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Abstract 
 

           Monte Carlo simulations performed on multiple polymer chains have produced accurate 

relaxation modulus Gs(t) curves which match the experimental G(t) curves of polystyrene 

reasonably well, over a wide temperature range around the glass transition region. The inter-

segmental interactions, defined in terms of * (well depth) and  (monomer size), exert strong 

influence on the modulus, length scale and relaxation time scale of the system. Judicious selection 

of these interaction parameters has enabled us to create the whole range of temperature dependence 

of the thermorheological complexity, from T = 400 C to T = 00 C. Near the glass transition 

temperature, the development of nonergodicity vis-à-vis crowding effect in the system, emerge 

naturally from the analysis of the G(t) line shapes. The entropic slow mode is well described by 

the Rouse theory and the energetic fast mode shifts to longer time scales, revealing the generic 

behavior of the thermorheological complexity. Typical Gs(t) curves, when partitioned into the 

glassy and rubbery components, are shown to obey Inoue-Okamoto-Osaki’s modified stress-

optical rule, with different stress-optical coefficients for each component. Closer to the glass 

transition temperature, the distance of the closest monomer shows a considerable increase, 

suggesting a penetrable resistance to the approach of another monomer. The parameter  

represents the characteristic length scale of the system in the glassy region. The thermorheological 

complexity incorporates the dynamic length scale of the structural relaxation, increasing with the 

decrease of temperature towards the glass transition point. 

 

Keywords: 

Glassy relaxation; Entropic relaxation; Dynamical length scale; Modified stress-optical rule. 
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1. Introduction 

        Polymers are highly viscoelastic materials. Mechanical properties of polymeric substances 

vary widely depending on the duration and frequency of the applied stress. Any constitutive model 

on such viscoelastic substances is required to address the entire range of deformation behavior 

including linear viscoelastic as well as nonlinear viscoelastic responses. In the experiments, the 

response of the system is usually measured by the dynamic moduli G'() and G"() [or, simply 

the complex modulus, G*() = G'() + iG"()], creep compliance J(t) and relaxation modulus 

G(t). Although all of the three responses may not be measured using a single instrument, the 

responses are interconvertible. For example, the creep compliance J(t) and relaxation modulus G(t) 

are related by a convolution integral as1 

𝑡 = ∫ 𝐽(𝑡 − 𝜏)𝐺(𝜏)𝑑𝜏
𝑡

0

= ∫ 𝐺(𝑡 − 𝜏)𝐽(𝜏)𝑑𝜏
𝑡

0

 

Similarly, both the dynamic moduli G'() and G"() can be expressed as analytical functions in 

terms of the relaxation modulus G(t) and creep compliance J(t).2 The time-temperature 

superposition principle3-5 is a general tool for the description of viscoelastic behavior of linear 

polymers over a wide range of time (or, frequency). The temperature dependence of the 

viscoelastic response of a polymer melt incorporates a short-time (high frequency) and a long-time 

(low frequency) region. The high frequency region is usually known as the glassy, structural or-

relaxation while the low frequency region constitutes the entropic counterpart. As the temperature 

approaches the glass transition point (Tg), the relative increase in the modulus in the glassy region 

becomes larger than the corresponding increase in the entropic region.6-14 As a consequence, the 

time-temperature superposition principle would not be applicable over the whole range of time 
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(or, frequency), preventing the construction of the so-called ‘master curve’. This is generally 

referred to as the thermorheological complexity. 

 

         For the purpose of constructing a master curve, one needs to calculate a horizontal shift factor 

aT and a vertical shift factor bT, both of which are temperature dependent. While the vertical shift 

factor is related to the temperature dependent density of the system, the horizontal shift factor is 

often calculated from the Williams-Landel-Ferry (WLF) equation15 for temperatures above the Tg. 

The close relationship between the changes in viscoelastic response with temperature near the 

glass transition point has been well recognized in literature, but the thermorheological complexity 

has not been included in any theoretical considerations.16-18 

 

         At temperatures close to the Tg, nonergodicity in the system plays an important role in the 

fast relaxation mode, but in the long-time region (entropic mode) the ergodicity is recovered.19 

The ergodic behavior of a polymeric system implies that different modes of motion (such as the 

Rouse normal modes) are characterized by the same frictional factor. As the frictional factor carries 

the temperature dependence of all the entropy driven processes, it can be used to normalize the 

glassy relaxation time, whose temperature dependence is much stronger. The ratio of the average 

glassy relaxation time (G) to the frictional factor (K) can be estimated as a function of temperature. 

The glassy relaxation process which involves a ‘large length scale dynamics’ may then be 

characterized by this ratio, (G/K). Importance of such a scheme of analysis is highly relevant as 

the nonergodic dynamic process in the short-time region must eventually fade into the fully ergodic 

process in the long-time region.19 
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        Quantitatively successful theories based on models using coarse-grained structural units (viz., 

the Rouse segments) have been developed in order to explain the viscoelastic response in the 

intermediate time and long time region.20-24 For a phenomenological description of the short-time 

(glassy) relaxation, one may employ the Kohlrausch-Williams-Watts’ (KWW) stretched 

exponential function.25 The empirical KWW form assumed for the glassy relaxation is 

incorporated into the molecular theory. In certain cases, the use of a single KWW function may 

not be sufficient for precisely describing the whole glassy relaxation, which may comprise 

processes with more than one relaxation times.26 

 

        For the entanglement-free cases, Lin and Das27,28 have calculated the linear and nonlinear 

stress relaxations using single Fraenkel chains, with explicitly skeletal bonded interactions. 

Considering a mean field of interactions for the single chains, the MC simulations on 

entanglement-free polymer melts revealed the emergence of two distinct dynamic modes in the 

relaxation modulus Gs(t) curves. Detailed analyses confirmed that the fast mode arises from the 

segment-tension fluctuations (an energetic interactions-driven process) while the slow mode 

originates from the randomization of the segmental orientations (an entropy-driven process). 

Furthermore, the slow mode is well described by the Rouse theory in all respects: modulus level, 

time scale and the line shape. This leads to infer that, one Fraenkel bond segment can substitute 

for one Rouse segment, suggesting that the entropic force constant of the bond segment is not a 

prerequisite for giving rise to the Rouse behavior. A Fraenkel segment with a sufficiently large 

force constant is equivalent to a Kuhn segment, as far as the chain conformation is concerned. This 

conclusion has resolved a long-standing debate on the success of the Rouse segment-based theories 

on polymer viscoelasticity.29 In essence, the overall two-mode line shape of the simulated Gs(t) is 
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in good agreement with the experimental curve for an ideally monodisperse sample. The 

agreement suggests that the amazingly simple Fraenkel chain model captures the basic element 

(namely, the rigidity of the segment) of the energetic interactions in the polymer system and 

represents a dramatic improvement on the Rouse model. However, as the Fraenkel chain is still 

somewhat primitive, it is not expected to describe the fast mode precisely; both the modulus level 

and the relaxation in the fast mode region depend on the Fraenkel force constant (HF). The details 

regarding the choice of HF to be used in the MC simulations presented in this article, have been 

explained in Appendix I.  

 

         It is noteworthy that the inter-segmental interactions (ISI) exert strong influence on the Gs(t) 

line shape in the fast mode region. In the single Fraenkel chain simulations, the interactions 

between segments (intermolecular and intramolecular) in a polymer have been implicitly related 

to a mean interactions field and these are absorbed in the fluctuating step movements, dictated by 

the fluctuating forces acting on each bead of the chain. 

 

        The present article focuses on further development in the framework on the emergence of the 

bimodal relaxation behavior from the MC simulations of the Fraenkel chains. In the present 

multiple chain systems, each bead interacts with all non-nearest beads in the same chain and all 

beads of the other chains through a modified Lennard-Jones (LJ) potential. With a view to fitting 

the simulation data to experiments, HF*(= HF/kBT) = 600 is chosen in the present study. The change 

in the Fraenkel force constant does not affect the validity of the simulation results. Changes in the 

Gs(t) line shapes as a function of the LJ potential parameters *(= /kBT) (well depth) and   (bead 

diameter) have been investigated in detail. The generic structure-property relationship in the 

polymer system has unraveled the cause of the observed thermorheological complexity. The 
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7 
 

structural parameters (obtained from optimal fitting of the simulation data to the experimental G(t) 

curves at different temperatures) are found to be more than satisfactory to account for the 

thermorheological complexity in the homopolymer system, around the glass transition point. 

 

         The rest of the article has been organized as follows. We have presented the methodology of 

the simulations and the scheme for data analysis in Section 2. Results and discussion have been 

presented in Section 3, revealing the importance of the parameters * and   in dictating the 

relaxation behavior in the entire time region. The said parameters have been optimized so as to 

match the simulation Gs(t) data with the experimental G(t) line shapes of a monodisperse 

polystyrene sample. The applicability of the modified stress-optical rule (MSOR) has been verified 

by partitioning the simulation Gs(t) into contributions due to the glassy behavior and rubbery state, 

with different stress-optical coefficients for each. Thermorheological complexity emerges as a 

natural phenomenon as the temperature is lowered towards the Tg of the system. The requirement 

of a longer length scale at the Tg has been fulfilled by a larger value of the  parameter. A critical 

discussion on the thermorheological complexity around the Tg has also been included. Section 4 

lists the conclusions from the study and outlines possible avenues which need to be explored in 

the future. 

 

2. Methodology 

        For the purpose of calculating the relaxation modulus curves for the polymeric system, we 

construct the coarse-gained systems consisting of c chains, each with N beads. The chains have 

been modeled as bead-spring chains of LJ particles interacting through the Fraenkel potential30 

(for the bead-bead backbone) and the modified LJ potential for the non-neighbor beads. As the 
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main interest of this article is to recreate the thermorheological complexity, we have considered 

multiple chains whose center of mass (COM) positions are confined in a cubic simulation box of 

edge length L. During the Monte Carlo simulation of these systems, periodic boundary conditions31 

have been applied, based on the position of the COM of each chain. Initial configurations of chains 

of N beads have been generated as follows.32,33 Taking the first bead as the seed (placed arbitrarily 

at the origin), coordinates (xi, yi, zi) of the successive beads are generated using, 

 cossin1  ii xx ;  sinsin1  ii yy ;  cos1  ii zz ; for i = 2, 3, …, N; angles  

and  are obtained from qq  and ff*2   respectively, where qq and ff are two random 

numbers generated for each bead. Consecutive inter-bead distances are matched with , before 

accepting the coordinates of the new bead to build the chain. Once the first N-beads chain has been 

made, its COM is calculated and the chain is placed inside the cubic box. The second chain of the 

system was placed into the box in such a way that the COM of the second chain is at a radial 

distance of  from the COM of the first. The placement of the subsequent chains was done in a 

similar manner, avoiding overlap of the COMs. Each simulation box contains 16 chains, each with 

20 beads. Each system was then equilibrated for 105 MC steps during which several physical 

quantities were monitored. The production runs comprise another 105 MC steps on the equilibrated 

configurations. 

 

          For the bead-bead backbone, each bead interacts with its nearest neighbors in the same chain 

through the Fraenkel potential.30 

                                               𝑉Fraenkel (𝑟) =  
𝐻F

2
(𝑟 − 𝑏0)2                                   (1) 

where, HF is the force constant and b0 is the equilibrium bead-bead distance. Each bead of the 

chain interacts with all non-nearest neighbor beads in the same chain and all beads of the other 
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chains through the modified LJ potential as defined below. The LJ interactions are truncated and 

shifted to zero beyond a cutoff, rc = 2 ∗ (2)1 6⁄  𝜎 = 2.245. If the distance between two beads i 

and j is denoted by, 𝑟𝑖𝑗 = (𝑟𝑖 −  𝑟𝑗) with {ri} as the position vectors, the modified LJ potential is 

defined by, 

                       𝑉LJ(𝑟𝑖𝑗) = 4𝜖 [(
𝜎

𝑟𝑖𝑗
)

12

−  (
𝜎

𝑟𝑖𝑗
)

6

], for  𝑟𝑖𝑗 < 2 ∗ (2)1 6⁄  𝜎                 (2a) 

                       𝑉LJ (𝑟𝑖𝑗) = 0,   for   𝑟𝑖𝑗 ≥ 2 ∗ (2)1 6⁄                                                 (2b) 

where,  is the diameter of a bead and  is the energy parameter representing the depth of the 

potential. In the literature, a more familiar bonded interactions is the finitely extensible nonlinear 

elastic (FENE) potential function.34 For the simulation of the multiple polymer chain system, we 

have chosen the Fraenkel + LJ combination over the FENE + LJ combination. Although the latter 

is more frequently used in polymer simulations, it is asymmetric with respect to the equilibrium 

bond length (= 0.96).35 The Fraenkel + LJ combination does not have any appreciable asymmetry 

around the potential minimum, as shown earlier.32 

       We have set the thermal energy, kBT = 1 for the simulations (kB is the Boltzmann constant and 

T is the absolute temperature). Thus, the energy parameters such as HF*(= HF / kBT) and *(=  / 

kBT) have the unit of kBT = 1 implicit on them. For the simulations, we have set b0 = 1 and the bead 

diameter   is varied in the range from 0.08 to 0.65. 

       In the Langevin dynamics method, motion of each bead of the chain is governed by the total 

force on the bead, which comprises of force arising from potential, a frictional force and a random 

force.33 

                                     𝐅𝑖
𝑇𝑜𝑡𝑎𝑙 =  𝑚𝑖 

𝑑2𝐫𝑖

𝑑𝑡2
=  𝐅𝑖

𝐶 + 𝐅𝑖
𝐹 + 𝐅𝑖

𝑅
                                         (3) 
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where, mi is the mass of the bead. The force arising from the chosen Fraenkel + modified LJ 

potential are included in C

iF . The frictional force acting on the bead is, 𝐅𝑖
𝐹 =  − 𝜉𝐯𝑖, where iv  is 

the velocity of the bead and  is the friction coefficient. The friction coefficient  is related to the 

fluctuations of the random force, R

iF  through the fluctuation-dissipation theorem,36  

                                     0)( tR

iF                                                            (4a) 

                                 'B

' 6 ttTktt ij

R

j

R

i  FF                         (4b) 

where, kB is the Boltzmann constant and T is the absolute temperature of the system. 

          In the MC simulations, the continuous change in time, dt, is replaced by a small time step, 

t. If the position of the beads at a time step t is denoted by {ri(t)}, the bead positions at the next 

time step (t + t) is given by,27,28,33 

                          𝐫𝑖(𝑡 + ∆𝑡) = 𝐫𝑖(𝑡) +  (
𝑑2

2𝑘B𝑇
) 𝐅𝑖

𝑇𝑜𝑡𝑎𝑙(𝑡) + 𝐝𝑖(𝑡)                         (5)     

where,  F𝑖
𝑇𝑜𝑡𝑎𝑙 (t) is the total force exerted on the bead. The random step vector, di(t) is 

characterized by its first and second moments, 

                                                 〈𝐝𝑖(𝑡)〉 = 0                                                     (6a) 

                                      〈𝐝𝑖(𝑡)𝐝𝑗(𝑡′)〉 =  𝑑2𝑰𝛿𝑖𝑗𝛿(𝑡 − 𝑡′)                        (6b) 

where, I is a unit tensor.  

 

          The random displacement d, and time step t, are related through the diffusion constant D, 

of the chain27,28,32,33 
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

tTk
tDd


 B2 2

2                                                               (7) 

The friction coefficient () is dependent on the collision frequency () by, 𝛾 =  (
𝜉

𝑚𝑖
⁄ ). The 

quantity 1 can be considered as the time taken by the particle to lose memory of its initial velocity 

(or, 1  is the ‘velocity relaxation time’ of the particle).37 Therefore, eq. (5) and (7) are not in 

conflict with eq. (3) as the friction coefficient  contains the implicit dependence on bead mass mi. 

One may rewrite eq. (5) as, 

𝐫𝑖(𝑡 + Δ𝑡) = 𝐫𝑖  (𝑡) + 
Δ𝑡

𝜉
 𝐅𝑖

𝑇𝑜𝑡𝑎𝑙(𝑡) + 𝐝𝑖(𝑡) =  𝐫𝑖(𝑡) +
Δ𝑡

𝛾𝑚𝑖
𝐅𝑖

𝑇𝑜𝑡𝑎𝑙(𝑡) + 𝐝𝑖(𝑡)    (8) 

When the velocity relaxation time (
1 ) is much smaller than the integration time step (t), the 

motion is diffusive, and the interparticle force is assumed to be constant over t.  [See also Eq. 

(7.121) in Ref. 37].  

       The relaxation times of the (Fraenkel + modified LJ) chains need to be compared with those 

of the Rouse chains, for which exact analytical expressions are known.20,33,38 During the 

simulations, the periodic boundary conditions31 have been applied on the COM of the chains. This 

involves calculation of the COM at each simulation step; if the location of the COM is outside of 

the box, the whole chain is converted into its periodic image. Unlike in the simulation of systems 

comprising of small molecules, a considerable number of beads of the chains may lie outside of 

the cubic box. This does not cause problems in calculating the modified LJ forces on these beads, 

as the minimum image distance31 between any two beads is automatically used in calculating the 

interaction forces. 
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          We consider a sample of polymer melt placed between two parallel plates such that the 

adhesion between the sample and the plates is strong enough that there is no slippage at either 

surface. For simple shear applied on a perfectly elastic sample, the shear stress and the shear strain 

are linearly related and the constant of proportionality is known as the shear modulus.33,39 In the 

case of  a step-strain deformation applied on a viscoelastic material, the stress after such a step-

strain will have some general time dependence and the stress relaxation modulus is calculated as 

the ratio of the stress remaining at that instant and the magnitude of the step-strain applied.39 In 

order to obtain G(t) by simulation, one may consider the polymer chain of N beads to be subjected 

to a shear deformation E at time t = 0.27,28,33 

                                      


















100

010

01 

E                                                  (9) 

For linear viscoelasticity,  should be small (→ 0). This has been implemented in the simulations 

as below. At time t = 0, the coordinates of the ith bead are transformed as, 

                                      (

𝑥𝑖
′

𝑦𝑖
′

𝑧𝑖
′

) = (
1 𝜆 0
0 1 0
0 0 1

) (

𝑥𝑖

𝑦𝑖

𝑧𝑖

)                                (10) 

The evolution of the bead positions may then be calculated through the Langevin equation of 

motion. By making use of the Kramers-Kirkwood expressions for stress tensor,40,41 we may write 

the relaxation modulus of the sample as,27,28,33 

                                
 

   s

1
0

6 1
G t J J t

N
 

 




                         (11) 

with      



N

i

ii ttFtJ
1

  and ,  ≡ x, y, z ( ≠  for calculating J). The angular brackets 

signify the average over all the relaxation processes considered. 
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          The present study is devoted to examine the viscoelastic responses of the polymer melts. In 

spite of the differences that exist between the equilibrium and step-strain simulations in the 

relaxation behavior in the fast mode region, we use the equilibrium simulations in this study. The 

reasons have been explained in Appendix II. 

 

3. Results and Discussion 

3.1. Contribution of the inter-segmental interactions (ISI) to the Gs(t) 

        The Gs(t) line shapes obtained from the simulations of the multiple chain (16 chains × 20 

beads) systems using the Fraenkel + modified LJ interactions (open circles) for * = 0.05, 0.10 and 

0.15;   fixed at 0.25 are presented in Figure 1. In order to compare, the results of single 20-bead 

Fraenkel chains as single chain (open squares) and multiple chain (16 chains × 20 beads) systems 

using only the Fraenkel force (open triangles) are also shown. The three types of Gs(t) curves are 

finally compared with the Rouse analytical curves (solid lines). These are identified as mcTGs(t), 

scGs(t), mcFGs(t) and RouseGs(t), respectively [mcT ≡ multiple chain using total force, sc ≡ single 

chain, mcF ≡ multiple chain using only Fraenkel force]. For the sake of clarity, the * = 0.10 and 

0.15 family of curves are shifted vertically by two and four decades, respectively.  
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                             t, steps
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Figure 1: Comparison of the simulation Gs(t) curves at three different * = 0.05, 0.10 and 0.15 and 

with   fixed at 0.25. Results for 16 chains × 20 beads, Fraenkel + modified LJ: mcTGs(t):  (), 

total force being used in stress calculations; 1 chain × 20 beads, Fraenkel: scGs(t): (); 16 chains 

× 20 beads, Fraenkel + modified LJ: mcFGs(t): (), only the Fraenkel force being used in stress 

calculations. Also shown are the Rouse analytical curves () RouseGs(t),  for N = 20. To avoid 

overlapping, the families of curves at * = 0.10 and 0.15 have been shifted vertically by 2 decades 

and 4 decades, respectively. 

 

          It can be seen from Figure 1 that a close superposition of the mcTGs(t), scGs(t) and mcFGs(t) 

simulation data over the analytical RouseGs(t) data occur at the slow mode region without any 

shift in either the modulus or the time coordinates. Also, it is to be noted that the scGs(t) and 

mcFGs(t) curves are very close to each other both at the fast mode and slow mode regions. These 
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comparisons help us to disseminate the contributions from the modified LJ interactions, which 

contribute to the stress in the fast relaxation regime. We may rename these interactions to be the 

inter-segmental interactions (ISI). The observations suggest that the forces from the ISI (or, 

modified LJ interactions) fluctuate relatively fast and get averaged out in the long time region, 

resulting in a mean interactions field for each chain. Indeed, in the long time regime, there are no 

basic differences in the relaxation behavior between a single chain system and a multiple chain 

system. 

          Further, closer examination reveals that in the slow mode region, the mcTGs(t) curves are 

consistently closer to the Rouse analytical RouseGs(t) curve, than the scGs(t) and mcFGs(t) curves. 

This implies that the inter-segmental interactions have exerted a cohesive influence on the chain 

dynamics in the long time region; so that the entropic nature of the segmental motion is closely 

mimicked by the Rouse segment. This effect may also contribute to attest the success of the Rouse 

theory in explaining the experimental results in the long time region. 

 

3.2. Length scale of the inter-segmental interactions (ISI) 

         In order to bring out the significance of the length scale on the relaxation behavior, we need 

to examine the effect of changing the bead diameter on the Gs(t) curves. Figure 2 displays the 

mcTGs(t) curves at   = 0.25, 0.45 and 0.65 with * fixed at 0.05. For the sake of comparison we 

also present the full family of curves, namely, scGs(t), mcFGs(t) and RouseGs(t). It is evident that, 

at  = 0.65, the difference between the mcTGs(t) (open circles) and mcFGs(t) (open triangles) 

curves is most pronounced and the relaxation of the inter-segmental interactions mode covers the 

fast mode region and a large section of the slow mode region. By contrast, at   = 0.25, the range 
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of the ISI mode does not elongate much beyond the tail part of the fast mode, clearly indicating 

that the mcTGs(t) and mcFGs(t) curves to be identical in the slow mode region, from t  70 MC 

steps onwards (indicated by an arrow). As expected, an intermediate picture emerges for the  = 

0.45 case. 

          It is also noteworthy that the full mcTGs(t) curves at   = 0.45 and 0.65 are described by the 

Rouse theory in the slow mode region, despite a large section (up to ~200 MC steps for   = 0.45 

and ~1000 MC steps for   = 0.65) being much enhanced by the contributions from the ISI mode. 
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Figure 2: Comparison of the simulation Gs(t) curves at three different  = 0.25, 0.45 and 0.65 with 

 fixed at 0.05. Results for 16 chains × 20 beads, Fraenkel + modified LJ: mcTGs(t): (), total 

force being used in stress calculations; 1 chain × 20 beads, Fraenkel: scGs(t): (); 16 chains × 20 

beads, Fraenkel + modified LJ: mcFGs(t): (), only the Fraenkel force being used in stress 
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calculations. Also shown are the Rouse analytical curves () RouseGs(t),  for N = 20. To avoid 

overlapping, the families of curves at  = 0.45 and 0.65 have been shifted vertically by 2 decades 

and 4 decades, respectively. The arrows indicate the positions of f = (2/d2). 

 

           The exact contributions due to the ISI mode at different  values can be obtained by 

subtracting the mcFGs(t) (using only the Fraenkel force) curves from the mcTGs(t) (using the total 

force) curves and these are shown in Figure 3. The results indicate that with increasing bead 

diameter, the relaxation of the ISI mode becomes much slower with a delayed decrease of the 

modulus. 
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Figure 3: Comparison of the ISI modes for fixed * = 0.05 and at different   = 0.25 (), 0.45 () 

and 0.65 (); as obtained from the plots shown in Figure 2. The arrows indicate the positions of f 

= (2 /d2). The numbers adjacent to the curves indicate the  values. The inset shows the small 

negative values of the ISI modes in their tail parts. 
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           In polymer dynamics, a time scale is associated with a characteristic length scale of the 

system. The plots in Figure 3 suggest that the bead diameter   is a representative of such a length 

scale. As shown in Figures 2 and 3, the ISI mode ends approximately at the time step, f = (2/d2) 

(indicated by an arrow) in the cases of   = 0.25, 0.45 and 0.65. With the largest , the ISI mode 

extends to somewhat longer times revealing a crowding effect (see later) in the polymer system. 

 

3.3. Effect of the well depth parameter * 

        Figure 4 shows the contributions of the ISI modes at different * obtained by subtracting the 

mcFGs(t) (using only the Fraenkel force) curves from the mcTGs(t) (using the total force) curves 

displayed in Figure 1. After normalization to unit initial modulus (inset B in Figure 4), the three 

curves of  = 0.05, 0.10 and 0.15 are very close to one another and end at nearly the same time 

step. In Figure 2, we have demonstrated that by increasing bead diameter  at a fixed value of , 

one can achieve an enhanced Gs(t) accompanied with a longer time scale for the relaxation. 

Similarly, by increasing  at a fixed value of bead diameter , an enhanced Gs(t) results, but with 

no increase in the time scale for relaxation. A small negative region at the tail part of the ISI mode 

may be noticed (inset of Figure 3 and inset A of Figure 4) for small  and large *, which is of no 

particular importance because of its small magnitude. 
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Figure 4: Comparison of the ISI modes for  fixed at 0.25 and different  = 0.05 (), 0.10 () 

and 0.15 (); obtained from the plots in Figure 1. The numbers adjacent to the curves indicate the 

 values. Inset A shows the small negative values of the ISI modes in their tail parts. Inset B 

shows the ISI modes normalized to unit initial modulus. 

 

3.4. Experimental G(t) curves of a nearly monodisperse polystyrene sample 

         It has been shown that a change in * affects the modulus level (Figure 1) while a change in 

  affects both the modulus level and the time scale (Figure 2) of the fast modes in the mcTGs(t) 

curves. Interestingly, the slow mode relaxation in the mcTGs(t) remains well described by the 

Rouse theory20 in all aspects; modulus level, time scale and line shape including the N and p 

dependences of the relaxation times.20,33,38 Thus, the motion in the slow mode may be interpreted 

in equivalent terms in the light of the Rouse theory. Following eqs. (5)-(8), using the same d in all 

the MC simulations implies using the same frictional factor in order to describe the relaxation 
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behavior of the polymeric system in terms of the Rouse theory.20 Clearly, all the mcTGs(t) curves 

at different * values (Figure 1) can be superposed on each other in the slow mode region without 

any shift. Experimentally, it is also known that the G(t) curves of an entanglement-free system 

measured at different temperatures can be superposed on each other over the slow mode region.6-

9,42 In the light of the Rouse theory, making such a superposition also means that the measured 

G(t) curves are normalized to share the same frictional factor,  

                                           
22

B

2

mTk

b
K




                                          (12) 

where, <b2> is the square of the segment length, m = (M/N) is the mass of a single bead and M is 

the molecular weight. Such a set of G(t) curves of the nearly monodisperse polystyrene system, 

whose weight average molecular weight is equivalent to N = 20, have been derived.42 Since all the 

MC simulations are performed on ideally monodisperse systems, we make use of the parameters 

obtained from the J(t) analyses to calculate the G(t) curves with N = 20, which are shown in Figure 

5. 
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Figure 5: Experimental G(t) curves calculated for different temperature differences from the glass 

transition point; T = 400 C, 200 C, 100 C, 50 C and 00 C (indicated by the numbers adjacent to the 

curves) for an ideally monodisperse sample with N = 20 using the parameters obtained from 

analyzing the J(t) results of a polystyrene sample (molecular weight 16400, polydispersity index 

1.05).42 Note, the mass of a Rouse segment = 850. The (+) symbols represent the Rouse relaxation 

times of different modes. All the curves are normalized with respect to the frictional factor K = 

104 and the reference temperature for the modulus is 373 K. 

 

          It is evident from the family of curves in Figure 5 that the glassy relaxation region of the 

Gs(t) curves for smaller T extend to longer times, indicating a stronger temperature dependence 

of the relaxation process in the fast mode. This makes the monodisperse polystyrene sample to be 

thermorheologically complex. Earlier, we have defined the well depth parameter in the modified 

LJ potential as, * = /(kBT). Thus, a lower temperature means a larger * and vice versa. With 

decreasing temperature the well depth parameter in the LJ potential becomes larger. As the density 
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of the polymer system increases, there is enhanced cooperativity in various modes of motion.43,44 

In the light of the inverse relation between * and T, one can superpose the mcTGs(t) curves at * 

= 0.05, 0.10 and 0.15 (Figure 1) on one other in the slow mode region. This can be viewed as 

equivalent to the experimental results at different temperatures being superposed on one another 

over the slow mode region (Figure 5). Then an increase in * causing an enhancement in the 

modulus level of the fast mode is equivalent to a decrease in system temperature. As a 

consequence, the glassy relaxation process gets extended to longer times. However as seen in 

Figure 4, an increase in * alone is not enough to cause the modulus change and time scale change 

in the mcTGs(t) line shapes. We also need to incorporate a simultaneous increase in the length 

scale (increase in ) in reproducing the experimental G(t) curves. 

 

3.5. Simulation of the thermorheological complexity 

           For the MC simulations on the multiple chain systems, the computations of the Gs(t) curves 

are strongly dependent on the choice of * and , affecting the modulus, time scale and length 

scale. As these two simple structural units (* and ) are coarse-grained in nature, a perfect 

collective description of the experimental G(t) curves over the whole time range is not expected. 

The MC simulations mimicking the experimental curves need to be judged with such a perspective. 

           The generation of the mcTGs(t) curves by MC simulations proceeds in the following way. 

First, we focus on the fast mode region, as changes in * and   do not greatly affect the close 

agreement at the slow mode region. Considering the coarse-grained nature of the two structural 

units, the priority is first to seek a close agreement between the simulation and experiment over 

the tail part of the fast mode. Guided by the ISI contributions to the Gs(t) (Figure 2 and 3), the bead 
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diameter parameter   has a dominating influence in dictating the time scale of the tail part of the 

fast mode. Thus, using an approximate * value, the  value is first determined by the close 

agreement in the tail part of the fast mode. Then, with this  value fixed, the * value is adjusted 

to achieve finer agreement between simulation mcTGs(t) and experimental G(t), over a time range 

as wide as possible. Further refinement may be achieved by altering the  value slightly. 
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Figure 6: Experiment vs simulation. Simulation mcTGs(t) curves (points) match with the 

experimental G(t) curves calculated for the nearly monodisperse polystyrene sample (molecular 

weight 16400, polydispersity index 1.05) shown in Figure 5. The fitting parameters (, *) are: 

(0.08, 0.03) for T = 400 C, (0.215, 0.075) for T = 200 C, (0.36, 0.15) for T = 100 C, (0.49, 0.22) 
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for T = 50 C and (0.65, 0.34) for T = 00 C, calculated at a packing fraction 0.5. The simulation 

results are obtained using, d = 0.03 () and d = 0.01 ().45 The time coordinate matches with the 

MC time step based on d = 0.03. For comparison, the single Fraenkel chain result, scGs(t) (---) and 

the Rouse analytical curve, RouseGs(t) () are also shown. The simulation data have been 

multiplied by the shift factor 3.75 × 107 dyne/cm2 for matching with the experimental G(t). The 

(+) symbols represent the Rouse relaxation times of different modes. Solid colored lines are the 

experimental G(t) curves (of Figure 5), each at T indicated. To reflect the change of line shapes 

with temperature, the experimental G(t) curves at T values other than the indicated one, are shown 

as dotted lines. To avoid overlapping, the families of curves at T = 200 C, 100 C, 50 C and 00 C 

have been shifted vertically upwards by 2, 4, 6 and 8 decades, respectively. 

 

            The comparisons of the simulation mcTGs(t) and the experimental G(t) at different T 

values are shown in Figure 6, for a packing fraction 0.5. We observe that a reasonably good 

agreement has been achieved between the simulation data and the experimental line shapes. For 

the sake of comparison, the single Fraenkel chain simulation result, mcFGs(t) and the Rouse 

theoretical curve, RouseGs(t) are also shown in Figure 6. Despite the coarse-grained nature of the 

structural units (, *), the agreements observed in the cases of T = 400 C, 200 C and 100 C are 

amazingly good; slight differences occur only in the very-short-time regions. Except for these 

negligible differences, the agreements between simulations and experiments over both the fast 

mode and slow mode regions for T = 400 C, 200 C and 100 C are quantitatively successful, 

attesting that the choice of (, *) to be optimum for the MC simulations. 

           It is implicitly assumed that for a viscoelastic sample, the dynamic behavior at length scales 

above the chosen bead diameter () is ergodic.46 In the MC simulations reported here, the   

parameter is finite and increases with the decrease in temperature. This implies that some loss of 
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ergodicity has occurred at length scale smaller than . As the temperature gets closer (T = 50 C 

and 00 C) to the glass transition point (Tg), where loss of ergodicity is expected to be more 

extensive, the assumption of ergodicity at length scales above  in the simulations needs to be 

verified. This suggests an additional loss of ergodicity is expected at temperatures closer to the Tg. 

Despite this presumption, one still sees reasonably good agreements between the simulation data 

and the experimental G(t) at T = 50 C and 00 C. Most importantly, the simulation data are more 

than adequate to fully describe the entropic Rouse region at these two temperature differences. The 

slow mode relaxation in the long time region maintains its entropic nature even at the glass 

transition temperature. This leads to infer that the loss of ergodicity occurring at temperatures close 

to the Tg is expected to affect mainly the glassy relaxation in the short time region. 

             Additionally, in Figure 6, the vertical arrows indicate the positions of f  = (2/d2) for each 

of the mcTGs(t). The fast mode relaxation ends at time f; in other words, the ISI interactions get 

averaged out over a time period of f, except for the case of  = 0.65, which is due to the crowding 

effect. Judging from the f  positions (f   7, 52, 144, 267 and 469 MC steps for T = 400 C, 200 

C, 100 C, 50 C and 00 C, respectively) it is clear that the crowding effect47,48 observed in the 

mcTGs(t) curves with large   (Figure 2) also occurs at T = 50 C and 00 C (Figure 6). The said 

effect prevents an accurate description of the intermediate part and the tail part of the glassy 

relaxation (fast mode) using the MC simulation data, suggesting a limitation of the mcTGs(t) 

curves using the (, *) values at T = 50 C and 00 C. An additional loss of ergodicity at length 

scales above  near the Tg results in the crowding effect in the system. Obviously, the disagreement 

between the simulation Gs(t) data and the experimental G(t) at the glassy relaxation region reflects 

this additional loss of ergodicity at length scales above , being ignored in the MC simulations. 
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              As explained above, at temperatures close to Tg, the trajectories of the segmental motion 

in real systems at the glassy relaxation region are expected to be quite different in terms of 

ergodicity. However, such nonergodic movements may lead to the expected Rouse behavior in the 

entropy driven region (in the slow mode), when the ergodicity is recovered.19 Such an analysis of 

the recovery of ergodicity has been presented by Sillescu49 in the case of a dynamically 

heterogeneous glass forming system at temperatures close to the Tg. According to this analysis, a 

system may be heterogeneous and nonergodic at times less than a second, but becomes perfectly 

homogeneous and ergodic on a time scale of hours. This picture emerges naturally in the case of 

the mcTGs(t) curves at T = 50 C and 00 C (Figure 6). 

          We now present the optimized values of (*, ) used in the matching of the mcTGs(t) curves 

with the experimental G(t) curves in Figure 7.  
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Figure 7: The optimized values of * and  as a function of T obtained from the matching of the 

mcTGs(t) curves with the experimental G(t) curves. Colored arrows indicate the ordinate scales 

(red for *, blue for ). 
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          As temperature decreases to approach the Tg, both * and  increase in magnitude. While 

an increase in * account for an increase in the relaxation modulus, an increase in  brings in two 

effects, increase in the modulus and an increase in the length scale for the glassy relaxation. The 

increase in the length scale is generally estimated by monitoring the structural relaxation time with 

respect to the relaxation times of the Rouse normal modes of motion (in the entanglement-free 

cases) or the Rouse-Mooney normal modes of motion (in the entangled cases).38 

 

3.6. Correlation between stress and segmental orientation: Verification of the modified 

stress-optical rule (MSOR) 

        Following the application of the step deformation, the polymeric material exhibits anisotropic 

behavior in stress as well as in refractive index. For the polymeric system, the measured 

birefringence (resulting from the variations in the refractive index due to anisotropy) is directly 

proportional to the stress and the relation is known as the stress-optical rule. The modified stress-

optical rule (MSOR), which incorporates the deviations at short times, can be written as,10,11  

                                                  𝐺(𝑡) = 𝐺G(𝑡) + 𝐺R(𝑡)                                      (13a) 

                                                𝑀(𝑡) = 𝐶G𝐺G(𝑡) + 𝐶R𝐺R(𝑡)                               (13b) 

where, GG(t) is the glassy modulus, GR(t) is the rubbery (plateau) modulus, M(t) is the 

birefringence and CG and CR are the stress-optical coefficients. Mechanical stresses can be 

interpreted in terms of anisotropies in molecular orientations. Hence, in the multiple chain system, 

one expects the stress modulus to be proportional to birefringence, in short as well as in long times. 

For a polymeric system, the orientational tensor of a bond segment b can be conveniently defined 

as,50,51  
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                                               𝑆𝛼𝛽 =  〈𝑏𝛼𝑏𝛽〉 −
1

3
𝛿𝛼𝛽                                       (14) 

where ,  are the Cartesian components (≡ x, y, z) of the bond segment vector and  is the 

Kronecker’s delta. In order to examine the validity of the MSOR,10,11,29,52  we have monitored the 

function <bx(t)by(t)> of the 16 chains × 20 beads system, under step-shear deformation,  = 0.2. 

The ISI parameters ( = 0.36, * = 0.15) correspond to T = 100 C of the monodisperse polystyrene 

sample (Mw = 16400). In order to match with the simulation mcTGs(t) curve, the function 

<bx(t)by(t)> needs to be multiplied with the appropriate factors to obtain the glassy modulus, GG(t) 

and the rubbery (plateau) modulus, GR(t). Figure 8 presents the results for  = 0.2 at T = 100 C. 

It is evident that GG(t) is associated with the fast mode and GR(t) is the counterpart representing 

the slow mode. The matching of the mcTGs(t) curve with CG<bx(t)by(t)> in the fast mode and with 

CR<bx(t)by(t)> in the slow mode yielded the values of the stress-optical coefficients, CG and CR, 

respectively. The values are: CG = 9.5 × 1011 Pa1 and CR = 1.2 ×108 Pa1. In addition, the 

calculated first normal stress difference, N1(t) is positive implying that there is a higher degree of 

orientation in the direction of flow (Figure S1 in the Supporting Information). The second normal 

stress difference, N2(t)  is about 3 to 10 times smaller than N1(t) and mostly negative in sign (Figure 

S2 in the Supporting Information).28,53,54  

            The magnitudes of the CG and CR estimated through step-shear simulations modestly differ 

from the reported values for polystyrene10,11  [CG = 3.2 × 1011 Pa1 and CR = 5.0 ×109 Pa1]. We 

attribute the differences due to the following reasons: (1) The measured Young’s modulus and 

birefringence data by Inoue et al10,11  at several temperatures cover a range of 104 sec to 10+7 sec 

in time (11 decades), while our MC simulation data (Figure 6) attempt to match the experimental 

G(t) curves in a much shorter time window (only 6 decades, from 101 sec to 10+5 sec). Even for 
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this shorter time window, we notice that small discrepancies do exist in the matching between 

experimental G(t) and simulation Gs(t) at shorter times (< 1 sec). Thus, Inoue et al’s data are more 

accurate and the MC simulation data reported here are only of generic nature. (2)  We have chosen 

a temperature of T = 100 C, which is not very far from the Tg. As pointed out by Osaki and 

Inoue,52 that the MSOR is valid only approximately and may not be valid even approximately, for 

polymers with low stress-optical coefficients. Moreover, the validity of the stress-optical law holds 

for single-phase melts and entangled solutions, that are well above their glass transition 

temperatures, as long as the chain deformation is not so large so as to be treated as nonlinear.55-57 

(3) Our choice of  = 0.2 for the step-shear deformation is somewhat arbitrary, which may not 

precisely meet the linearity requirement as stated in (2). (4) In the present context, the origin of 

the negative value of the CR coefficient lies in the much wider time scale employed in the 

birefringence experiment,10,11 which are not accessed by the MC simulations in this work. When 

we match the full mcTGs(t) curve with CR<bx(t)by(t)> in the slow mode for a much shorter time 

window, there are no occurrence of a negative value of the CR. This requires further investigations 

for confirmation. 
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Figure 8: Modified stress-optical rule illustrated by the simulation mcTGs(t) curve of the 16 chains 

× 20 beads system, using  = 0.36 and * = 0.15 (corresponding to T = 100 C of the monodisperse 

polystyrene sample of Mw = 16400). The simulation data (open triangles and circles) have been 

multiplied by the shift factor 3.75×107, hence the ordinate is named as Gs
*(t). Following the step-

shear deformation, the bond segmental anisotropy was monitored by the function <bx(t)by(t)>, 

where bx(t) and by(t) are the x- and y- components, respectively, of the bond segment vector. The 

red curve is the GG(t) (≡ modulus of the glassy state) and the blue curve is GR(t) (≡ modulus of the 

rubbery state). GG(t) has been obtained as CG*<bx(t)by(t)>, for 1 ≤ t ≤ 100 MC steps, while  GR(t) 

has been obtained as CR*<bx(t)by(t)>, for the entire time range. The estimated values of CG and CR 

are 9.5 × 1011 Pa1 and 1.2 ×108 Pa1, respectively. 

 

3.7. Mean interactions field formed by the modified LJ potential 

           We now show the nature of the modified LJ potential function defined in eq. (2) using the 

optimized * and   values from the matching of the mcTGs(t) curves with the experimental G(t) 

curves. Figure 9 displays the potential functions for T = 400 C, 200 C, 100 C, 50 C and 00 C. In 
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order to avoid the singularity at r = 0, we have used a left cutoff at 0.9  for all the potential 

functions.  

              r
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Figure 9: The modified LJ potential functions calculated using the optimized values of * and  at 

T = 400 C (dark red), 200 C (pink), 100 C (blue), 50 C (green) and 00 C (red) obtained from the 

matching of the mcTGs(t) curves with the experimental G(t) curves. The inset shows a blowup of 

the region around VLJ(r) = 0. 

 

         The introduction of the left cutoff in calculating the LJ interactions in the MC simulations 

has become necessary because the random step movement d [in eqs. (5)-(8)], along with the total 

force on the bead, decides the next step position of each bead. As the segments and beads used in 

the MC simulations represent structural units much larger than the atoms involved in the MD 

simulations, the time scale corresponding to the step length d is much longer than the typical time 

step ( 1 to 5 fs) employed in MD simulations. Because of these differences, the LJ or the modified 

LJ form of the potential cannot be used in the MC simulations without avoiding numerical blow-

ups in the computations. Conventionally, a coarse-grained structural unit needs to possess certain 
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flexibility (i.e., a coarse-grained bead is not synonymous to a rigid impenetrable atom). The LJ or 

modified LJ form which can properly model the inflexible spherical shape of an atom cannot be 

used to model a bead representing a chain section in the MC simulations because of the requisite 

flexibility. This implies that the potential in the core part of a bead cannot be impenetrable (like 

that in an atom). The core part of the LJ potential for a bead (as shown in Figure 9) thus represents 

a penetrable resistance to the approach of another bead. This can be demonstrated by monitoring 

the fluctuations in the distance between a tagged bead from its nearest neighbor, whose identity 

may change with time. During the monitoring, it may actually occur that a nearest neighbor bead 

crosses over to the other side of the tagged bead, right through its center. From monitoring such a 

fluctuation, the probability distributions as a function of the distance between a tagged bead from 

its nearest neighbor can be obtained. These are displayed in Figure 10. The probability 

distributions illustrate the penetration effect; at higher T more number of penetrations is expected 

resulting in a small magnitude of the closest distance between two beads. As T decreases, the 

magnitude of the closest distance increases, confirmed by the gradual right shift in the probability 

maximum, from T = 400 C toT = 00 C (Figure 10). 

           As internal rotations are the key physical elements for the chain to be flexible, such 

penetrable resistance can be provided by the potential barriers to the internal rotation modes in a 

bead equivalent chain section. At low temperatures, the potential barrier is expected to be much 

higher than the thermal energy. Thus, as * increases (from * = 0.03 at T = 400 C to * = 0.34 

atT = 00 C), the core potential reaches higher magnitudes (Figure 9). The accompanied increase 

in the bead size  (from  = 0.08 at T = 400 C to  = 0.65 atT = 00 C) suggests enhanced 

cooperativity involving more number of internal rotation modes of the chains. 
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Figure 10: Contours of the probability histograms (with column width set at 0.005) as a function 

of the distance between a tagged bead (here, the tenth bead in a chain) and its nearest neighbor, 

corresponding to the modified LJ potentials shown in Figure 9. The left vertical line in each plot 

represents 0.9  (left cutoff) while the right vertical line represents the average distance between 

two beads, defined by 

31
3










cN

L
; c is the number of chains, each of N beads, enclosed in a cubic 

box of edge length L [for example, for the 16 chains × 20 beads system at T = 00 C, bead diameter 

= 0.65, box length is 4.5148, for a packing fraction of 0.5]. The colored lines are the probabilities 

for the T = 400 C (dark red), 200 C (pink), 100 C (blue), 50 C (green) and 00 C (red).  

 

Page 33 of 56 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



34 
 

             In the Rouse theoretical prescription, the beads in a chain are actually volume-less points. 

The present MC simulations consider that the LJ beads are penetrable, hence the beads can pass 

through each other. In addition, segments crossing each other are not ruled out in the MC 

simulations of the multiple chain systems, a feature also embedded in the Rouse chain model.20 

These are the unphysical events that may not take place in real systems; we encounter these in the 

simulations, as the involved structural units (* and ) are much larger than the microstructural 

length scale. Although a specific functional form of the potential has been given for the inter-bead 

interactions [eq. (2)], it just represents a mean interactions field for the system under investigation. 

Specifically, the interaction arising from the presence of a bead on one side of a ‘tagged bead’ is a 

part of the mean interactions field at the present time step, just as that due to the bead moving to 

the other side of the ‘tagged bead’ at the next time step. The same can be stated about a segment 

or a chain, before and after crossing each other. Thus, the unphysical event of a bead penetrating 

through or a chain crossing another chain are all parts of the approximation in the mean interactions 

field. Because the chain crossing is not forbidden, each chain does not feel the topological 

constraints due to entanglements and behaves as a topologically independent chain under the mean 

interactions field. This serves the purpose of our MC simulations for an entanglement-free system. 

            The MC simulations using the uniform mean field on single Fraenkel chains27,28 have 

revealed three important features: (1) the slow mode region is well described by the Rouse theory, 

(2) the mean squared end-to-end distance is in close agreement with the ideal value, (N1)b0
2, and 

(3) the applicability of the virial theorem. In the present multiple chain case, a closely similar time-

averaged mean field also leads to the same three features. 

             In Figure 1 and 2, we have noted the close similarity between the single chain scGs(t), and 

the multiple chain (using only the Fraenkel force) mcFGs(t) curves. (a) This implies that the mean 
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interactions field experienced by the multiple chain (using only the Fraenkel force), mcFGs(t) is 

closely similar to that in the single Fraenkel chain system, scGs(t). (b) A similar static mean field 

is indicated by the closeness of the mean square end-to-end distances of the multiple chain system 

to the ideal value of (N1)b0
2 for the different sets of * and  values; the largest deviation being 

~10%, occurring at T = 00 C, which is attributed to a large value of the bead diameter,   = 0.65. 

(c) The applicability of the virial theorem to the multiple chain system with (HF* = 600) is also 

indicated by the calculated average temperature 

                                            𝑇̅ =  
− ∑ ∑ 𝐹𝑗,𝑘

𝐹𝑟𝑎𝑒𝑛𝑘𝑒𝑙.𝑅𝑗,𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑁

𝑗=1
𝑐
𝑘=1

2𝑐(𝑁−1)
 = 3.16                            (15) 

being virtually the same as the equivalent quantity in the single-chain case,27,28  which is in 

agreement with the virial theorem. 

 

3.8. Dynamical length scale at T = 00 C 

            Being aware of the coarse-grained nature of the structural units (* and ) involved in the 

multiple chain system, one may make some rough estimate of the dynamic structural length scale 

() for the polystyrene system at the Tg. In comparison with the Fraenkel segment, which has some 

elasticity, the Rouse segment is too soft while the Kuhn segment is totally rigid. With a force 

constant HF* sufficiently large, a Fraenkel segment can be regarded as equivalent to a Kuhn 

segment as far as chain conformation is concerned. In view of this, the agreement of the simulation 

data on single Fraenkel chain with the Rouse theoretical prediction over the slow mode region has 

resolved the paradox in the success of the Rouse segment-based molecular viscoelastic 

theories.27,28  To be specific, the molecular weight of a Rouse segment (m) and that of a Kuhn 
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segment (MK) are equal.29 For the polystyrene system, both m and MK are nearly equal to 850.29 

One may estimate the segment length, bs = <b2>0.5 corresponding to m = MK = 850, in two different 

ways. The first is based on the relation 

                                   𝑏𝑠 = 𝑎 (
𝑚

𝑀𝑒
)

1 2⁄

                                      (16) 

where, a is the entanglement distance and Me is the entanglement molecular weight. The second 

one is defined by, 

                                 𝑏𝑠 =  (
𝑅𝑚

𝑀
) 𝑀K                                        (17) 

where, Rm/M is the ratio of the fully extended end-to-end distance to the molecular weight. Using 

Me = 13500 and a = 7.6 nm for polystyrene, one obtains bs = 1.91 nm from eq. (16).58 With Rm/M 

= 2.38 ×103 nm for polystyrene,29 we get bs = 2.02 nm from eq. (17). Both the calculations yield 

the value of  bs  2 nm. Thus, the unit length assigned to the Fraenkel segment, b0 = 1 with HF* = 

600 leads to, bs = <b2>0.5 = 1.004 ± 0.001 for the different sets of (*, ), is actually equivalent to 

 2 nm for the polystyrene system. Then, the  value being 0.65 at T = 00 C (Figure 7 and 9) is 

equivalent to a length of about 1.3 nm for polystyrene. From the analyses using the length scales 

of the Rouse or Rouse-Mooney modes of motion as the yardstick20-24 supported by the calorimetric 

estimation results,59 the length scale () of the glassy relaxation for polystyrene has been estimated 

to be = 3 nm59 at the glass transition point (Tg of the polystyrene sample = 1000 C).59  

          At T = 00 C, the range of influence of a bead is large enough to reach two beads 

simultaneously in a connecting segment, giving rise to an effective blob size which may be 

estimated as, (bs + ) ≈ 3.3 nm. This is the crowding effect mentioned in Section 3.5, as the tail 

Page 36 of 56Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



37 
 

part of the ISI mode extends beyond the time step, f  = (2/d2), in the case of   = 0.65 (Figure 2 

and 3). The crowding effect has also been detected in the case of T = 00 C, shown in Figure 6. 

Thus, in the MC simulations, we are able to roughly estimate the dynamical length scale to be,  

≈ (bs + ) ≈ 3.3 nm at the Tg.  

        The cooperatively rearranging regions (CRR) theory of Adam and Gibbs,60 predicts a gradual 

increase of the length scale with decreasing temperature towards the Tg. As the glass transition is 

approached, increasingly larger regions of the material are required to move simultaneously to 

permit flow. Quantitative estimation of the size of these regions have been reported by Berthier et 

al.61,62 Through their novel multipoint dynamical susceptibility measurements done on several 

molecular glass formers and colloids, these authors found that the dynamic susceptibilities display 

a peak at the average relaxation time, whose height increases when the dynamics slows down. This 

is considered to be a direct evidence of enhanced dynamic fluctuations and a growing dynamic 

length scale () near the Tg.
61 The height of the peak in the dynamic susceptibility yields a direct 

estimation of the correlation volume, Vcorr = (/a)3, where, a is the molecular size (≡ ‘bead’ size) 

of the glass former. This correlation volume is required to be evaluated using cp or cp [here, cp is 

the constant pressure specific heat, expressed in units of kB per ‘bead’; kB is the Boltzmann 

constant]. The space-time correlations in glass forming liquids may be better understood by 

determining the number of molecules that are dynamically correlated (Ncorr).
62 By analyzing the 

relaxation data of a host of supercooled liquids (including glycerol, o-terphenyl, salol, propylene 

carbonate, m-fluoroaniline, propylene glycol, B2O3, m-toluidine and decaline) obtained from 

various experimental studies such as dielectric spectroscopy, dynamic susceptibility, photon 

correlation spectroscopy, dynamic light scattering, optical Kerr effect and neutron scattering, 

Dalle-Ferrier et al62 have been successful in providing a convincing evolution of the dynamical 
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correlation, by plotting the Ncorr,T  data of the glass former materials against a ‘scaled’ time 

(expressed as the ratio of -relaxation time divided by 0, an arbitrary time of 1ps), when the glass 

transition is approached. The most interesting observation is that the Ncorr,T  (Tg) data of the 

different glass-formers are similar (namely, all lie between 8.2 and 15.9). However, one needs to 

recognize the underlying unresolved puzzle in the experiments performed to study the glass 

transition, as clearly pointed out in Ref. 62. To be specific, the high precision obtained in the 

dielectric spectroscopy experiments cannot be matched in other instrumental techniques. In the 

same spirit, different microscopic observables may or may not be correlated over different length 

scales.62 

 

          Following Berthier et al,61 one may now use the Ncorr,T  (Tg) data to roughly estimate the 

dynamical length scale () of the studied glass formers. The dynamical length scale data are in the 

range of 2.02a to 2.51a (where, a is the bead size). In the present work, a ≈ 2 nm. Thus, the glass 

forming materials considered by Dalle-Ferrier et al62 will have their dynamic length scales ranging 

between 4.04 nm to 5.02 nm.  

 

       To summarize this subsection on dynamical length scale: the calorimetric estimation yields, 

= 3 nm59 for polystyrene, the MC simulations give a rough estimate as ~3.3 nm for polystyrene, 

and the value predicted in multiple experiments is 4~5 nm. Such discrepancies in the estimation 

of   is not unexpected, considering the difference in precision that exists between probe to probe 

in experiments and also between numerical simulations vs. experimental evaluations.62  

 

3.9. A general picture for polymer viscoelasticity, rheological complexity and glass transition 
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          From the MC simulation study reported in this article, the following overall physical picture 

emerges for the polymer viscoelasticity. The relaxation modulus Gs(t) curves and the associated 

thermorheological complexity in a polymeric system are mainly determined by two factors: first, 

the bead-bead backbone factor, expressed in terms of the Fraenkel segment and characterized by 

its force constant, HF*. Representing the rigidity along the backbone of a polymer chain, HF* is 

mainly related to the force constants associated with the chemical bonds and the bond angles in 

the microstructure of the polymer. It is the backbone factor that is responsible for the temperature 

insensitive (i.e., independent of *, ) framework supporting the coexistence of the energetic 

interactions driven mode (fast mode) and the entropy driven mode (slow mode). The second is the 

inter-segmental interactions (ISI) factor, exclusively related to the (*, ). While the bead-bead 

backbone factor contains both potential and orientation anisotropy fluctuations, the ISI factor 

embodies only the potential fluctuations. As a result, both the bead-bead backbone and ISI factors 

contribute to the glassy (structural) relaxation while the backbone factor alone is responsible for 

the emergence of the entropic Rouse mode in the long time region. The ISI factor is closely linked 

to the potential barriers to the internal rotations in a polymer chain. As the temperature decreases 

towards the glass-transition point, the increase in the length scale and strengthening of the structure 

embodied in the ISI factor suggest enhanced cooperativeness involving more modes of internal 

rotation. This means that with decreasing temperature, internal rotation modes may cause 

retardation to rotation in one another, interlocking the partners to form a region, larger in size and 

more strongly held together (akin to the formation of dynamical heterogeniety17,61-64 in the system). 

          The finite potential height indicating the penetrability of the beads implies that the local 

structure forming a bead is not permanent. Thus, a bead may be regarded as representing a region 

of temporarily interlocked isomeric states. This implies that some loss of ergodicity has occurred 
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at length levels smaller than  over a time period that is increasingly long with decreasing 

temperature. The beads in the coarse-grained model that explains the thermorheological 

complexity represent a structure formed from the interactions among beads, each representing a 

region of temporarily interlocked isomeric states. Due to the thermal motions of the beads, this 

structure fluctuates in the presence of a uniform mean interactions field. It is reasonable to assume 

that the lifetime of the structure is the relaxation time of the ISI mode in the Gs(t). The correlation 

between the structures vanishes in the long time region, specifically after f = (2/d2) time steps. 

Thus, f  may be regarded as a time scale associated with the structure corresponding to length 

scale . 

           At T = 00 C, the interlocked structure not only has become large but also its life time has 

become longer (note, the delayed relaxation of the ISI mode). This may be regarded as a prelude 

to the extensive loss of ergodicity. Furthermore, severe crowding effect occurs at T = 00 C. Hence, 

although nonergodicity at length scales above  is absent in the MC simulations, the collective 

dynamics of the multiple chain system at T = 00 C could have produced the kind of physical 

condition that would invite additional nonergodicity into the system. This embodies the most 

mysterious physics related to the glass transition phenomenon. 

 

4. Conclusions 

            Monte Carlo simulations performed on single Fraenkel chains using appropriate force 

constant for the bead-bead backbone have yielded a two-mode behavior of the shear stress 

relaxation Gs(t) in homopolymer melts. Using a multiple chain description for the homopolymer 
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system, in which the inter-segmental-interactions (ISI) are built in, one can obtain nearly accurate 

Gs(t) curves which can be matched with the experimental G(t) curves, over a wide temperature 

range around the glass transition region. 

          The ISI are strongly dependent on the * (well depth) and   (bead diameter) parameters of 

the modified Lennard-Jones potential, used for a coarse-grained description of the polymeric 

system. It has been shown that a decrease in system temperature amounts to an increase in * and 

vice versa. This concept has been exploited in describing the temperature dependence of the 

experimentally observed relaxation modulus G(t) line shapes. 

            The experimental G(t) curves at different temperatures have been mimicked by the MC 

simulations on multiple Fraenkel chains with the inclusion of the ISI. It has been shown that two 

important factors dictate the generic behavior in the thermorheological complexity. The first is 

referred to as the backbone factor and is characterized by the Fraenkel force constant HF*. This 

factor represents the rigidity along the backbone of the polymer chain and is responsible for the 

coexistence of the energetic interactions driven (fast mode) and the entropy driven (slow mode) 

relaxations in Gs(t). The second is the ISI factor defined in terms of * and . In the normalized 

time scale, with decreasing temperature, the gradual strengthening of the ISI factor causes the fast 

mode to extend to the longer times while the slow mode remains unperturbed (described by the 

Rouse theory). This picture represents the essence of the thermorheological complexity in the 

homopolymer system. 

          In addition to the generic behavior of the thermorheological complexity revealed through 

the simulations, we have also shown the applicability of the modified stress-optical rule (MSOR) 

by partitioning the typical Gs(t) curves (at a step-shear deformation  = 0.2) into glassy and rubbery 
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components. The simulation Gs(t) data obeyed Inoue-Okamoto-Osaki’s MSOR, with different 

stress-optical coefficients for each of the glassy relaxation and entropic (rubbery) relaxation 

modes. 

         With decreasing temperature, the gradual hardening of the ISI factor is indicated by the 

increase in the bead size   parameter and increase in the height of the potential (caused by the 

increase in *) in the core part of the bead. The penetrability of the beads implies that the local 

structure forming a bead is not permanent. Such finite height of the potential can be provided by 

the potential barriers to the modes of internal rotation in a bead equivalent chain section. With 

temperature decreasing towards the glass transition point, a bead becoming harder may be regarded 

as representing the formation of a region of temporarily interlocked isomeric states. Near the Tg, 

the fluctuating interlocked structure formed with the characteristic length , has a lifetime of f  = 

(2/d2), when nonergodicity does not occur. As ergodicity is implicit in the MC simulations, 

nonergodicity at length levels above  is neglected in the simulations. Such nonergodicity is a very 

important factor to describe the motion of the beads, when the temperature is just a few degrees 

away from the Tg. Using this picture, the generic behavior of the thermorheological complexity, 

which begins to show up at T = 400 C in polystyrene melts, can be explained effectively in terms 

of the two parameters (*, ). 

           It may be worthwhile to derive analytical expressions to describe the temperature 

dependence of the experimental G(t) curves. One such paper has recently appeared33 in the case of 

a polymer blend system in the molten state, describing the fast mode as a stretched exponential, 

slow mode in terms of the Rouse theory and the intermediate time regime has been quantified 

using a polynomial with several fitting parameters. The unexplained part of the thermorheological 

Page 42 of 56Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



43 
 

complexity and exact quantification of the nonergodicity in influencing the glassy relaxation 

behavior need further detailed investigations in the near future, as echoed by Ngai and Plazek in 

their recent paper.5 

 

Appendix I 

Effect of the change in HF on the Gs(t) line shapes of single Fraenkel chains 

           The single Fraenkel chains studied in Refs. 27 and 28 are equivalent to systems consisting 

of independent chains formed from coarse-grained structural units in an implicitly assumed mean 

interactions field. The value of HF* = HF/(kBT) = 400 chosen for the Fraenkel segment had enabled 

the model to explain successfully the coexistence and relative positions of the fast relaxation and 

slow relaxation modes in the Gs(t), observed experimentally. Even so, the choice of  HF* = 400 

may still be regarded as somewhat arbitrary. In the present MC simulations, the inter-segmental 

interactions are included, enabling us to simulate the Gs(t) line shapes observed at different 

temperatures collectively and also to explain the thermorheological complexity in the 

homopolymer system. In order to achieve a better matching with the experimental G(t) line shapes, 

one needs to examine the role of changing the value of HF* in influencing the Gs(t) data sets in the 

multiple chain systems. 
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Figure 11: Comparison of the simulation Gs(t) curves of  single 20-bead Fraenkel chains with HF* 

= 200 (), 400 (), 600 () and 800 (). Also shown is the Rouse theoretical curve () for N = 

20, without any shift in both modulus and time.  

 

             The simulated Gs(t) curves of single 20-bead Fraenkel chains with HF* = 200, 400, 600 

and 800 are compared in Figure 11. No results for HF* larger than 800 are shown; because for HF* 

≥ 900, the Fraenkel potential becomes too steep for the chosen step length, d = 0.03, causing 

numerical blow ups in the simulations. Also shown in Figure 11 is the Rouse theoretical curve 

without any shift in both the modulus and time coordinate. It is evident from the comparison that, 

both the modulus level and the relaxation time scale of the fast mode are affected by the change in 

HF*. By contrast, only the modulus level of the slow mode is slightly affected by changing the 

HF*. All the four curves superpose closely on the Rouse theoretical curve over the slow mode 

region by a vertical shift of not more than 10%. In spite of these small differences, the analyses 
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reported in Refs. 27 and 28, identifying the slow mode as an entropic mode remain valid in all of 

these four cases. 

            The Gs(t) curve of HF* = 600 (open circles) appears to be very close to the Rouse analytical 

curve in the slow mode region without any shift. Furthermore, HF* = 600 chosen for the present 

study in the multiple chain system, appears to provide an optimum overall description of the Gs(t) 

curves at different temperatures when the inter-segmental interactions are included. The trend of 

small upward shift along the modulus coordinate as N increases from 2 to 5 to 10 to 20 in the case 

of HF* = 400 (Figure 3 of Ref. 27) is also observed in the cases of other HF* values. 

 

Appendix II 

Comparison of equilibrium simulation Gs(t) and step-strain simulation Gs(t)  

           In the single Fraenkel chain cases studied earlier,27,28 shear stress relaxation modulus Gs(t) 

curves had been calculated by the MC simulations in the equilibrium state and also after the 

application of a step-shear deformation at t = 0. While the fluctuation dissipation theorem36 was 

perfectly demonstrated in the Rouse chain model (Figure 1 of Ref. 27), virtually indistinguishable 

agreements between the two types of simulations were observed (Figure 7 of Ref. 27) in the 

Fraenkel-chain model, when N is sufficiently large (N ≥ 10). In the presently studied multiple chain 

case, a large discrepancy is observed between these two types of simulations in the fast mode 

region, while close agreement has been achieved in the slow mode region. This is illustrated in 

Figure 12 by the comparison of the results of the two types of simulations using the parameters 

(* = 0.15,   = 0.36) for the experimental G(t) curve of T = 100 C (Figure 6).  
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Figure 12: Comparison of the Gs(t) curves [with the * = 0.15 and  = 0.36 values for obtaining 

the T = 100 C  mcTGs(t) curve, shown in Figure 6] obtained from simulations in the equilibrium 

state and following the application of a step-shear strain ( = 0.2). Equilibrium simulations: (●) 

for total force being used in stress calculations, (▲) for only the Fraenkel force being used in stress 

calculations. Step-strain simulations: () for total force being used in stress calculations, () for 

only the Fraenkel force being used in stress calculations. Also shown is the Rouse theoretical curve 

() for N = 20, without any shift in both modulus and time. 

 

             From Figure 12, it is evident from the comparison that, the ISI mode does not contribute 

to the fast mode in the case of a step-strain simulation. Apparently this is due to the fact that the 

inter-segmental interactions remain uniformly distributed (like in the equilibrium state) after the 

application of step-shear deformation. In other words, the configuration distribution associated 

only with the modified LJ interactions in an equilibrium state is hardly disturbed by the step-shear 
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deformation at t = 0. Furthermore, the mechanism for the ISI mode to occur in the equilibrium 

simulation may be through a coupling between the Fraenkel and modified LJ interactions as 

suggested by the existence of the crowding effect (Section 3.5). Supporting such a mechanism is 

the observation that the ISI mode gets weakened and relaxes faster with the decrease in the bead 

number per chain (shown in Figure 13), corresponding to the decrease in the average number of 

Fraenkel segments per bead in the system. Such an effect may contribute to the experimentally 

observed steep decline in the glass transition temperature of a polymer with decreasing molecular 

weight in the low molecular weight region (especially, below the entanglement molecular 

weight).65-67  

                    t, steps
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Figure 13: Comparison of the equilibrium simulation Gs(t) curves with * = 0.05,  = 0.25 and 

packing fraction 0.5 for different chain lengths, N = 20, 10, 5 and 2. () for (16 chains × N beads), 
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total force being used in stress calculations; (---) for (16 chains × N beads), only the Fraenkel force 

being used in stress calculations. Also shown are the corresponding Rouse theoretical curves () 

for N beads, without any shift in both modulus and time. To avoid overlapping, the families of 

curves for N = 5, 10 and 20 have been shifted vertically by 2, 4 and 6 decades, respectively. 

  

           As pointed out earlier (para 2 of this appendix), the coupling between the ISI and Fraenkel 

interactions is not estimated by the applied step-strain. As a consequence, the ISI mode does not 

show up in the step-strain simulations. On the other hand, the experimental G(t) curves (compared 

with the equilibrium simulation Gs(t) curves in Figure 6) are the corresponding relaxation modulus 

curves obtained following a step-shear deformation. Thus the comparison between the simulation 

data and the experimental line shapes (Figure 6) has a logical gap corresponding to the differences 

between the equilibrium and step-strain simulations over the fast mode region. Ignoring the 

differences between the equilibrium and step-strain simulations for the moment, the present study 

not only represents the first creation of the thermorheological complexity phenomenon by the MC 

simulations but also describes the generic effect to a high degree of success. In view of the general 

equivalence between fluctuations and dissipation, the interpretations based on the successful 

equilibrium MC simulations should still be valuable. 
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Figure caption: Thermorheological complexity in polystyrene near the glass transition 

point has been created through Monte Carlo simulations. 
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Figure S1: Time dependences of the first normal stress difference, N1(t) (open circles), 4(<bx(t)
2> 

 <by(t)
2>) (red curve) and 4(<ux(t)

2>  <uy(t)
2>) (blue curve), obtained from the simulation of the 

16 chains × 20 beads system, using   = 0.36 and * = 0.15 (corresponding to T = 100 C of the 

monodisperse polystyrene sample), for a step-shear deformation  = 0.2. Here, bx(t) is the x-
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component of the bond segment vector and ux(t) is the corresponding unit vector component. The 

important feature of these results is that the first normal stress difference is proportional to the 

corresponding orientation components in the slow mode region, by a factor of 4. This confirms the 

entropic nature of the slow mode (see text, Section 3.6). 
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Figure S2: Time dependences of the second normal stress difference, |N2(t)| (open circles), 

4(<by(t)
2>  <bz(t)

2>) (red curve) and 4(<uy(t)
2>  <uz(t)

2>) (blue curve), obtained from the 

simulation of the 16 chains × 20 beads system, using   = 0.36 and * = 0.15 (corresponding to T 

= 100 C of the monodisperse polystyrene sample), for a step-shear deformation  = 0.2. Here, by(t) 

is the y-component of the bond segment vector and uy(t) is the corresponding unit vector 

component. The vertical line indicates the time step where N2(t) changes the sign. The important 

features of these results are: (1) the second normal stress difference is about 1/3 to 1/10 of the first 

normal stress difference (Figure S1), (2) |N2(t)| is proportional to the corresponding orientation 

components in the slow mode region, by a factor of 4, and (3) Negative values of the functions, 

4(<by(t)
2>  <bz(t)

2>) and 4(<uy(t)
2>  <uz(t)

2>) indicate that the z-components of the bond 

segment vector and unit vector are larger in magnitudes. This confirms that the orientation in the 

y-direction is depleted of polymer orientations relative to the z-direction. 
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