which exhibited superior photostability compared with organic dyes.^{12,29,31,32} 60 Amplified spontaneous green emission and lasing were achieved

- from the CDs-V.²⁹ Green photoluminescence (PL) was proposed to be intrinsic state emission and the visible absorption was from intrinsic absorption rather than from surface defect states.²⁹ In this work, we demonstrated the CDs-V could be integrated with
- ⁶⁵ TiO₂ with absorption band extending to visible region. Efficient photoelectrode was prepared by integrating the CDs-V with TiO₂ film on fluorine-doped tin oxide (FTO) substrate with fast and efficient electron injection from CDs-V to TiO₂ with rate of 8.8×10⁸ s⁻¹ and efficiency of 91%. The electron injection ⁷⁰ properties and charge separation processes in the CDs-V/TiO₂ composites were investigated through regulating surrounding environment. The CDs-V/TiO₂ composites exhibited excellent photocatalytic activity under visible light, much better than pure TiO₂ and the CDs with main absorption band in ultraviolet region

(CDs-U) and TiO₂ composites, indicating visible photoinduced electrons and holes in CDs-V/TiO₂ composites could be effectively separated. The CD-sensitized TiO₂ solar cells were prepared. The incident photon-to-current conversion efficiency

⁵ (IPCE) results also agreed with efficient charge separation between CDs-V and TiO₂ electrode in the visible range. These interesting results demonstrate that the non-long-chain-moleculefunctionlized CDs with visible intrinsic absorption could be proper photosensitizer and offer new opportunity for developing ¹⁰ well performanced CD-based PVs.

Experimental section

Chemicals and materials

Citric acid (99.5%) and urea (99%) were purchased from Beijing Chemical Works. TiO₂ powder (P25, a mixed phase of 80% ¹⁵ anatase and 20% rutile; average size 25 nm) was purchased from Degussa. CdSe/ZnS core/shell QDs were purchased from Ocean Nano Tech LLC. All chemicals were used without further purification. The water used in all experiments was purified with

a Millipore system. 20 **Synthesis of CDs-V**

3 g of citric acid and 6 g of urea were added to 20 ml of deionized water to form a transparent solution. Then the mixed solution was heated in a domestic 750 W microwave oven for about 5 minutes, during which the solution changed from a colorless liquid to a

²⁵ light brown and finally dark brown clustered solid, indicating the formation of CDs. The solid was then dissolved in water and centrifuged to remove agglomerated particles with a speed of 8000 rpm for 20 min for three times.

Synthesis of CDs-U

³⁰ 3 g of citric acid and 6 g of urea were added to 20 ml of deionized water to form a transparent solution. The mixed solution was transferred into a 50 ml Teflon-lined stainless-steel autoclave. Then the sealed autoclave was heated to 160 ℃ and kept for about 4 h.

35 Fabrication of CD/TiO₂ composites

The CD/TiO₂ composites were prepared by simply dispersing P25 powder in CDs-U or CDs-V aqueous solution (5 mg/mL) with constant stirring for 24 h. All the reaction mixtures were washed with water and centrifuged to remove unadsorbed CDs

⁴⁰ with a speed of 5000 rpm until the supernatant was nonfluorescent. The samples were then dried at 80 °C and kept in vacuum oven for further experiments and measurements. The color of TiO₂ changes from pure white to light brown after integrating with the CDs-V as shown in Fig. S1.

45 Fabrication of CDs-V/TiO₂ composites on glass and FTO substrates

The TiO₂ films were spread on glass and FTO substrates by spincoating P25 pastes onto the substrates with a speed of 2500 rpm for 60 s, and the obtained substrates were calcined at 500 °C in

 $_{\rm 50}$ air for 60 min and cooled to room temperature naturally. The TiO_2 films on glass and FTO substrates were immersed in the aqueous solution of CDs-V with concentration of 5 mg/mL for 24 h and then rinsed thoroughly with water.

Fabrication of CD-sensitized solar cells

- ⁵⁵ TiO₂ mesoporous films were spread on FTO substrates by successive screen printing of P25 pastes as transparent layer (9.5 \pm 0.5 µm) and 30 wt % 200–400 nm TiO₂ mixed with 70 wt % P25 pastes as light scattering layer (6.5 \pm 0.5 µm). The obtained substrates were calcined at 500 °C in air for 60 min and cooled to ⁶⁰ room temperature naturally. A modification of the TiO₂ mesoporous films with an aqueous solution of TiCl₄ (0.04 M) was then performed. For the integrating of CDs-V with TiO₂ film electrodes, the TiO₂ mesoporous films on FTO substrates were immersed in the aqueous solution of CDs-V with concentration of
- ⁶⁵ 5 mg/mL for 24 h and then rinsed thoroughly with water. Platinum coated FTO was chosen as the counter electrode. The solar cells were prepared by sealing the platinum coated FTO counter electrode and CD-sensitized TiO₂ film electrode with a binder clip by a Scotch spacer. Then, a small amount of Γ/I_3^- 70 electrolyte was infiltrated into the cell through a pre-drilled hole in the platinum coated FTO counter electrode.

Photocatalytic activity measurements

The photocatalytic activity of the samples was tested through measuring the decomposition rate of Rhodamine B (RhB) ⁷⁵ molecules under visible light irradiation ($\lambda > 400$ nm) from a Zolix SS150 solar simulator with a 400 nm cut-off filter. The CDs-V, P25 TiO₂, CDs-U/TiO₂ and CDs-V/TiO₂ composites were dissolved in water at 5 mg/mL. Each solution (0.1 mL) was mixed with 0.1 mL of RhB aqueous solution (100 ppm), and 3 ⁸⁰ mL of deionized water was added. The mixed solutions were then transferred into quartz cuvette and kept out of any source of light for 1 h with magnetic stirring for the adsorption/desorption

- for 1 h with magnetic stirring for the adsorption/desorption equilibrium between catalysts and RhB. Then the solutions were exposed to the visible light irradiation with continuous stirring. 85 The decrease in the absorbance value at the characteristic
- absorption peak of RhB (554 nm) was measured after irradiation for a constant time interval with visible light. The absorption spectra were in situ measured using the absorbance mode of USB4000-UV-VIS Spectrometer with reference light from Ocean
- ⁹⁰ Optics HL-2000 light source. 510 nm cut-off filter was equipped on the light source to prevent the excitation of CDs-U and CDs-V. The reference light was imported from Ocean Optics QP8-2-SMA-BX fiber and exported from Ocean Optics QP1000-2-SR fiber.

95 Results and discussions

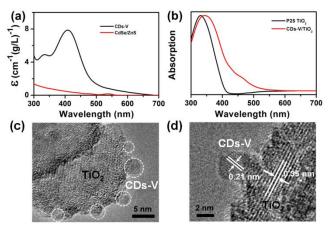


Fig. 1 (a) The mass extinction coefficient spectra of the CDs-V in water and CdSe/ZnS core/shell QDs in toluene. (b) Normalized UV-Vis absorption spectra of TiO₂ and CDs-V/TiO₂ composites. HRTEM images 5 of CDs-V/TiO₂ composites (c and d).

The CDs-V were synthesized according to our previous work with the starting materials of 3 g citric acid and 6 g urea.^{12,29} The CDs-V have a specific intrinsic absorption band in the visible region ranging from 400 to 500 nm (Fig. 1a). The mass extinction 10 coefficients of the CDs-V are much higher than those of

- CdSe/ZnS core/shell quantum dots (QDs) in the entire absorption band, especially in visible region as shown in Fig. 1a, which indicates that the CDs could be a good photosensitive material for PVs. A compact integrating of CDs-V with TiO₂ nanoparticles is
- ¹⁵ necessary for efficient electron injection. The $CDs-V/TiO_2$ composites were prepared by simply mixing them in water under constant stirring for 24 h. The reaction mixtures were diluted with water and centrifuged to remove unadsorbed CDs-V with a speed of 5000 rpm until the supernatant was nonfluorescent. The color
- ²⁰ of TiO₂ changed from pure white to light brown after the integrating of CDs-V with TiO₂ nanoparticles as shown in Fig. S1, verifying the success in integrating the CDs-V with TiO₂ nanoparticles. Fig. 1b shows the UV-Vis absorption spectra (converted from diffuse reflection spectra) of TiO₂ and CDs-
- ²⁵ V/TiO₂ composites. Pure TiO₂ has almost no absorption above 400 nm, while the CDs-V/TiO₂ composites have continuous broad absorption in the visible region ranging from 400 to 600 nm, indicating the adsorption of CDs-V on the surface of TiO₂. To further confirm the integrating of CDs-V with TiO₂
- ³⁰ nanoparticles, high resolution transmission electron microscopic (HRTEM) images of the CDs-V/TiO₂ composites were recorded (Fig. 1c, d). As seen from Fig. 1d, the interplanar spacing of 0.35 nm is assigned to the (101) lattice plane of anatase TiO₂, while the 0.21 nm lattice fringes agree well with the (102) plane of ³⁵ graphitic carbon, demonstrating the integrating of CDs-V with
- TiO_2 nanoparticles. It should be mentioned that no long chain

molecules were functionalized on the CDs-V. Thus, the cores of the CDs-V could be closely anchored to the surface of TiO₂, resulting in compact integration, as shown in Fig. 1d, which is ⁴⁰ benefit for efficient electron injection.

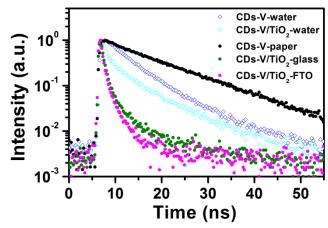


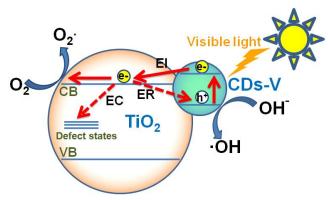
Fig. 2 PL decay curves of the CDs-V and CDs-V/TiO₂ composites in water (empty symbols) and the CDs-V integrated with paper and TiO₂ films on glass and FTO substrates in air (solid symbols), excitation at 405 ⁴⁵ nm, monitored at 530 nm.

To clearly illustrate the electron injection properties in the CDs-V/TiO₂ composites, the PL properties of the CDs-V/TiO₂ composites in water were studied. The emission of CDs-V could be quenched by TiO₂ after integrating CDs-V with TiO₂. The PL ⁵⁰ dynamics of CDs-V and CDs-V/TiO₂ composites in water were collected as shown in Fig. 2. After integrated with TiO₂ nanoparticles, a shortening in the PL decays of CDs-V was observed. This shortening is ascribed to electron injection from CDs-V to the conduction band of TiO₂.³³ The electron injection 1 and 2:

$$k_{\rm EI} = \frac{1}{\tau_{\rm ave}(\rm CD-TiO_2)} - \frac{1}{\tau_{\rm ave}(\rm CD)}$$
(1)

$$\eta_{\rm EI} = 1 - \frac{\tau_{\rm ave}(\rm CD-TiO_2)}{\tau_{\rm ave}(\rm CD)}$$
(2)

where $\tau_{ave}(CD)$ and $\tau_{ave}(CD-TiO_2)$ are the average lifetimes of the CDs-V and CDs-V/TiO₂ composites, respectively.^{33–35} The PL decay curves of the CDs-V and the CDs-V/TiO₂ composites were fitted with bi- or tri-exponential decay kinetics and the calculated


Table 1. Fit parameters of the PL decay curves of the CDs-V and CDs-V/TiO₂ composites in water and CDs-V integrated with paper and TiO₂ films on glass and FTO substrates in air. CDs-V-water and CDs-V-paper are the reference samples in water and air, respectively.^{*a*}

Samples	τ_1 (ns)	a_1 (%)	τ_2 (ns)	a_2 (%)	τ_3 (ns)	<i>a</i> ₃ (%)	χ^2	$ au_{ave}$ (ns)	$k_{\rm EI} \ (10^8 { m s}^{-1})$	$\eta_{ m EI}$ (%)
CDs-V-water CDs-V/TiO ₂ -water	4.96 0.60	74.70 22.05	11.02 4.29	25.30 40.14	10.75	37.81	1.42 1.25	6.49 5.92	0.15	8.8
CDs-V-paper	5.37	11.55	13.10	88.45			1.06	12.20		
CDs-V/TiO2-glass	0.24	50.01	1.51	34.02	9.42	15.97	1.21	2.14	3.9	82
CDs-V/TiO2-FTO	0.15	52.25	1.02	35.40	4.89	12.35	1.12	1.04	8.8	91

^{*a*}The average lifetimes were calculated using Equation $\tau_{ave} = \sum_{i=1}^{n} a_i \tau_i$.^{36,37}

Page 4 of 6

 $k_{\rm EI}$ and $\eta_{\rm EI}$ are summarized in Table 1. The $k_{\rm EI}$ and $\eta_{\rm EI}$ from CDs-V to TiO₂ in water were estimated to be ~0.15×10⁸ s⁻¹ and 8.8%, respectively.

⁵ Fig. 3 Schematic illustration for the visible photoinduced electron injection (EI) and possible dissipative channels for the photoinduced electrons in the CDs-V/TiO₂ composites (electron extraction by O₂, electron capture by defect states in TiO₂ (EC) and electron recombination from TiO₂ to the CDs-V (ER)) under visible light irradiation. CB: the ¹⁰ conduction band of TiO₂, VB: the valence band of TiO₂.

- To acquire a deep understanding of the electrical interaction between the CDs-V and TiO₂, the PL dynamics of the CDs-V/TiO₂ composites in air were measured, as shown in Fig. 2. The CDs-V/TiO₂ composites were prepared by immersing ¹⁵ mesoporous TiO₂ films on glass or FTO substrates in aqueous solution of the CDs-V with concentration of 5 mg/mL for 24 h and then rinsing thoroughly with water to avoid the aggregation of CDs-V. The CDs could be separately adsorbed on paper with enhanced fluorescence as our previous report.¹² The reference
- ²⁰ sample was prepared by dispersing the aqueous solution of the CDs-V with low concentration on commercially available filter paper, which is insulator and no electron transfer process in the CDs-V/paper composites. As seen from Fig. 2, the PL decay of the CDs-V/TiO₂ composites on glass substrate is significantly
- ²⁵ shortened, which can be further shortened in the CDs-V/TiO₂ composites on FTO substrate. The $k_{\rm EI}$ and $\eta_{\rm EI}$ in the CDs-V/TiO₂ composites on glass substrate in air were 3.9×10^8 s⁻¹ and 82%, respectively. When the CDs-V were integrated with TiO₂ film on the conductive FTO substrate, the $k_{\rm EI}$ and $\eta_{\rm EI}$ were further
- ³⁰ promoted to 8.8×10^8 s⁻¹ and 91%. These results demonstrate that efficient electron injection in the CDs-V/TiO₂ composites can be achieved. The $k_{\rm EI}$ and $\eta_{\rm EI}$ from the CDs-V to TiO₂ in water were estimated to be ~ 0.15×10^8 s⁻¹ and 8.8%, respectively, which were much lower than those in the CDs-V/TiO₂ composites in air.
- ³⁵ There are three possible dissipative channels for the electrons in the conduction band of TiO₂ in the CDs-V/TiO₂ composites, which are electron extraction by O₂,¹⁶ electron capture by defect states in TiO₂, and electron recombination from TiO₂ to the CDs-V, as shown in Fig. 3. It can be inferred that the content of O₂ in
- ⁴⁰ air is much higher than that in water, which could efficiently extract the photoinduced injected electrons in the conduction band of TiO₂ from the CDs-V. The photoinduced injected electrons in the conduction band of TiO₂ from the CDs-V could not be efficiently extracted by O₂ in water, due to low ⁴⁵ concentration of O₂ in water (~8 mg/L). So the electron injection
- from the CDs-V to TiO_2 in water (O mg/D) so the electron injection the composites in air. It can be concluded that the electron

capture by defect states in TiO₂ and electron recombination from TiO₂ to the CDs-V are unfavorable comparing with electron 50 extraction by O₂. Because effective electron capture by defect states in TiO₂ and electron recombination from TiO₂ to the CDs-V would also extract the photoinduced injected electrons in the conduction band of TiO₂ and then promote the electron injection from CDs-V to TiO2 nanoparticles, which cannot lead to such 55 obvious oxygen-content-dependent electron injection properties. After replacing the glass substrate with conductive FTO substrate in the CDs-V/TiO₂ composites, the $k_{\rm EI}$ and $\eta_{\rm EI}$ in air were further promoted. This is because the FTO substrate enhances the electron extraction from the conduction band of TiO₂ due to the 60 role FTO conductive film acted as another dissipative channel for the electrons. It can be inferred that the visible photoinduced charges in the CDs-V/TiO₂ composites could be efficiently separated and collected through effective loop in the CD-based PVs.

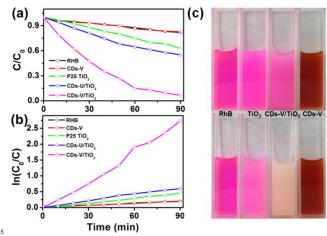
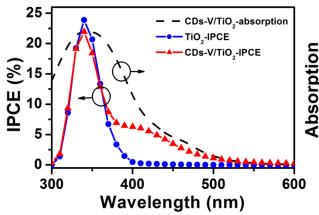



Fig. 4 Photocatalytic performances of the CDs-V, TiO₂, CDs-U/TiO₂ and CDs-V/TiO₂ composites under visible light ($\lambda > 400$ nm) (a and b). (c) Optical images of RhB (10 ppm) and mixed solutions of RhB (10 ppm) with pure TiO₂, the CDs-V/TiO₂ composites, and CDs-V (TiO₂, CDs-70 V/TiO₂ composites, and CDs-V at the same concentration of 0.5 mg/mL) without (above) and with (below) daylight irradiation for 2 hours. The pH values of the RhB and mixed solutions of RhB with CDs-V, TiO₂, CDs-U/TiO₂ and CDs-V/TiO₂ composites: 6.51, 6.42, 6.14, 6.32, and 6.47, respectively. Illumination intensity at the solution surface: 72.5 mW/cm², 75 irradiating area: 1 cm².

We further investigated the photoinduced charge separation processes in the CDs-V/TiO₂ composites by photocatalytic experiments of the CDs-V/TiO2 composites. The decomposition rates of RhB by the CDs-V/TiO2 composites were measured so under visible light irradiation ($\lambda > 400$ nm). The absorption spectra of RhB solutions mixed with pure TiO₂ and the CDs-V/TiO₂ composites measured at different visible light irradiation time are shown in Fig. S2a-e. The characteristic absorption peak of RhB aqueous solution (554 nm) mixed with CDs-V/TiO2 85 composites decreased quickly with peak wavelength exhibiting a blue shift under visible light irradiation (Fig. S2e), which might be due to two concomitant photodegradation processes: cleavage of the conjugated chromophore ring structure and de-ethylation of RhB.^{38,39} The intensity ratios of the characteristic absorption peak 90 of RhB (554 nm) after irradiation under visible light for a constant time interval (C) and prior to irradiation (C_0) were calculated as shown in Fig. 4a. Fig. 4b shows the

photodegradation kinetics (ln(C₀/C)) of RhB solutions containing different components.¹⁶ As seen from Fig. 4a and b, pure CDs-V have almost no degradation on RhB under visible light. The decomposition rate constant of RhB by the CDs-V/TiO₂ $_{5}$ composites was much higher than that of pure TiO₂, which indicates the charge separation in the CDs-V/TiO₂ composites

- was the major factor for improving the photocatalytic activity of TiO₂.^{16–19} The photocatalytic activity of the composites based on CDs-U was also investigated (Fig. 4a and b). The CDs-U were ¹⁰ synthesized according to recent work.¹⁶ The CDs-U/TiO₂
- ¹⁰ synthesized according to recent work.¹⁰ The $CDs-U/TiO_2$ composites were prepared in the same method as $CDs-V/TiO_2$ composites. The decomposition rate constant of RhB by the CDs- U/TiO_2 composites was similar to that of pure TiO_2 and much inferior to that of $CDs-V/TiO_2$ composites, due to weak
- ¹⁵ absorption of CDs-U in visible region (Fig. S2f). It can be concluded that the CDs with main absorption in visible region are important for charge separation in the CDs-V/TiO₂ composites under visible light to improve the photocatalytic activity of TiO₂. Fig. 4c shows the optical images of RhB solution and mixed
- ²⁰ solutions of RhB with pure TiO₂, the CDs-V/TiO₂ composites, and the CDs-V without and with sunlight irradiation for 2 hours. It can be seen that most RhB was degraded by the CDs-V/TiO₂ composites under sunlight for 2 hours, which is much more efficient than pure TiO₂. The excellent photocatalytic activity of
- ²⁵ the CDs-V/TiO₂ composites indicates that the small amount of O₂ and OH⁻ in water can effectively extract the visible photoinduced electrons and holes in the CDs-V/TiO₂ composites, respectively, to generate O₂ · and OH to decompose RhB as shown in Fig. 3. It agrees also with the fact that electron recombination from TiO₂ to
- ³⁰ the CDs-V is unfavorable. It can be also inferred that the visible photoinduced charges in the CDs-V/TiO₂ composites could be efficiently separated and collected through effective loop in the CD-based PVs.

 $_{35}$ Fig. 5 The IPCE spectra of pure TiO_2 and the CD-sensitized TiO_2 solar cells and UV-Vis absorption spectrum of CDs-V/TiO_2 composites.

Simple CD-sensitized TiO₂ solar cells with general dyesensitized solar cell structure with Γ/I_3^- electrolyte were prepared to further investigate the photoinduced charge separation ⁴⁰ behaviors between CDs-V and TiO₂. The IPCE spectra of pure TiO₂ and the CD-sensitized TiO₂ solar cells were measured as shown in Fig. 5. The IPCE curve of pure TiO₂ solar cells is almost zero in the visible region ($\lambda > 400$ nm) due to large band gap width of TiO₂. In comparison, the IPCE curve of the CD-⁴⁵ sensitized TiO₂ solar cells is obviously enhanced in the range from 380 to 500 nm, indicating the visible absorption of CDs-V contributes to photogenerated current. At this stage, the performance of the CD-sensitized TiO₂ solar cells is unsatisfactory, which might be due to low adsorption degree of ⁵⁰ the CDs-V on TiO₂ electrode causing low absorption of visible light as evaluated from UV-Vis absorption spectrum of the CDs-V and TiO₂ is low (Fig. 5). Considering the relative low adsorption degree of the CDs-V on TiO₂ electrode and the similar shape of the ⁵⁵ IPCE spectrum of the CD-sensitized TiO₂ solar cell with the

absorption spectrum of the CD-sensitized IIO_2 solar cen with the absorption spectrum of CDs-V/TiO₂ composites, the photoinduced charge separation between CDs-V and TiO_2 electrode should be efficient. We propose that the performance of the CD-sensitized TiO_2 solar cells can be further improved by on increasing the adsorption degree of the CDs-V on TiO_2 electrode, and this work is in process.

Conclusions

In summary, non-long-chain-molecule-functionlized CDs with visible intrinsic absorption (CDs-V) were compactly integrated 65 with TiO2. The PL dynamical study demonstrated photogenerated electrons from the CDs-V could quickly and efficiently inject into TiO₂ with $k_{\rm EI} = 8.8 \times 10^8 \text{ s}^{-1}$ and $\eta_{\rm EI} = 91\%$, respectively, in the CDs-V/TiO₂ composites. The CDs-V/TiO₂ composites exhibited excellent photocatalytic activity under visible light, which was 70 much better than pure TiO₂ and CDs-U/TiO₂ composites, indicating visible photoinduced electrons and holes in CDs-V/TiO₂ composites could be effectively separated and electron recombination from TiO₂ to the CDs-V was unfavorable. The IPCE results of the CD-sensitized TiO₂ solar cells also agreed 75 with efficient photoinduced charge separation between CDs-V and TiO₂ electrode in the visible range. These results demonstrate that the non-long-chain-molecule-functionlized CDs with visible intrinsic absorption band are proper candidates as photosensitizer and indicate the visible photoinduced charges in the CDs-V/TiO2 ⁸⁰ composites could be efficiently separated and collected through effective loop in the CD-based PVs.

Acknowledgment

We thank Prof. Xinghua Zhong in East China University of Science and Technology for preparing the CD-sensitized TiO₂ solar cells and measuring the IPCE results. This work was supported by the National Science Foundation of China No. 11204298, 61205025, 61274126, the Jilin Province Science and Technology Research Project No. 20140101060JC, 20150519003JH, the Outstanding Young Scientist Program of CAS, and a project supported by the State Key Laboratory of Luminescence and Applications.

Notes and references

- ^a State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of ⁹⁵ Sciences, 3888 Eastern South Lake Road, Changchun Jilin 130033, China
- ^b University of Chinese Academy of Sciences, Beijing 100039, China
- ^c Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- *Correspondence: Dr. Songnan Qu, State Key Laboratory of 100 Luminescence and Applications, Changchun Institute of Optics, Fine

Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun Jilin 130033, China. E-mail: qusn@ciomp.ac.cn; Prof. Dezhen Shen, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine

- 5 Mechanics and Physics, Chinese Academy of Sciences, 3888 Eastern South Lake Road, Changchun Jilin 130033, China. E-mail: shendz@ciomp.ac.cn
- † Electronic Supplementary Information (ESI) available: Measurement section. Optical images of pure TiO₂ and CDs-V/TiO₂ composites. The
- ¹⁰ normalized absorption spectra of RhB solution and RhB solutions mixed with CDs-V, pure TiO₂, CDs-U/TiO₂ and CDs-V/TiO₂ composites after different visible light irradiation time. The normalized absorption spectra of CDs-U and CDs-V. See DOI: 10.1039/b000000x/
- 1 L. Cao, M. J. Meziani, S. Sahu and Y. Sun, Acc. Chem. Res., 2013, 15 46, 171.
- 2 S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang and B. Yang, *Angew. Chem. Int. Ed.*, 2013, **125**, 1.
- 3 T. Yeh, C. Teng, S. Chen and H. Teng, Adv. Mater., 2014, 26, 3297.
- 4 K. Kalyanasundaram and M. Grätzel, *J. Mater. Chem.*, 2012, **22**, 24190.
- 5 W. Wei, C. Xu, L. Wu, J. Wang, J. Ren and X. Qu, *Sci. Rep.*, 2014, **4**, 3564.
- 6 C. Ding, A. Zhu and Y. Tian, Acc. Chem. Res., 2014, 47, 20.
- 7 S. Zhuo, M. Shao and S. Lee, ACS Nano, 2012, 6, 1059.
- 25 8 K. J. Williams, C. A. Nelson, X. Yan, L. Li and X. Zhu, ACS Nano, 2013, 7, 1388.
- 9 H. Choi, S. Ko, Y. Choi, P. Joo, T. Kim, B. R. Lee, J. Jung, H. J. Choi, M. Cha, J. Jeong, I. Hwang, M. H. Song, B. Kim and J. Y. Kim, *Nat. Photon.*, 2013, **7**, 732.
- 30 10 H. Li, Z. Kang, Y. Liu and S. Lee, J. Mater. Chem., 2012, 22, 24230.
- Y. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veca and S. Xie, *J. Am. Chem. Soc.*, 2006, 128, 7756.
- 35 12 S. Qu, X. Wang, Q. Lu, X. Liu and L. Wang, Angew. Chem. Int. Ed., 2012, 51, 12215.
 - 13 S. Qu, D. Shen, X. Liu, P. Jing, L. Zhang, W. Ji, H. Zhao, X. Fan and H. Zhang, *Part. Part. Syst. Charact.*, 2014, **31**, 1175.
- X. Li, Y. Liu, X. Song, H. Wang, H. Gu and H. Zeng, Angew. Chem.
 Int. Ed., 2014, DOI: 10.1002/anie.201406836.
- 15 X. Li, S. Zhang, S. A. Kulinich, Y. Liu and H. Zeng, *Sci. Rep.*, 2014, 4, 4976.
- 16 D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie and Z. Sun, *Nanoscale*, 2013, 5, 12272.
- ⁴⁵ 17 H. Yu, Y. Zhao, C. Zhou, L. Shang, Y. Peng, Y. Cao, L. Wu, C. Tung and T. Zhang, *J. Mater. Chem. A*, 2014, **2**, 3344.
 - 18 S. T. Kochuveedu, Y. J. Jang, Y. H. Jang, W. J. Lee, M. Cha, H. Shin, S. Yoon, S. Lee, S. O. Kim, K. Shin, M. Steinhart and D. H. Kim, *Green Chem.*, 2011, 13, 3397.
- ⁵⁰ 19 G. Cui, W. Wang, M. Ma, M. Zhang, X. Xia, F. Han, X. Shi, Y. Zhao, Y. Dong and B. Tang, *Chem. Commun.*, 2013, **49**, 6415.
 - 20 J. Bian, C. Huang, L. Wang, T. Hung, W. A. Daoud and R. Zhang, ACS Appl. Mater. Interfaces, 2014, 6, 4883.
- P. Mirtchev, E. J. Henderson, N. Soheilnia, C. M. Yip and G. A. Ozin,
 J. Mater. Chem., 2012, 22, 1265.
- 22 P. V. Kamat, Acc. Chem. Res., 2012, 45, 1906.
- 23 P. V. Kamat, K. Tvrdy, D. R. Baker and J. G. Radich, *Chem. Rev.*, 2010, **110**, 6664.
- F. Liu, M. Jang, H. D. Ha, J. Kim, Y. Cho and T. S. Seo, *Adv. Mater.*,
 2013, 25, 3657.
- 25 S. Zhu, J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang, X. Liu, B. Li, Y. Li, W. Yu, X. Wang, H. Sun and B. Yang, *Adv. Funct. Mater.*, 2012, **22**, 4732.
- 26 Z. Yang, C. Chen, P. Roy and H. Chang, *Chem. Commun.*, 2011, **47**, 9561.
- 27 M. Graetzel, R. A. J. Janssen, D. B. Mitzi and E. H. Sargent, *Nature*, 2012, **488**, 304.
- 28 F. Hetsch, X. Xu, H. Wang, S. V. Kershaw and A. L. Rogach, J. Phys. Chem. Lett., 2011, 2, 1879.
- ⁷⁰ 29 S. Qu, X. Liu, X. Guo, M. Chu, L. Zhang and D. Shen, *Adv. Funct. Mater.*, 2014, **24**, 2689.

- 30 F. Wang, Y. Chen, C. Liu and D. Ma, Chem. Commun., 2011, 47, 3502.
- 31 S. Qu, H. Chen, X. Zheng, J. Cao and X. Liu, *Nanoscale*, 2013, 5, 5514.
- 32 Q. Lou, S. Qu, P. Jing, W. Ji, D. Li, J. Cao, L. Liu, H. Zhang and D. Shen, *Adv. Mater.*, 2014, DOI: 10.1002/adma.201403635.
- 33 A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 2008, **130**, 4007.
- 80 34 M. Abdellah, K. Žídek, K. Zheng, P. Ch abera, M. E. Messing and T. Pullerits, J. Phys, Chem, Lett., 2013, 4, 1760.
 - 35 J. Sun, J. Zhao and Y. Masumoto, Appl. Phys. Lett., 2013, 102, 053119.
- 36 S. Jin and T. Lian, Nano Lett., 2009, 9, 2448.
- ⁸⁵ 37 M. Y. Berezin and S. Achilefu, *Chem. Rev.*, 2010, **110**, 2641.
 38 T. Wu, G. Liu, J. Zhao, H. Hidaka and N. Serpone, *J. Phys. Chem. B*, 1998, **102**, 5845.
 - 39 H. Fu, S. Zhang, T. Xu, Y. Zhu and J. Chen, *Environ. Sci. Technol.*, 2008, 42, 2085.