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Mitchella* 

Over the past decade, pharmaceutical companies have seen a decline in the number of drug 

candidates successfully passing through clinical trials, though billions are still spent on drug 

development. Poor aqueous solubility leads to low bio-availability, reducing pharmaceutical 

effectiveness. The human cost of inefficient drug candidate testing is of great medical concern, 

with fewer drugs making it to the production line, slowing the development of new treatments. In 

biochemistry and biophysics, water mediated reactions and interactions within active sites and 

protein pockets are an active area of research, in which methods for modelling solvated systems 

are continually pushed to their limits. Here, we discuss a multitude of methods aimed towards 

solvent modelling and solubility prediction, aiming to inform the reader of the options available, 

and outlining the various advantages and disadvantages of each approach. 

 

1. Introduction 1 

 Poor aqueous solubility is a major cause of attrition (failure) 2 
in the pharmaceutical development process and remains a vital 3 
property to quantify in the development of agrochemicals, and 4 
in the identification and quantification both of metabolites and 5 
of potential environmental contaminants. It is estimated that 6 
around 70% of pharmaceuticals in development are poorly 7 
soluble with 40% of those currently approved also being poorly 8 
soluble.1,2 Solubility is determined by structural and energetic 9 
components emanating from solid phase structure and packing 10 
interactions, in addition to relevant solute–solvent interactions 11 
and structural reorganisation in solution. In this review, we 12 
focus on the methods currently available to model the solution 13 
phase and to predict solubility for a wide range of applications, 14 
including ligand binding, molecular property prediction and 15 
molecular design.3 Readers specifically interested in solubility 16 
prediction are also referred to the solubility challenge.4  17 
 Accurate and timely prediction of solubility could save time 18 
and money in drug development, agrochemical development 19 
and environmental monitoring.  An early-stage analysis of drug 20 
and agrochemical candidates allows organisations to focus on 21 
those molecules most likely to meet their required solubility 22 

criteria. Many models exist in this area, with differing levels of 23 
accuracy, physical interpretability, and calculation time. 24 
 Quantitative Structure Activity Relationships (QSAR) and 25 
Quantitative Structure Property Relationships (QSPR) are very 26 
successful in this field, providing good predictive results at a 27 
reasonably low computational cost. These models, however, 28 
tend to be limited to molecules similar to those used in their 29 
training set. Moreover, these models lack a full physical 30 
interpretation, although some do allow assessments of 31 
descriptor importance that can perhaps to some extent be 32 
physically interpreted.  33 
 Several fitted or derived general equations, which take only 34 
a few pieces of empirical data as arguments, have also been 35 
produced. One of the most successful is the General Solubility 36 
Equation (GSE),5 taking the melting point and the base ten 37 
logarithm of the partition coefficient (logP; partition coefficient 38 
for neutral molecules in octanol and water) as empirical input. 39 
 The field has also seen the revival of old ideas as new 40 
automated data driven design protocols, such as Matched 41 
Molecular Pair Analysis (MMPA).6 MMPA allows one to 42 
acquire previously ‘unknown’ data from existing data sets by 43 
exploring how a single molecular change can impact a 44 
particular property or activity of interest. We now see large 45 
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scale data mining following these kinds of protocols, consortia 46 
such as SALT MINER, and programs developed by individual 47 
companies such as GSK’s BioDig7,8. 48 
 In addition to these approaches, we see physics based 49 
models ranging from classical simulations to quantum chemical 50 
calculations being applied to solubility prediction. These 51 
methods vary greatly in complexity. Classical simulations can 52 
encompass simple Molecular Dynamics (MD), studying the 53 
interactions between solute and solvent, to more complex 54 
perturbations of solutes in the solution phase to a gas phase. 55 
Recent advances have seen a new generation of polarisable 56 
force fields emerging with a greater capacity to account for 57 
changes in the electronic charge distribution. Many of these 58 
forcefields utilise multipole moments, as oppose to point 59 
charges, to capture the anisotropy of the charge distribution. 60 
Forcefields such as Atomic Multipole Optimised Energetics for 61 
Bimolecular Applications (AMOEBA) have been used to study 62 
the solvation dynamics of ions9. Newer, polarisable forcefields, 63 
such as the quantum chemical topology forcefield (QCTFF), 64 
use multipolar electrostatics calculated based on quantum 65 
chemical topology supplemented with machine learning 66 
(Kriging) to model the system. This forcefield has been used to 67 
model amino acids with small water clusters10. These models 68 
can be mixed with a quantum chemical core region in mixed 69 
Quantum Mechanics – Molecular Mechanics (QM/MM) 70 
approaches. Other common models include those representing 71 
the solvent as a continuous field with no explicit solvent 72 
coordinates. In most cases, these models come at much higher 73 
computational cost than their informatics counterparts, and 74 
often at lower accuracy. However, if such a method were 75 
feasible and accurate enough to predict solubility, it would not 76 
have a domain of applicability restricted by the molecules 77 
within a training set and would also be physically interpretable. 78 
Thus, there is a continuing search for such physical methods. 79 
These methods have proven useful for modelling or 80 
approximating the solution phase, hence their applications are 81 
diverse and widespread outside of solubility prediction.  82 

1.1 Thermodynamics and Solubility 83 

 A solution is considered as an equilibrium state between 84 
solute and solvent, reaching equilibrium when the number of 85 
molecules transferred from the solution to a non-solute state is 86 
equal to the transfer of molecules from a non-solute state to 87 
solution, i.e. when the forward rate is equal to the backward 88 
rate and both phases are in equilibrium. Solubility is a 89 
quantitative term, most simply describing the amount of a 90 
substance that will dissolve in a given amount of solvent, and is 91 
a property of thermodynamic equilibrium. A second process 92 
involved in solvation is dissolution; a kinetic term describing 93 
the rate at which a substance is transferred from a non-solute 94 
phase into solution. Solubility and dissolution are fundamental 95 
terms describing the process of solvation, and are related by the 96 
Noyes-Whitney equation11; 97 

��
�� = ��(�	 − �)

� 																																																																										(1.) 

where dW/dt is the rate of dissolution, A is the solute surface 98 
area in contact with the solvent, C is the instantaneous solute 99 
concentration in the bulk solvent, Cs is the diffusion layer solute 100 
concentration (given from the solubility of the molecule with 101 
the assumption that the diffusion layer is saturated), k is the 102 
diffusion coefficient, and L is the diffusion layer thickness. 103 
 As solubility is a thermodynamic term, it is inherently 104 
affected by factors such as temperature and pressure, as well as 105 
ionisation, solid state effects, and gaseous partial pressure for 106 
solvated gases.  107 
 pH is considered to have a significant effect on solubility, as 108 
many organic molecules can behave as weak acids or weak 109 
bases, due to ionisable basic or acidic functional groups, with 110 
polarisation of ionisable groups in solution increasing or 111 
decreasing the overall solubility. The pH of the aqueous 112 
solution in which such molecules are dissolved determines 113 
whether the molecule exists in its neutral or ionised form. The 114 
charged form of a molecule is more soluble, and thus the 115 
aqueous solubility of a substance is pH-dependent12. This 116 
dependence is described by the Henderson-Hasselbalch (HH) 117 
equations as follows;  118 

��������������� = ����� + log(1 + 10!"#!$�)																																		(2.) 
���������&�	�� = ����� + log(1 + 10!$�#!") 
where Stotal is the equilibrium (thermodynamic) solubility, logS0 119 
is the intrinsic solubility, defined as the solubility of an 120 
unionised species in a saturated solution, pKa is the negative 121 
logarithm of the ionisation constant of the molecule, and the 122 
final term on the right hand side is the solubility of the ionised 123 
form12. The HH relationship can be utilised in the prediction of 124 
pH-dependent aqueous solubility of drugs when the pKa and 125 
logS0 values of a compound are known13. The intrinsic 126 
solubility is a particularly important quantity as it can be used 127 
to find the pH dependent profile and estimate the pKa, it is a 128 
quantity required by industry and hence the focus of several 129 
prediction methods14. The pH dependant profile of a drug is 130 
particularly important in pharmaceutics, as it has a direct effect 131 
on the absorption profile of a drug once it has entered the body. 132 
A basic drug-like molecule at a high pH (>2 pH units above the 133 
pKa) will be fully unionised with solubility at a minimum 134 
(intrinsic solubility). Protonation of the base increases as pH 135 
becomes more acidic, and solubility increases. When pH and 136 
pKa are equal, half of the solute molecules are protonated and 137 
the solubility of the drug becomes double the intrinsic 138 
solubility. According to the HH equation, this rise in solubility 139 
increases indefinitely with decreased pH, however in practice a 140 
limit is reached at the salt solubility. Two intersecting 141 
concentration curves for the base solubility and the salt 142 
solubility can be combined to give a composite curve for base 143 
solubility as a function of pH. If any one point on this curve is 144 
known (solubility and pH at which it was measured), the whole 145 
curve can be predicted providing pKa and the acid solubility 146 
factor COA/COB (the ratio of S0 of acid to S0 of base) is known15. 147 
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 Intermolecular interaction strengths play an important role 148 
in the solvation of substances from the solid state. Solutes 149 
which exhibit weak intermolecular forces (i.e. are weakly 150 
bound) tend to have a higher solubility, as the energy cost of 151 
breaking up the lattice is lower. Polymorphic effects can also 152 
lead to complications in solubility prediction. A classically 153 
cited example of this is the case of the anti-HIV drug 154 
Ritonavir16,17, in which a polymorphic shift led to a significant 155 
change in solubility, leaving the drug with a greatly reduced 156 
bio-availability. This exemplifies the consideration of solubility 157 
as a property which is dependent upon solid, solute, solvent, 158 
and solution state properties and interactions. 159 
 Two common approaches to the calculation of the Gibbs 160 
free energy of solution utilise a thermodynamic cycle approach. 161 
A first approach calculates the free energy of solution by 162 
addition of the free energy of sublimation (taking the molecule 163 
in the crystalline phase and subliming it into the gaseous phase) 164 
and free energy of solvation (taking the molecule in its gaseous 165 
phase and solvating it into aqueous solution). An example of 166 
this approach is shown in section 5 of this review, and other 167 
examples are also cited within the literature14,18,19. A second 168 
approach involves calculation of the free energy of solution by 169 
addition of the free energy of fusion (taking a molecule from 170 
the crystalline state to a hypothetical supercooled liquid) and 171 
the free energy of transfer (transfer from a supercooled liquid 172 
into aqueous solution). This method is widely cited within the 173 
literature, and common GSE methods are also derived from this 174 
approach5. Both thermodynamic cycle approaches are depicted 175 
in Figure 1. 176 

 177 
Fig. 1- Calculating the Gibbs free energy of solution is often achieved through the 178 
utilisation of thermodynamic cycles. Two routes are depicted here. The first 179 
route is shown at the top of the diagram, whereby a molecule is taken in its 180 
crystalline form and sublimed, and then hydrated. The addition of the Gibbs free 181 
energy terms of these processes gives the free energy of solution. The second 182 
thermodynamic cycle is represented at the bottom of the diagram, whereby the 183 

molecule is taken in its crystalline form and undergoes fusion into a hypothetical 184 
supercooled liquid, and then is transferred into aqueous solution. The addition 185 
of the free energy terms for these two processes also gives the Gibbs free energy 186 
of solution.   187 

 The solid state is an important consideration for the initial 188 
crystalline phase calculated within thermodynamic cycle 189 
approaches. Lattice minimisation calculations and periodic 190 
DFT provide excellent tools for modelling these systems. 191 
Recent advances in these methods show promise for improving 192 
predictions, these include updated codes and improved 193 
dispersion corrections in periodic DFT20,21.  194 
 Complete polymorphic screening and prediction still eludes 195 
our capabilities and hence hampers our ability to predict 196 
solubility from purely first principles. 197 
 A further consideration is that of the standard states used in 198 
the different physical states. Typically sublimation data is 199 
reported in a 1 atmosphere standard state. Solvation is typically 200 
quoted in the Ben-Naim standard state of 1 mol/L with a fixed 201 
centre of mass. The difference between the two standard states 202 
is a constant 1.89 kcal/mol (7.91 kJ/mol), calculated as 203 
∆Gatm→mol/L = RTln(24.46), where 24.46 is the molar volume 204 
at ambient conditions).  205 
 The free energy of solution can be calculated directly by the 206 
following formula: 207 

∆(	��)���* = −+,�-(��./)																																																																			(3.) 
���(��./) = −∆(	��)���*2.303+,  

where S0 is the intrinsic solubility Vm is the crystalline molar 208 
volume, R is the gas constant and T is the temperature in 209 
Kelvin (K). 210 
 A convenient formula19 allows the solution free energy to 211 
be calculated using the native standard states, and removes the 212 
dependence on the crystalline molar volume.  213 

�� = −1�+, exp5∆(	)&6	��/ + ∆(	��76/��	89:
+, ;																																													(4.) 

2. Informatics – ‘Smart’ Machines in Solubility 214 

Prediction 215 

 Informatics is the science of information processing, 216 
storage, and data mining. There are many applications and 217 
methodologies available for this type of task. Commonly used 218 
methods in chemistry are QSAR/QSPR in which are models 219 
built from data. These models correlate structural features of 220 
molecules with physical properties of interest. A major 221 
supposition of QSPR is that molecules similar in structure will 222 
have similar physical properties, and for QSAR models, 223 
perhaps chemical or biological similarities. Therefore it is 224 
possible to train a model defining a specific relationship 225 
between structure and property/activity on a training dataset, 226 
and apply it to similar molecules to predict their properties and 227 
activities. For this reason, QSAR/QSPR models are not broadly 228 
applicable (i.e., they cannot be applied to molecules differing 229 
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considerably from the training set). While QSPR was once 230 
dominated by multiple linear regression, nowadays machine 231 
learning represents the state of the art. Both regression and 232 
machine learning protocols can identify these structure-property 233 
relationships by correlating structural features with 234 
experimentally determined physical data. A brief introduction 235 
to some of these methods is provided below, and for a more 236 
detailed account, see “An Introduction to Cheminformatics”22,23 237 
and references therein.  Initially, one must represent a 238 
molecule in a machine readable format to enable the calculation 239 
of molecular descriptors. Two of the most common methods for 240 
doing this are the Simplified Molecular Input Line Entry 241 
System (SMILES)24 and the IUPAC International Chemical 242 
Identifier (InChI)25. 243 

2.2 Molecular Descriptors 244 

 Descriptors represent physical, chemical, topological or 245 
energetic features of chemical structures, and can vary greatly 246 
in form and derivation. In general, a descriptor is a vector of 247 
single numerical values (features), each encoding specific 248 
information about an individual molecule.22  This information 249 
can be a simple number, such as the molecular weight or the 250 
count of a specific atom type, or they can be a prediction of 251 
corresponding experimental quantities, such as the octanol-252 
water partition coefficient (usually expressed as logP). 253 
Alternatively, they can also be derived from semi-empirical or 254 
quantum chemistry. Clearly the cost of calculating different 255 
descriptors can vary dramatically. It is often the case that 256 
descriptors offering higher levels of refinement, and therefore 257 
more useful molecular discrimination, incur a higher 258 
computational cost.22 There many different molecular 259 
descriptors and numerous pieces of software to calculate 260 
them.22  261 

2.3 Methods 262 

2.3.1 REGRESSION 263 

 Regression analysis is a fundamental tool in informatics. 264 
Simple linear regression expresses a relationship between a 265 
scalar dependent variable Y and a single explanatory 266 

independent variable X. Multiple Linear Regression (MLR) 267 
extends this to allow for multiple dependent yi variables or 268 
explanatory independent variables xi, expressed as; 269 

= = 	>?�@�
A

�
																																																																																													(5.) 

 These methods have seen widespread use in many fields.26 270 
A disadvantage of MLR is the apparent ease of over-fitting. It is 271 
suggested that a useful rule of thumb is that the number of data 272 
points should be in excess of five times the number of 273 
explanatory variables22,23. 274 

2.3.2 RANDOM FOREST 275 

 Random Forest (RF), is a learning method based on 276 
decision trees. These are stacked sets of binary separators 277 
following a tree like graph structure. RF uses a ‘forest’ of these 278 
decision trees, making use of “the wisdom of crowds”; hence, is 279 
considered an ensemble learning method. RF can be used for 280 
classification or regression. For application to classification 281 
problems, the binary splitting is based upon the Gini index, 282 
which is a calculation of the maximal discrimination of the data 283 
points. For regression, splitting is generally based on a 284 
minimisation of the root mean squared error (RMSE). The 285 
initial node is known as the root node, with subsequent nodes 286 
being called branch nodes. The final nodes are referred to as 287 
leaf nodes and contain molecules with similar predictions of the 288 
property or activity.14,23 289 

2.3.3 SUPPORT VECTOR MACHINES 290 

 Another commonly used machine learning method is that of 291 
Support Vector Machines (SVM). SVM supports both 292 
regression and classification tasks, and is capable of handling 293 
multiple continuous and categorical variables. Methods for 294 
handling classification tasks are based on typically non-linear 295 
kernel functions. These kernel functions allow the 296 
transformation of datapoints into a higher dimensional feature 297 
space.  298 

 299 Fig. 2 – Machine learning methods; a) Regression analysis aims to describe how the typical value of the dependent variable changes as the independent variables are 300 
changed. The regression function (purple arrow) characterises variation; b) Decision trees consisting of a binary separation at the nodes, leading to predictions or 301 
classifications at the leaf nodes (green circles); c) An example of SVM separates data into distinct categories by an optimal hyperplane, which should have optimal 302 
margins either side for a clear distinction in data categorisation; d) A typical network consists of layers of nodes. All nodes have connections with all other nodes in 303 
adjacent layers. The input units (top) do not count as a layer of nodes, as they do not carry out any typical arithmetic operations. A typical arithmetic operation is the 304 

Page 4 of 19Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



Journal Name ARTICLE 

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 5  

generation of a net signal and transformation by a transfer function into an output signal. The input units distribute input values to all of the neurons in the layer 305 
below. The connections between nodes each have a different weight, representing different descriptors used in machine learning. 306 

 307 
 308 
SVM training algorithms are built up of binary categorised 309 
data, whereby a particular data point belongs to one of two 310 
categories. Thus, the test set data is also categorised, producing 311 
a clear separation, which should be as wide as possible, in the 312 
feature space. Alternatively, in the case of regression, the 313 
surface behaves analogously to a regression line, providing a 314 
maximal explanation of the data within the bounds of an 315 
acceptable error margin whilst attempting to remain relatively 316 
flat  to avoid overfitting.22,23 317 

2.3.4 NETWORKS 318 

 Artificial Neural Networks (ANNs) and deep learning 319 
architectures are another common form of machine learning 320 
method in chemistry. These are models conceptually based on 321 
the brain’s neuron network (although a great simplification). 322 
ANNs contain an input layer which receives the molecular 323 
information, an output layer which provides the prediction to 324 
the user, and between these at least one hidden layer which is 325 
trained using data to link the neurons of the input layer and 326 
output layer in a suitable fashion for the problem at hand. The 327 
training generally involves weighting specific paths between 328 
the neurons. 7,8,13 Deep learning architectures aim to enhance 329 
the learning capabilities of machine learning methods such as 330 
ANNs. Deep learning algorithms attempt to abstract data on a 331 
high-level through model architectures comprising multiple 332 
non-linear transformations. In the case of ANNs, enhanced data 333 
abstraction can be achieved through the addition of hidden 334 
layers, capturing the interaction of many factors which 335 
contribute to the observed data.  336 

2.4 THE GENERAL SOLUBILITY EQUATION (GSE) 337 

 GSE (as briefly mentioned in the introduction) is a QSPR 338 
model based on the melting point and the octanol-water 339 
partition coefficient logP of a chemical substance, used to 340 
predict the aqueous solubility of non-ionisable compounds,28 341 
and acts as a useful guide for ionisable compounds using 342 
lipophilicity logD at the pH of the aqueous buffer employed. 343 
The equation states that; 344 

���� = 0.5 − 0.01(C. 1.℃ − 25) − ���E																																								(6.)  345 

Or in terms of logD; 346 

����!"(G) = 0.5 − 0.001(C. 1.℃ − 25) − ���H!"(G)																		(7.)	 
 GSE is a simple QSPR model, with powerful predictive 347 
ability  (coefficient of determination (r2) = 0.96 and root mean 348 
squared error (RMSE) = 0.53 (units) for a data set of 1026 349 
organic molecules29), and the simplicity of the model means it 350 
has found wide application in the pharmaceutical industry. 351 
However, the reliance of the GSE on experimentally 352 
determined descriptors limits its applicability, and datasets 353 

sparsely populated at their limits can lead to overestimation of 354 
the model’s predictive power30.   355 
 Ali et al.30 have revisited the GSE and have attempted to 356 
relieve the reliance of the GSE on the experimentally 357 
determined melting point by replacing it with a descriptor that 358 
describes the topological polar surface area (TPSA). They 359 
demonstrate the effects of inflated predictive power of the GSE 360 
by using a subset of an initial dataset, which reduced the overall 361 
predictive power of the GSE by approximately 6.4%. TPSA 362 
was included in a revised model to account for the fact that 363 
88.5% of poorly performing compounds contained polarisable 364 
groups. The pure GSE model employed provided r2 = 0.818, 365 
and the TPSA replacement of melting point model provided r2 366 
= 0.813, showing a comparable effectiveness. The number of 367 
compounds containing polarisable groups with logS predicted 368 
within ±1 log unit of experimentally determined values was 369 
also higher for the revised TPSA model (83.2% TPSA; 79.6% 370 
GSE). A final model combining melting point, logP and TPSA 371 
was also tested, and was found to have a better predictive 372 
power than both of the previously employed models (r2 = 373 
0.869) with 90.8% of compounds containing polarisable groups 374 
predicted within ±1 log unit of experimentally determined 375 
values. 376 
 The work of Ali et al30. highlights the importance of reliable 377 
descriptors in improving the overall performance of QSPR 378 
models, particularly when polar or polarisable functionality is 379 
included in test sets, and when experimentally determined 380 
values are required. As such, experimentally determined values 381 
may be best suited only for comparative analysis of predictive 382 
models to experimental data as a measure of performance in 383 
many cases.  384 

2.5 Other Cheminformatics Applications 385 

 A recent approach to predict solubility proposed by 386 
McDonagh et al.14 applied three models, exploiting both 387 
cheminformatics descriptors and theoretically derived 388 
thermodynamic properties. The initial models use theoretical 389 
chemistry and QSPR models alone, with further development 390 
combining the two approaches into a unified QSPR model. The 391 
developed models aim to calculate solubilities in agreement 392 
with experiment and in a reasonable time period. It was found 393 
that quantitatively accurate solvation free energies are 394 
unobtainable from the specific simple theoretical chemistry 395 
approach applied. The authors suggest that QSPR models are 396 
the most effective method, when both time and accuracy are 397 
considered. The machine learning methods employed, which 398 
use a modest number of cheminformatics descriptors, predict 399 
solubility values comparable to those obtained with currently 400 
available commercial software. Notably, only a small 401 
improvement in accuracy was found on combining the two 402 
approaches. This suggests that the  cheminformatics descriptors 403 
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and the theoretically derived quantities are not very 404 
complementary, but  duplicate much of the same information14.  405 
 Another recent approach, by Lusci et al27, applies deep 406 
learning to the solubility prediction problem. The deep learning 407 
method is based on recursive neural networks adapted for 408 
undirected graph representations of molecules. The method 409 
produces good predictions of solubility on a number of standard 410 
datasets in the field27. 411 
 A further example of a cheminformatics approach is 412 
demonstrated by Shayanfar et al.31 who apply a simple QSPR 413 
model to the prediction of aqueous solubility of drugs, validated 414 
by cross-validation. A training set of 220 drug-like molecules 415 
was used to build a model with MLR. Seven descriptors 416 
(aqueous solubility from the literature, solute, melting point, 417 
experimental logP, calculated Abraham solvation parameters, 418 
calculated ClogP values and calculated melting points) were 419 
used to develop a two-variable model. The two variables used 420 
gave an R2 value of 0.934 and a standard error estimate s of 421 
0.893. The proposed model was compared to a GSE model and 422 
a linear-solvation-energy-relationship (LSER) model. 423 
Correlations between each model’s computationally determined 424 
values of aqueous solubility with corresponding experimental 425 
values gave an R2=0.62 for GSE, R2=0.57 for LSER and 426 
R2=0.66 for the proposed MLR method. 427 
 Recent work has also suggested that, contrary to popular 428 
arguments, the quality of the experimental data available is not 429 
the limiting factor for the predictive accuracy of solubility 430 
predictions obtained from cheminformatics models.32 This 431 
work may suggest that inherent limitations within the models 432 
are responsible for the largest part predictive errors.  433 

3. Implicit solvation – An isotropic field as a solvent 434 

representation  435 

 Continuum solvation models consider solvent as a 436 
continuous isotropic medium. An underlying assumption of 437 
implicit solvation models is that explicit solvent molecules may 438 
be removed from the model; provided that the continuous 439 
medium replacing them sufficiently represents equivalent 440 
properties. 441 
 A simplification of continuum models can be thought of in 442 
terms of a Hamiltonian as; 443 

JK���(LM) = JKM(LM) + JKMN(LM)																																																										(8.) 
where M refers to a single solute molecule, S refers to the 444 
solvent, and r refers to position. Solvent coordinates do not 445 
appear within the Hamiltonian term, exemplifying the 446 
representation of solute in a continuum, rather than as definite 447 
atoms, as with explicit models. JKMN  is a sum of different 448 
interaction operators, which can be expressed in terms of 449 
solvent response functions, indicated by Qx(LP,	LP′) where LP 450 
indicates a position vector, and x represents a contributing 451 
interaction. More in-depth discussions are available in 452 
textbooks specific to computational chemistry, such as that  by 453 
Cramer3, and reviews by Tomasi et al.15 454 

  In a standard continuum model, generally represented by 455 
Polarisable Continuum Models (PCM), solute-solvent 456 
interaction energies can be represented by a number of Qx 457 
operators. The free energy of M is therefore described by an 458 
expression of five terms; 459 

((R) = (��7 + (S� + (��	 + (TS! + (�/																																										(9.) 
with the order of terms corresponding to the best performing 460 
order of the ‘charging processes’, integration processes 461 
coupling a distribution function with a potential function. The 462 
terms are the free energy of cavitation, electrostatic energy, 463 
dispersion energy, repulsion energy and thermal fluctuation, 464 
respectively.  465 

3.1 Continuum Models for Electrostatic Interactions 466 

 PCM models are advantageous in that they can represent a 467 
statistically averaged (continuum) solvent so that meaningful 468 
results can be acquired within a single calculation. PCM models 469 
have been particularly useful in modelling reactivity and 470 
spectroscopy of various solvents with different polarities.33  471 
 In a solvent-solute system where atom Q (solute) has a 472 
positive charge, solvent water molecules will preferentially 473 
orientate their negative dipoles towards the solute’s positive 474 
charge (Fig. 3, left). For a single water molecule, there is only a 475 
slight preference in orientation, which is smaller than that of its 476 
average thermal fluctuations. Therefore, this effect is averaged 477 
over the long range of electrostatic interactions of water in the 478 
bulk (Fig. 3, right). For an isotropic solvent with random 479 
thermal motion, the average electric field is zero at any given 480 
point. However, introduction of a solute gives a net change in 481 
orientation, introducing an overall change in electric field, 482 
known as the ‘reaction field’. 483 
 Accounting for the reaction field increases the solute’s 484 
polarity proportionally to the solute polarisability, and the 485 
strength of the external electric field. This causes an increase in 486 
the dipole moment of Q, consequently polarising and increasing 487 
the change in orientation of the solvent to oppose the dipole 488 
moment of Q.3 489 
 There are energy costs associated with both the orientation 490 
and polarisation of the solvent, and the dipole moment of Q. As 491 
solvent molecules oppose the dipole moment of Q, they interact  492 

 493 
Fig. 3 - Left - water molecules reorient themselves to preferentially point the 494 
negative end of their dipole towards the positive solute charge (+Q). Right - The 495 
system is modelled with a continuous polarisable field. Polarisability is 496 
represented by the bulk dielectric constant, ε. 497 
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unfavourably with the reaction field. They also lose 498 
configurational freedom, with an associated free-energy cost. In 499 
a continuum model, the charge distribution of a solvent is 500 
represented as a continuous electric field, statistically averaged 501 
over all degrees of freedom at thermodynamic equilibrium. The 502 
electric field at any given point is the gradient of the 503 
electrostatic potential. The work required to create the charge 504 
distribution is determined from the interaction of solute charge 505 
density ρ with the electrostatic potential ϕ from; 506 

(
=	12VW(L)X(L)�L 																																																																													(10.) 

 The polarisation component of G, which we call GP, is the 507 
difference between charging the system in gas and solution 508 
phases; thus only the electrostatic potentials in both gas and 509 
solution phases are needed to calculate GP. 510 
 PCM methods are generally applied through two models; 511 
the Poisson-Boltzmann (PB) model, and the Generalised Born 512 
(GB) models. Both models are advantageous for different 513 
systems, and the accuracy of either model is mostly dependent 514 
upon the suitability of the cavity type used to surround the 515 
solute molecule within an ideal solvent system.  516 

3.1.1 THE POISSON‐BOLTZMANN (PB) MODEL 517 

 The Poisson equation (eqn. 11) combines the terms for 518 
electrostatic potential and the differential form of Gauss’s law 519 
to define the electrostatic potential ϕ as a function of the 520 
dielectric constant ε and charge density ρ. When a surrounding 521 
dielectric medium responds linearly to an embedded charge, 522 
Poisson’s equation states that; 523 

∇[X(L) =524 

− \]^(T)
_ 																																																																																																				(11.)  525 

 Continuum solvation models represent the charge 526 
distribution on the basis of two separate areas: inside (solute) 527 
and outside (solvent) of a cavity. For this case, the Poisson 528 
equation states; 529 

∇`(L) ∙ ∇X(L)
= −4bW(L)																																																																																														(12.) 

 The Poisson equation as expressed above is valid only for 530 
systems under non-ionic conditions. In a real solution, 531 
dissolving a solute produces mobile electrolytes. This effect is 532 
accounted for by an expansion of the Poisson equation, known 533 
as the Poisson-Boltzmann (PB) equation; 534 

∇`(L) ∙ ∇X(L) − `(L)c(L) 8bd[e`fg, 		fg,d sinh ldX(L)fg, m 
= −4bW(L)																																																																																																	(13.) 

where q gives the magnitude of electrolyte ionic charge, λ is a 535 
function equal to 0 in areas inaccessible to electrolyte ions and 536 
1 for accessible areas, and I indicates the ionic strength of the 537 
electrolyte system.  538 
 PB equations are best used to calculate the electrostatic 539 
potential of systems where the cavitation of solute is near-540 
spherical or ellipsoidal (ideal cavitation), as the convergence of 541 
the predicted electrostatic component of the solvation free 542 
energy ∆GE is computationally expensive and often inaccurate. 543 
Thus, derivations applying approximations of the Poisson 544 
equation are often used in continuum models33, the most 545 
common of which are Self-Consistent Reaction Field (SCRF) 546 
models, such as the Onsager model.34  547 
 A further limitation of PB based models is the definition of 548 
cavitation. A number of variational SCRF models have been 549 
proposed in order to optimise cavitation parameters, most 550 
commonly using tessellation (tiling) of the cavity surface to 551 
simplify and reduce iterations of the PB equation.33 552 

3.1.2 THE GENERALISED BORN (GB) MODEL 553 

 For systems in which ideal cavitation is not accurate, 554 
arbitrary cavitation can be applied. Arbitrary cavitation refers to 555 
the construction of a cavity around the solute similar to the 556 
shape represented by space-filling models generated from the 557 
overlap of atomic spheres at volumes representing van der 558 
Waals (vdW) radii. An alternative method to SCRF models 559 
involves an approximation of the Poisson equation that can be 560 
analytically solved, known as the Generalised Born (GB) 561 
approach.  562 
 A conducting sphere with charge q can be considered 563 
representative of a monatomic ion. If the surface of the sphere 564 
is assumed to be entirely smooth, the charge distribution around 565 
it will be uniform, and the charge density at any point is given 566 
by; 567 

W(n) = 	 d
4bo[ 																																																																																									(14.) 

where s is a point on the sphere’s surface, and a is the spherical 568 
radius. Integrating over the entire outside surface and adding a 569 
term for the electrostatic potential, the energy term G, with 570 
|L| = o, becomes; 571 

( = −1
2Vq d

4bo[r q−
d
`or �n

= d[
2`o																																																																	(15.) 

The Born equation for the polarisation of a monatomic ion is 572 
calculated from the difference in the required work in the gas 573 
and solution phases applied to equation 8; 574 

(s = −1
2 t1 −

1
`u

d[
o 																																																																												(16.) 

The GB method extends the Born equation to polyatomic 575 
molecules to express polarisation energy as; 576 
 577 
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(s = −1
2 t1 −

1
`u > d$d$vw$$v

���/	

$,$v
																																																			(17.) 

where k and k’ run over all atoms, each with a partial charge q. 578 
The determination of suitable parameters for γ for polyatomic 579 
systems involves a radial integration of the charge q to 580 
determine the interaction of atom k with the surrounding 581 
medium. γ has units of reciprocal length, thus representing an 582 
inverse Coulomb integral. γ is given a suitable functional form 583 
in order to approximate the PB equation, and has a limiting 584 
behaviour, becoming closer to the exact reciprocal length r-1 at 585 
large interatomic distances. 586 

3.2 Continuum Models for Non-electrostatic Interactions 587 

 Similarly to the electrostatic components of solvation free 588 
energy, non-electrostatic contributions to the solvation free 589 
energy are not experimentally measurable. The solubility of 590 
experimental systems may be more susceptible to some effects 591 
than others. Various neutral model systems have been 592 
developed in accordance with this. 593 

3.2.1 SPECIFIC COMPONENT MODELS 594 

 Pierotti35 developed a model formula, based on scaled 595 
particle theory, for the calculation of cavitation free energy 596 
through the observation of the solvation energy for noble gases. 597 
Scaled particle theory is a statistical-mechanical theory of fluids 598 
derived from exact radial distribution functions, to give an 599 
expression for the work required to place a spherical particle 600 
into a fluid of spherical particles. Noble gas atoms do not 601 
exhibit permanent electrical moments, thus their transfer into 602 
solution is considered to be the most analogous example of 603 
perfect cavitation. 604 
 The experimental data from Pierotti’s work has been 605 
complemented by simulation data,36 including free energy of 606 
formation data of molecular-sized cavities in 12 common 607 
solvents obtained from free energy perturbation simulations. 608 
Pierotti’s formula has since been expanded for molecular 609 
cavities by Colominas et al.37  610 
 A further, specific contributing factor to solvation free 611 
energy is dispersion. A somewhat simplistic explanation of 612 
dispersion is as follows. The average electron cloud of an atom 613 
is spherically symmetrical, but at any instantaneous time point 614 
there may be a polarisation of charge causing an instantaneous 615 
dipole moment. This dipole moment interacts with 616 
neighbouring atoms, inducing a second instantaneous dipole, 617 
and so on, and an interaction occurs between these. The in-618 
phase correlation of instantaneous and induced dipoles mean 619 
the overall interaction energy does not average to zero over 620 
time.3 The average interaction energy falls off (largely) 621 
proportionally to r(-6) (where r is the distance between 622 
interacting particles). The multipole expansion of the dispersion 623 
interaction is written; 624 

.(L) = −�yLy −
�zLz −

�6�L6�…																																																																	(18.) 

where C6, C8 and C10 are dispersion coefficients dependent on 625 
the atomic species. This is normally evaluated as a sum over all 626 
pairs of atoms in different interacting molecules. 627 

3.2.2 ATOMIC SURFACE TENSIONS 628 

 Another approach for the evaluation of the non-electrostatic 629 
components of solvation free energy assumes the non-630 
electrostatic component to be atom or group specific, and 631 
proportional to atomic surface area. A recent review by Wang 632 
et al.38 (2009) considers four QSPR aqueous solubility models 633 
developed on the principle of weighted atom type counts and 634 
Solvent Accessible Surface Areas (SASA). They note that 635 
models considering SASA are often developed with small test-636 
sets, and are therefore, in common with QSAR/QSPR models, 637 
poor performers for test molecules dissimilar to the original 638 
training set. The authors found that SASA descriptors did not 639 
enhance model performance any further than weighted atom 640 
type counts. This suggests the influences upon the non-641 
electrostatic components of solvation free energy may be more 642 
complex than simple surface area considerations.  643 
 A further notable feature of continuum models based on 644 
surface tension is the neglect of any other contribution; that is, 645 
the development of these models assumes surface area as the 646 
sole determinant of solvation free energy, and that electrostatic 647 
components are implicit within the calculation parameters 648 
used.33  649 

3.3 The Current State of Continuum Models 650 

 There are a large number of available continuum solvent 651 
models, all with relative merits and shortcomings. The 652 
following is a brief description of those most commonly 653 
applied.  654 
 Integral Equation Formalism PCM (IEFPCM) is the current 655 
version of PCM applied in common quantum chemistry 656 
packages. IEFPCM is a reformulation of dielectric PCM 657 
(DPCM) in terms of the integral equation formalism. One of the 658 
biggest challenges to PCM methods is that they are all derived 659 
assuming the solute charge density is entirely encapsulated in 660 
the cavity. This is often not the case, as the electron 661 
distributions often extend beyond the cavity. IEFPCM has been 662 
shown to cope well with this effect when compared to other 663 
PCM based methods33. 664 
 A further variation of PCM is the conductor-like polarisable 665 
continuum model (CPCM), which is often considered one of 666 
the most successful solvation models39. The Conductor-like 667 
screening model/Conductor-like screening model for real 668 
solvents (COSMO/COSMO-RS)40 is a variation on Poisson-669 
Boltzmann PCM and CPCM. In COSMO the dielectric 670 
permittivity (ε) is set to infinity (ε = ∞). This defines the 671 
solvent as a conductor, which is suggested as a more realistic 672 
approximation for strong dielectric media such as water, with 673 
the first version of COSMO40 having values of the dielectric 674 
constant with a relative error of less than ½ε-1. COSMO has 675 
been shown to be a reliable and readily available method for 676 
calculations on the liquid and solution phases. The use of a 677 
boundary condition for the calculation of total potential in place 678 
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of a traditional dielectric boundary condition for the electric 679 
field found values within 10% of the exact results obtained 680 
from dielectric boundary condition methods41. COSMO-RS 681 
extends the COSMO code to also define the ability of the 682 
solvent to screen the surface charge on the cavity of the solute. 683 
Parametrisation of COSMO and COSMO-RS performed by the 684 
software developers tested 217 small to medium neutral 685 
molecules, spanning a vast functionality of H, C, N, O and Cl. 686 
An overall accuracy of 0.4(rms) kcal/mol for chemical potential 687 
differences was achieved41.  688 
 A recent addition is the solvation model based on density 689 
(SMD). This model applies the IEFPCM protocol, solving the 690 
non-homogeneous Poisson equation using a set of optimised 691 
atomic Coulomb radii. The non-electrostatic contributions are 692 
calculated on the basis of a parameterised function which 693 
includes terms for atomic and molecular surface tensions as 694 
well as the solvent accessible surface area.42 695 
 A recent investigation of gas to solution phase standard 696 
state Gibbs free energies of solution compares energies 697 
obtained for six combustion gas flue compounds at the 698 
Gaussian-4 level of theory using IEFPCM, CPCM and SMD 699 
implicit solvent models for 178 organic solvents. It is found 700 
that IEFPCM and CPCM produce similar ∆GS values for all six 701 
flue compounds, with maximum absolute intra-solvent 702 
deviations of <1.6 kJ mol-1. Intra-solvent deviations between 703 
the IEFPCM and SMD models up to 45.5 kJ mol-1 were 704 
observed. IEFPCM and CPCM also showed strong correlation 705 
between calculated solvent ε and ∆GS for all solvents, whereas 706 
SMD showed a much more varied relationship43.     707 

 708 
Fig. 4 - The PCM cavity of allopurinol.  709 
Left: The solvent accessible surface of allopurinol from a PCM calculation.  710 
Middle: The reaction field evaluation points.  711 
Right: Surface polarisation as a result of reaction field. 712 

4. Explicit Solvation Models 713 

 Explicit Solvation models are the primary choice of 714 
solubility models where solvent-specific effects are considered. 715 
The explicit treatment of water should, in principle, provide the 716 
most descriptive and realistic model for the investigation of 717 
solvation44, however it intrinsically requires a large number of 718 
degrees of freedom and thus is associated with a phase space of 719 
high dimensionality. This requires statistical averaging over the 720 
entire phase space, particularly when extracting specific 721 
underlying physical behaviour, such as thermodynamic 722 
properties. 723 
 Statistical thermodynamics relates all observable 724 
thermodynamic properties to the partition function, Q. The 725 
partition function is summarised as; 726 

} = ~�#�(�,!)��� 	�d�1																																																																									(19.) 
where Q is the classical formulation integrated over all phase 727 
space of all spatial q and momentum p coordinates. 728 
 Explicit models consider solvation in terms of free energy 729 
calculations, with different models for water available, as 730 
discussed below. 731 

4.1 Free Energy Calculations – Monte Carlo (MC) and 732 
Molecular Dynamics (MD) Simulations 733 

 Free energy considerations are distinctly different for 734 
intramolecular and intermolecular degrees of freedom. For 735 
intramolecular components, free energy contributions rely on 736 
vibrational and librational motions on an intramolecular energy 737 
surface45. For well-defined energy-minima, the free energy is 738 
easily accessible from the partition function (eqn. 19) from 739 
vibrational frequencies treated with the harmonic 740 
approximation. The harmonic approximation estimates the 741 
nuclear potential of a molecular system in its equilibrium 742 
geometry at a potential energy surface minimum in terms of 743 
normal vibrational modes, each governed by a 1D harmonic 744 
potential. Anharmonic effects are accounted for with MC or 745 
MD simulations for the calculation of entropy on the 746 
intramolecular energy surface45. Due to diffusion, the particles 747 
of a solution system do not exhibit motion definable by 748 
harmonic approximations. Thus, conventional MC and MD 749 
methods do not involve the direct determination of Q, and 750 
exhibit an extremely slow convergence for densities of typical 751 
chemical systems, due to the exponential dependence of the 752 
Boltzmann factor on the occupation of available energy levels 753 
at a given temperature. 754 

4.1.1 FREE ENERGY PERTURBATION (FEP) METHODS  755 

 Free Energy Perturbation (FEP) methods were first 756 
introduced by Zwanzig46 in 1954, who related the 757 
thermodynamics of two different systems, in order to evaluate 758 
differences in intermolecular potentials. Zwanzig notes that at 759 
high temperatures, the forces of repulsion between molecules 760 
determine the equation of state of a gas, and that at lower 761 
temperatures the equation of state should be determinable by 762 
considering forces of attraction as perturbations on the forces of 763 
repulsion. The energy change from state A to state B is 764 
calculated by; 765 

∆((� → �) = (g − (� = −�g, ln 〈�@1 t−�g − ���g, u〉� 												(20.) 
where T is temperature, and the triangular brackets indicate an 766 
average over the simulation runs for A. A normal simulation 767 
run for A coincides with a new energy state of B on each 768 
optimisation run. The energy difference between A and B is 769 
either between the atoms in each state, or in an isomeric 770 
difference, for example A may be the cis- isomer of a structure, 771 
and B the trans- isomer, with A and B in different energy states 772 
due to different intra- and/or intermolecular interaction. For 773 
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isomeric differences, the free energy map is calculated along 774 
reaction coordinates. The convergence of FEP calculations is 775 
only reliable for a small difference between A and B, thus 776 
traditional perturbation theory only holds true for systems 777 
which remain similar upon dissolution.  778 
 More recent derivations of Zwanzig’s model allow the 779 
division of perturbations into smaller calculations, allowing 780 
parallelisation. These models involve breaking the reaction 781 
pathway down into a series of intermediate TS steps, allowing 782 
better convergence between the initial and final structures 783 
investigated.47 However, FEP calculations remain one of the 784 
most computationally expensive methods for calculating free 785 
energy differences.   786 
 An example of this is shown by Lüder et al48. who have 787 
investigated the effectiveness of FEP methods for the 788 
calculation of free energy of solvation in pure melts for 46 drug 789 
molecules. Simulations were performed in two stages, scaling 790 
down the Coulomb and Lennard-Jones (LJ) interactions 791 
independently. Results were interpreted under the assumption 792 
that the free energy of the liquid to vapour process ∆Gvl can be 793 
calculated from the sum of the free energy term for cavitation 794 
∆Gcav and the energy associated with LJ interactions and 795 
Coulomb interactions (over 2). ∆Gcav is obtained from hard-796 
body theories. Interaction energies and molar volumes for each 797 
of the 64 drug molecules were compared for systems 798 
comprising 260 molecules. Deviations between systems were 799 
found to be an average of 2.9% for intermolecular interaction 800 
energy, and 1.4% for molar volume, suggesting the dataset 801 
selected would provide reliable results. Predicted and simulated 802 
∆Gcav values are found to be systematically underestimated by 803 
approximately 15%. An overall average deviation of calculated 804 
∆Gvl values in comparison to experiment is -1.8 kJ/mol, with 805 
reasonable errors expected in the range -1 to 1 kJ/mol. This 806 
investigation suggests that overall, FEP methods require more 807 
work at the theory level, particularly due to systematic errors 808 
that occur in phase space relationships between reference and 809 
perturbed systems. 810 
 An alternative approach to calculating the free energy 811 
difference from one state to another is to treat the change from 812 
A to B as a transformation; rather than to calculate free energies 813 
of independent structures, and calculate an energetic difference, 814 
as in traditional FEP methods3.   815 
 A recent application of this method, derived from FEP, has 816 
been demonstrated by Liu et al49. for the calculation of the 817 
solubility of gases in ionic liquids. The Bennett acceptance ratio 818 
(BAR) method utilises the method of transferring between 819 
states instead of treating each state as an individual structure. 820 
The Coulomb and LJ terms are calculated separately. It is found 821 
that simulated solubilities are found in good agreement with 822 
Henry’s law constants. However, comparison to experimental 823 
data finds poorly soluble gases to have larger errors, with 824 
underestimated and overestimated gas solubilities found with 825 
similar calculation methods in complementary studies.   826 

4.1.2 ENTHALPY-ENTROPY DECOMPOSITION 827 

 A further offshoot of free energy calculations is the 828 
decomposition of the free energy term into enthalpic and 829 
entropic components. Entropy and enthalpy complement free 830 
energy as they provide interpretive information to link 831 
molecular perturbations and thermodynamic changes. Two 832 
solutes may have similar hydration free energies (HFE), but 833 
may have solubilities dependent on distinct chemical function.44 834 
As both enthalpy and entropy are experimentally measurable, 835 
the difference between theory and experiment is ascertainable, 836 
and may be applied as benchmarks for force field 837 
optimisations,44 and give insight into the mechanism of 838 
solvation. Levy and Gallicchio have reviewed a variety of 839 
different approaches to the thermodynamic decomposition of 840 
free energies.44 841 
 Wyczalkowski et al.50 recently proposed two new methods 842 
for the estimation of entropy and enthalpy decomposition of 843 
free energy calculations, evaluated for the solvation of N-844 
methylacetamide (NMA). The methods investigated found 845 
thermodynamic contributions to be in disagreement with 846 
experimental data, highlighting the difficulty in obtaining 847 
decompositions comparable in quality to free energy estimates, 848 
with thermodynamic decomposition of computational 849 
Helmholtz free energies of solvation (∆F at fixed volume) 850 
values yielding errors approximately two orders of magnitude 851 
larger than the initial ∆F values found. It is noted that ∆F 852 
values are statistically reliable and can be used for quantitative 853 
comparison to experimental data. The calculation of entropic 854 
and enthalpic contributions is also extremely computationally 855 
demanding, as every temperature point of a simulation requires 856 
recalculation of the overall free energy.3 The authors highlight 857 
that where calculation of free energies of solvation has 858 
advanced so that computational errors are on par with 859 
experimental ones, thermodynamic decomposition calculations 860 
suffer from statistical errors 10-100 times larger than free 861 
energy of solvation calculations. 862 
 A recent study by Ahmed and Sandler51 uses the 863 
decomposition of free energies of hydration and self-solvation 864 
of low polarity nitrotoluenes to consider an array of 865 
thermodynamic terms and physiochemical properties. These 866 
include: solid-phase vapour pressures, solubilities, Henry’s law 867 
constants, hydration and self-solvation entropies, enthalpies, 868 
heat capacities and enthalpies of vaporisation or sublimation. 869 
Their study focuses on the temperature-dependence of various 870 
terms. Decomposition of hydration free energies into enthalpic 871 
and entropic contributions is performed by a method utilising 872 
polynomial fitting of temperature-dependent self-solvation free 873 
energies (with respect to temperature). The use of fitting 874 
increases the sensitivity of derived values of hydration free 875 
energies. Self-Solvation enthalpy (∆Hself) values and entropy 876 
(T∆Sself) values are calculated within approximately 2 kcal/mol 877 
of experimentally determined values.  878 

4.2 Combined Quantum Mechanical / Molecular Mechanical 879 
Methodologies (QM/MM) 880 

 Explicit solvation models are often developed with respect 881 
to biological systems, due to the role of water in catalytic 882 
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mechanisms, protein folding and protein-DNA recognition, to 883 
name but a few, which all require the specific detail of explicit 884 
water-substrate interactions to hold descriptive meaning. Of 885 
particular interest are combined QM/MM models, with QM 886 
describing electronic system changes (where precise system 887 
description is needed) and the rest of the system (where less 888 
precision is required) being described by a MM force field.3 889 
Applications of QM/MM combined models are discussed in a 890 
recent review.52  891 
 The foundational concepts involve the partitioning of a 892 
desired system into two subsystems: the QM subsystem, 893 
containing a small number of atoms and described by quantum 894 
mechanics, with the remainder of the system described by a 895 
suitable MM force field. The Hamiltonian of the whole system 896 
is simply written; 897 

J = J�M + JMM +J�M/MM																																																														(21.) 
where HQM is a QM Hamiltonian, HMM is an empirical force 898 
field and HQM/MM describes interactions at the QM/MM 899 
interface. The energy of the system is also described as the sum 900 
of QM, MM and QM/MM contributions. This model is often 901 
referred to as a two-layered approach (Fig. 5, left). A derivative 902 
of this model involves adding a third “layer” as a continuum 903 
solvent representation around the MM region, and is known as 904 
a three-layered approach (Fig. 5, right). 905 

 906 
Fig 5. – Left – two-layered approach to the QM/MM method. The solute 907 
molecule and a few water molecules are treated with QM (centre) and the rest 908 
of the solvent system is represented by MM up to a user-defined distance.  909 

Right – three-layered approach – an additional layer surrounds the MM region 910 
and uses a continuum approach to describe the long range solvent in the bulk. 911 

 Theoretically, any desired level of accuracy can be used 912 
within the QM region of the simulated system, within the scope 913 
of available methods. However, more accurate methods are 914 
susceptible to high computational cost. Thus, careful 915 
consideration is required by the user as to what level of 916 
accuracy is required, and at what cost. A succinct overview of 917 
different available QM methods is provided by Friesner and 918 
Guallar52 for QM/MM methods applied to enzymatic catalysis, 919 
with descriptions, advantages and disadvantages of respective 920 
QM methods available in textbooks such as the one by 921 
Cramer.3 922 
 A primary consideration when selecting a QM/MM method 923 
is the interactions at the QM/MM interface. Two aspects must 924 

be considered; i) the presence of covalent bonds across the 925 
interface – a particular concern for large (e.g., biomolecular) 926 
molecules, ii) the influence of the MM solvent region on the 927 
QM region – electrostatic and van der Waals interaction terms 928 
must be included. 929 
 In order to treat covalent bonds at the interface, it is possible 930 
to introduce “link atoms”. Link atoms are QM hydrogen atoms 931 
that fill free valencies of QM atoms connected to MM atoms. A 932 
disadvantage of this method is the debate about inclusion of 933 
Coulombic interaction terms for the link atoms. Other methods 934 
developed in order to avoid the use of link atoms include the 935 
Local Self-Consistent Field (LSCF) method, which applies a 936 
mixture of hybrid and atomic orbitals to represent the QM 937 
system, and the “connection atom” method, where MM and 938 
QM interface atoms are described as QM methyl groups with a 939 
free sp3 valence. 940 
 A recent three-layered approach aiming to tackle the issues 941 
associated with the QM/MM interface and the interaction terms 942 
for MM solvent effects has been proposed by Steindal et al53. 943 
This approach is described as the fully polarisable 944 
QM/MM/PCM method (see section 3 for a description of 945 
PCM), and is designed for the effective inclusion of a medium 946 
in a QM calculation. Short range solvent electrostatic potentials 947 
are described by an atomistic model (QM/MM) whilst the long 948 
range potentials are described by a continuum. The method is 949 
implemented in combination with linear response techniques 950 
with a non-equilibrium formulation of environmental response. 951 
The authors find a faster convergence with respect to system 952 
size for QM/MM/PCM than for QM/MM methods. This 953 
approach allows for reduction of the MM part of the calculation 954 
with PCM, allowing less demanding calculations, and reduced 955 
sampling. However, three-layered approaches such as this often 956 
require much more user input and method manipulation, for 957 
example, considerations for MM/PCM interactions have to be 958 
considered in addition to QM/MM interactions, and so such 959 
methods are suited only to advanced users.  960 

4.3 Explicit Representations of Water Atoms 961 

 When solvent is represented explicitly, solvent molecules 962 
usually greatly outnumber solute molecules. Thus, in order for 963 
a model to be efficient, it is advantageous to use the simplest 964 
possible solvent representation.44 Water is often considered the 965 
most useful solvent system, and thus is the solvent most widely 966 
used in explicit solvent models. The macroscopic properties are 967 
well established, yet the microscopic forces that determine 968 
water structure are not fully understood.  969 
 The treatment of water can be rigid or flexible. Rigid 970 
models often include a fictitious H-H bond to constrain bond 971 
angles in the water monomer.3 Three of the most common rigid 972 
models for water are the TIP3P (transferable intermolecular 973 
potential 3P), SPC (simple point charge) and SPC/E (simple 974 
point charge extended) models, and their modified counterparts. 975 
These three models are effectively rigid pair potentials 976 
comprising LJ and Coulombic terms. However, the terms used 977 
differ in each model, and give rise to different calculated bulk 978 
properties for water.54 Values for various properties of water 979 
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obtained with different rigid models of water are shown below, 980 
in table 1.  981 

Table 1 – Model vs. experimental (Exp.) values for bulk properties of water under 982 
standard conditions (298K; 1 bar), including dipole μ, density ρ, static dielectric 983 
constant ε0 and heat capacity Cp. 984 

Property TIP3P55,56 TIP4PEw57 SPCE58,56 Exp.56 

µ (D) 2.348 2.32 2.352 2.5-3.0 

ρ (g/cm3) 0.980 0.995 0.994 0.997 

ε0  94 63.90 68 78.4 

CP 

(cal/(K.mol)) 
18.74 19.2 20.7 18 

 985 

 MD calculations require the integration of Newton’s 986 
equations of motion for all atoms, which is achieved through 987 
the evaluation of all atomic forces at each time step. Non-988 
bonded interactions, especially long-range electrostatic 989 
interactions, dominate computationally, requiring extensive 990 
CPU time. In order to minimise this to an acceptable level, 991 
approximations are necessary. Boundaries are introduced into 992 
water models to restrain the system to a finite size, which 993 
almost always leads to artefacts in the obtainable data.54 The 994 
most commonly utilised method for cost-effective solute 995 
computations is the application of a spherical cut-off, limiting 996 
the number of pairwise interactions to those within a specified 997 
radius.54 The use of cut-offs for non-bonded interactions can 998 
have undesirable effects. LJ interactions are susceptible to 999 
small energetic effects, and large pressure effects induced by 1000 
cut-offs. Pressure scaling can be used to correct for pressure 1001 
related cut-off effects, usually to the order of several hundred 1002 
bar. Cut-off effects for systems with dipolar electrostatic 1003 
interactions are more prominent, with cut-offs selected within 1004 
the parameters of experimental radial distribution functions up 1005 
to ~1.0 nm. However, computer simulations have shown 1006 
ordering within water up to ~1.4 nm, so the full structure of 1007 
water is not typically accounted for, resulting in a poor 1008 
description of dielectric properties. A further, and the most 1009 
prominent, effect of cut-offs occurs in systems with full 1010 
charges, where accumulation of the charge occurs at the cut-off 1011 
boundary.59  1012 
 Spoel et al.59 (1998) investigated the effectiveness of 1013 
TIP3P, TIP4P, SPC, and SPC/E models in describing the 1014 
density and energy, dynamic, dielectric and structural 1015 
properties of water. All simulations and analyses were identical 1016 
for each model investigated, allowing the evaluation of 1017 
simulation methodology independent of the model. It was 1018 
found that system size, cut-off length and reaction fields had 1019 
comparable effects on the overall calculated structural 1020 
properties of water.  1021 
 System size effects are considered through the comparison 1022 
of systems comprising a small (216) and a large (820) number 1023 
of molecules. The average thermodynamic properties (ρ,Epot, T, 1024 

P) are the same regardless of system size. Fluctuations in 1025 
thermodynamic properties are known to be proportional to the 1026 
square root of the system size, which is confirmed within the 1027 
study. However, differences between large and small systems 1028 
are observed, particularly for the dielectric constant, which is 1029 
higher for all systems with a large number of molecules. The 1030 
diffusion constant for large systems is also higher, attributed to 1031 
periodic boundary conditions (PBC). 1032 
 Cutoff effects are considered by the use of two different 1033 
cutoff lengths (0.9 nm and 1.2 nm) for the large systems. It is 1034 
found that density increases with an increased cutoff length, 1035 
and energy decreases. There is no effect on dielectric 1036 
behaviour. 1037 
 In all simulations density decreased by approximately 1 kJ 1038 
mol-1 on application of a reaction field. The self-diffusion 1039 
constant D, and rotational correlation times were found to 1040 
increase, indicating the reaction field affects on both the 1041 
translational and rotational mobility of molecules. 1042 
  Quantum chemical MD simulations of water are often 1043 
developed with Density Functional Theory (DFT) methods, 1044 
applied with a plane wave basis set to determine the electronic 1045 
structure and forces. These methods offer reasonable estimates 1046 
of the structural and dynamic properties of water when 1047 
compared to experimental measurements. However, problems 1048 
exist in the description of electronic gradient corrections, and 1049 
equilibrium pressure. The interatomic forces of early quantum 1050 
simulations, including DFT based methods, were originally 1051 
parameterised with classical mechanics, leading to an 1052 
unsatisfactory agreement between quantum and experimental 1053 
results. DFT models also tend to calculate liquid structure with 1054 
too much order, and underestimate equilibrium density. This is 1055 
often attributed to the inability of local functionals to describe 1056 
dispersion effects.  1057 
 A recent approach to water simulation has claimed to 1058 
provide a model, called the electronically coarse-grained 1059 
model, capable of accounting for the shortcomings of both 1060 
existing classical and quantum models.60 Jones et al.60 (2013) 1061 
base their method on the replacement of valence electrons of an 1062 
atom with an embedded Quantum Drude oscillator (QDO). 1063 
QDO treatment of water is based upon the TIP4P classical rigid 1064 
model of water, with the three water atoms supplemented by a 1065 
dummy atom with a negative charge, added along the ∠HOH 1066 
bisector to create an additional interaction point.  The QDO 1067 
parameters aim to reproduce the isotropic parts of the dipole, 1068 
polarisability, and the dispersion coefficient. The dispersion 1069 
interaction is then adjusted by scaling, whilst preserving 1070 
polarisability. The baseline unadjusted model produces a 1071 
realistic, but over-structured liquid with a density that is too 1072 
low by up to 20%, attributed to its underestimation of 1073 
dispersion. Note also that the value of the enthalpy of 1074 
vaporisation (at ambient pressure) ∆hvap was found at 40 ±2 1075 
kJ/mol, close to the experimental value of 43.91 kJ/mol. 1076 
Scaling the dispersion term results in an increased equilibrium 1077 
density for increased dispersion. This induces a weakening 1078 
effect on the H-bonding network of water, bringing the overall 1079 
structure closer to agreement with benchmark data. However, 1080 
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the calculated ∆hvap increases to 46 ±2 kJ/mol, which is 4% 1081 
higher than the experimental value. It is also found that the H-1082 
bond network is sensitive to changing polarisation at fixed 1083 
dispersion, affirming the independent importance of both 1084 
polarisation and dispersion effects on an overall explicit model. 1085 

5. Efficient Hybrid Models – Statistical Mechanics 1086 

 Within an aqueous solution phase, single snapshot images 1087 
of structure are of limited use. Water is one of the few single 1088 
component liquids for which there are highly competitive 1089 
interactions at short range (hydrogen bonding), capable of 1090 
damping the effects of repulsion. For this reason, ensemble 1091 
averaging is required to identify the most probable geometric 1092 
configurations which most heavily contribute to the system’s 1093 
interactions. This idea has already been introduced within 1094 
explicit models of solvation using ensembles taking snapshots 1095 
at specific time periods. However, the cost of calculating the 1096 
many configurations accessible in a solution is enormous, 1097 
hence, in this section we focus on statistical mechanics methods 1098 
which enable a more efficient calculation process. 1099 

5.1 Correlation Functions 1100 

 From a chemical point of view, a solution is a highly mobile 1101 
system in which the dynamics are a vital contribution to the 1102 
system’s properties and behaviour. Therefore, mathematically 1103 
we wish to capture this. Attempting to quantify dynamics with 1104 
static properties is not sufficient; we must therefore provide 1105 
averages or probabilities of interactions occurring at given 1106 
distances. For this reason a natural choice is to represent the 1107 
solvent using Pair Correlation Functions (PCF), or equivalently 1108 
Radial Distribution Functions (RDF). These functions allow us 1109 
to determine a probabilistic structure of the solvent. 1110 

 1111 
 1112 

Fig. 6 - A schematic representation of PCF for liquid water; water oxygen – water 1113 
hydrogen (blue) and water oxygen – water oxygen (red).  1114 

 PCF can be interpreted as showing the probability against 1115 
distance of there being an atom of interest at that distance from 1116 
the atom under study. For example the first large blue peak in 1117 
Figure 6 would correspond to either a water H at a distance 1118 
from an O atom under study or vice versa. These functions are 1119 
experimentally determinable from scattering experiments. We 1120 
would expect that the PCF/RDF would go to a constant value of 1121 

1 at large values of r (i.e. it would become isotropic, like a 1122 
continuum model, as there are no solute interactions to perturb 1123 
the system). However, at small values of r we would not expect 1124 
this. At very small values (less than the van der Waals radii of 1125 
the solute atoms) we expect zero as only one particle can 1126 
occupy the space at a time. Just outside this distance we see 1127 
sharp non-uniform behaviour as solvent in the space interacts 1128 
favourably with the solute holding a more rigid form. This 1129 
leads to troughs in the PCF/RDF just behind the peaks, thus 1130 
deviating from the value of 1 for a uniform solvent. 1131 

5.1.1 COMPUTATIONAL USE AND DETERMINATION OF 1132 
CORRELATION FUNCTIONS 1133 

 The starting point for the use and determination of these 1134 
functions for solvation modelling in statistical mechanics is 1135 
integral equation theory (IET). In this theory a molecule is fully 1136 
described by a six-dimensional vector (three degrees of 1137 
freedom relate to position x,y,z and three degrees of freedom 1138 
determine the orientation ψ,θ,φ). To refer to these two sets of 1139 
variables collectively, we will use the following symbols 1140 
r={x,y,z} and Θ={ψ,θ,φ}. These variables are conveniently 1141 
incorporated into the fundamental 6D integral equation, the 1142 
Molecular Ornstein-Zernike equation (MOZ). This equation 1143 
utilises PCF/RDF between the various constituents of the 1144 
liquid, g(r1,r2,Θ1,Θ2). This simplifies for homogeneous solution 1145 
to relative positions and orientation of the constituents, g(r1 - r2, 1146 
Θ1 - Θ2). This can most conveniently be written with reference 1147 
to the total correlation function h(r, Θ).61 1148 

��A(L6 − L[, Θ6 − Θ[) = ��A(L6 − L[, Θ6 − Θ[) − 1																							(22.) 
 We can simplify this equation by assuming spherical 1149 
symmetry of molecules, hence removing consideration of 1150 
orientational degrees of freedom by treating each water 1151 
molecule as a hard sphere. We can now further separate the 1152 
contributions to the total correlation function into direct and 1153 
indirect components. To do this we must introduce the direct 1154 
correlation function c(r). We can now re-write the MOZ 1155 
equation assuming spherical symmetry as follows: 1156 

��L6,[� = ��L6,[� +	V�L�	��L6,��W(L�)��L[,��																														(23.) 
 Two effects contribute to the total correlation function (eqn. 1157 
22); i) the direct correlation between r1 and r2, and ii) an 1158 
indirect correlation via a third body, r3. The indirect correlation 1159 
via r3 is weighted by the density at r3, and thus allows the 1160 
consideration of all possible positions of the third body.61 1161 
 To solve this equation, h(r) and c(r) need to be found. As we 1162 
have only a single equation and two unknown functions, h(r) 1163 
and c(r), another equation is required; a closure relation must be 1164 
introduced. There are several such equations available from 1165 
statistical mechanics. The exact closure relation is as follows: 1166 
 1167 
�(L) = �#��(T)��(T)#�(T)�g(T) =�	�#��(T)��(T)�g(T)								(24.) 
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 1168 
where β is equal to 1/kBT and U(r) is the interaction potential 1169 
which is often of the following form: 1170 

 1171 
Fig. 7 – Illustration of the contributions, both direct and indirect, to the total 1172 
correlation function. 1173 

�(L) = 4` �q��&L r6[ − q��&L ry� +	d�d&L 																																									(25.)	 
 T(r) is known as the indirect correlation function as it is the 1174 
difference between the total and direct correlation functions, 1175 
and quantifies the indirect contribution. B(r) is the bridge 1176 
function, which comes from graph theory - its exact form is not 1177 
known. Several approximate closure relations exist; some will 1178 
be discussed here, although others are available. Originally the 1179 
HyperNetted-Chain (HNC) approximate closure was used.  1180 

�(L) = �(#��(T)��(T)) − 1																																																																			(26.) 
This closure works in principle for charged systems but 1181 
neglects the bridge function term completely, assuming it to be 1182 
zero. This can lead to poor convergence due to uncontrolled 1183 
growth in the argument of the exponent. An alternative is the 1184 
Partially Linearised HyperNetted Chain (PLHNC). This closure 1185 
linearises the HNC once a cut off value (C) is exceeded:62 1186 

Λ	 = 	−��(L) + ,(L)																																																																											(27.) 
�(L) 	= 	 ��(#��(T)��(T)) − 1																															���-	Λ   C		−��(L) + ,(L) +	�¢ − � − 1						���-	Λ � �  

This improves the convergence of the equations and is now 1187 
regularly used in many applications for a variety of systems. 1188 
 Due to the spherical symmetry approximation, the MOZ can 1189 
only   be applied to simple solutions. Additionally, due to the 1190 
high dimensionality of the full equation, before the spherical 1191 
symmetry approximation was invoked, it is practically 1192 
incomputable. For this reason a number of approximations have 1193 
been developed which are collectively referred to as Reference 1194 
Interaction Site Models (RISM).  1195 

5.2 3D-RISM: A Hybrid Solvation Model 1196 

 As we have seen, the explicit treatment of solvent is 1197 
considered to be a necessary step in the understanding of 1198 
solvent structure. However, this naturally carries high 1199 
computational costs3. The alternative continuum treatment of 1200 

solvents lacks the ability to account for the underlying physical 1201 
theory; energy contributions from solvation shell features are 1202 
computable, but not transferable. Solvent structure features 1203 
from the first and second solvation shells are lost in continuum 1204 
models, and non-electrostatic energy terms are not described 1205 
from first principles, thus are not transferable to more complex 1206 
models.63  1207 
 The 3D derivation of RISM (3D-RISM)64,65 is a 3D 1208 
molecular theory of solvation, applied through solvent 1209 
distributions, rather than explicit solvent molecules, and 1210 
conceives solvation structure and dynamics from the first 1211 
principles of statistical mechanics.  1212 
 3D-RISM is derived from a partial integration over the 1213 
orientational degrees of freedom; this leaves a set of 3D integral 1214 
equations (one equation per solvent site; Nsolvent). This method 1215 
utilises solvent site – solute total correlation functions and 1216 
direct correlation functions in the solution of the RISM 1217 
equations. The 3D-RISM equations take the following form:62 1218 

�(α) = > V 	�¤(L6 − L[)¥¤,¦(|L[|)�L[§¨

©ª«¬®¯°

¤
																																	(28.)	 

Here ¥¤,¦  labels the solvent susceptibility function. This 1219 
function models the bulk solvent mutual correlations. For the 1220 
example of water, this function models the intermolecular 1221 
correlation between water oxygen and water hydrogen. This 1222 
function can be calculated from the intramolecular solvent 1223 
correlation function (ω²³	��7S*�(r)), the radial site to site total 1224 
correlation functions (�²´	��7S*�(L)) and the number density at 1225 
each solvent site (ρα): 1226 

¥¤,¦(L) = ω²³	��7S*�(r) +	W¦ q�²	́��7S*�(L)r																												(29.) 

 1227 
Fig. 8 – Illustration of the contributions to the solvent susceptibility function. 1228 

3D RISM can reliably account for the spatial correlation of the 1229 
solvent density around the solute. As displayed above, the 1230 
solvent molecules are modelled as a set of atomic sites, with 3D 1231 
structure described by intramolecular correlation functions.62,66 1232 

5.3 1D-RISM: A High Throughput Solvation Model 1233 

 Another RISM method is 1D RISM, which separates the 1234 
solute into a set of sites (generally the atoms) and utilises 1235 
solvent site – solute site total correlation functions and direct 1236 
correlation functions. This leads to a set of (Nsolute site × Nsolvent 1237 

site) closure relations. 1D RISM is extremely quick to calculate 1238 
but does not account properly for spatial correlations of the 1239 
solvent density around the solute:  1240 
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�	v¦(L) = > > V V ¶		v(|L6 − L·|)
§¨

																				(30.)
§¨

©ª«¬®¯°

¸¹6

©ª«¬º°®

	v¹6
 

																									�	v¸(|L· − L··|)¥¤,¦(|L·· − L[|)�L·�L·· 
Nsolute is the number of sites in the solute and Nsolvent is number 1241 
of sites in the solvent molecule. ¶		v are the intramolecular 1242 
correlation functions representing the solute molecule.66 1243 
 Implementations of both 1D- and 3D-RISM are available in 1244 
well-known computational packages such as AMBER. There 1245 
are also implementations in some quantum chemistry codes 1246 
such as ADF. 1247 

       1248 
Fig. 9 - A schematic representation of 1D-RISM and 3D-RISM. The conceptual 1249 
difference in the models is that the total correlation functions are calculated 1250 
considering the solute as a set of sites (1D-RISM) or as a single site (3D-RISM). α 1251 
labels the solvent site in both models, s labels the solute site in the 1D-RISM 1252 
case. 1253 

5.4 RISM Corrections and Derivations 1254 

5.4.1 CORRECTION SCHEMES 1255 

  A well-known error in both 1D and 3D-RISM occurs due 1256 
to accounting for the cavitation term in the solution phase 1257 
incorrectly. Other limitations also exist, associated with the use 1258 
of approximations. Several schemes to correct these errors have 1259 
been developed for 3D-RISM, however these are beyond the 1260 
scope of this review, and thus are discussed in minimal detail. 1261 
 Many studies have been conducted over the last two 1262 
decades with a view to improving the accuracy of 3D-RISM for 1263 
a variety of applications. Modifications to the original 1264 
equations have included cavity corrections,67 parallelisation 1265 
with fast Fourier transforms68 and MD modifications,63 1266 
amongst others.  1267 
 The universal correction (UC)69 given in equation 25 is a 1268 
two parameter correction derived by regression. Δ(�¼�T����*½¾  1269 
refers to the Gaussian fluctuation hydration free energy (HFE) 1270 
functional discussed below, a and b are regression coefficients 1271 
(a=-3.2217 and b=0.5783), and ρV is the dimensionless partial 1272 
molar volume as calculated by 3D-RISM.  1273 
 1274 

Δ(�¼�T����*�¿#§ÀNM�¢ = Δ(�¼�T����*½¾ + 			o(W.) + Á																				(31.)					 
�� = 	o(W.) + Á																																																						 

 A second scheme known as cavity corrected 3D-RISM fits a 1275 
single parameter calculated on the basis of a solution composed 1276 

of spheres which interact exclusively by Lennard-Jones type 1277 
interactions.70 A very recent addition offers a theoretical 1278 
justification for such schemes; applying a Thermodynamic-1279 
Ensemble Partial Molar Volume Correction.71 1280 

  Correction schemes for 1D-RISM also exist. These 1281 
correction schemes must correct for additional approximations 1282 
from the 1D RISM theory. A recent addition is the Structural 1283 
Descriptor Correction (SDC). This applies QSPR methods and 1284 
group contributions to correct 1D-RISM.66 1285 

 A primary concern in the improvement of 3D-RISM 1286 
remains its ability to describe the thermodynamic properties of 1287 
solvation. One view adopted by Palmer et al.69 is that solubility 1288 
calculations should be considered in terms of a simple 1289 
thermodynamic cycle, calculating the solvation free energy 1290 
from summation of the free energy of sublimation, and the free 1291 
energy of hydration, as illustrated in Fig. 10. 1292 
 A recent investigation by Palmer et al.62 implements the 1293 
thermodynamic cycle approach to the calculation of solubility, 1294 
with sublimation free energies calculated from crystal lattice 1295 
minimisation and HFEs calculated with 3D-RISM. Crystal 1296 
lattice calculations are performed on known crystal structures.  1297 
 The authors highlight a plethora of existing approximate 1298 
functionals which can provide HFE values from the solvent 1299 
site-solute total correlation functions and direct correlations of 1300 
3D-RISM. However, the functionals investigated previously to 1301 
Palmer et al.’s work often provide HFEs with RMSE errors 1302 
higher than the standard deviation of experimental data, and 1303 
worse than those reported in QSPR models.   1304 
 The investigation62 implementing the thermodynamic cycle 1305 
approach to the calculation of solubility applied the previous 1306 
work of Palmer et al.61 and found that the thermodynamic cycle 1307 
approach predicted HFEs in good agreement with experiment 1308 
(R = 0.94, σ = 0.99 kcal mol-1). However, the predictions did 1309 
not perform as well as purely empirical approaches, and this 1310 
was mostly attributed to a lack of parameterisation against 1311 
experimental data. 1312 

5.4.2 HYDRATION FREE ENERGY FUNCTIONALS 1313 

 In order to calculate HFEs a HFE functional must be 1314 
applied to the RISM output. There are a number of such 1315 
functionals which vary in accuracy. Some of the correction 1316 
schemes above recommend a specific HFE functional for use 1317 
(UC recommends the Gaussian fluctuation HFE functional72). It 1318 
is suggested to the user that where possible several functionals 1319 
are tested for accuracy. Where this is not possible, the guidance 1320 
given for the selection of a HFE functional for specific schemes 1321 
should be followed, as these are generally well documented by 1322 
the developer groups. 1323 

5.4.3. RISM AND QUANTUM CHEMICAL APPLICATIONS 1324 

 RISM has also been applied to quantum chemical 1325 
applications. RISM was extended for applications to quantum 1326 
chemistry - this extension is called RISM-SCF. This theory 1327 
provides the following definition of the Helmholtz free energy 1328 
of the system: 1329 
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 1330 
� = �	��)�S + ∆Â																																																																									(26. )                1331 
 1332 
where A is the total Helmholtz free energy, Esolute is the solute 1333 
energy and ∆µ is the solvation free energy from the RISM 1334 
equations. A is functionally connected to both the site-to-site 1335 
density correlation functions and the wavefunction of the 1336 
solute, hence mutual solution of Esolute and ∆µ provide the joint 1337 
system’s equilibrium energies.33 3D-RISM has been combined 1338 
with Kohn-Sham DFT, offering an alternative to continuum 1339 
solvents and ab initio MD.73 These calculations have been 1340 
extended to higher levels of quantum mechanical theory (multi-1341 
reference methods) which are currently unaffordable at the 1342 
QM/MM level.33  1343 

 1344 
Fig. 10 – Solubility prediction via a thermodynamic cycle. The free energy change 1345 
from crystalline to aqueous phase is calculated from the summation of the free 1346 
energy change of sublimation and the free energy change of hydration. 1347 

5.4 Other Hybrid Models 1348 

 Combined implicit/explicit hybrid models work on a 1349 
common framework; the central part of the system contains 1350 
explicit solute and a few explicit solvent molecules, and the rest 1351 
of the system is treated as a dielectric continuum. 1352 
 The improvement associated with the insertion of explicit 1353 
water molecules within a dielectric continuum has been 1354 
demonstrated by Kelly, Cramer and Truhlar,74 who use the 1355 
calculation of aqueous acid dissociation constants to 1356 
demonstrate the effects of inserting a single explicit solvent 1357 
molecule into a continuum solvent representation. Along with 1358 
previous work,75 the authors show that in many cases an 1359 
implicit solvation method is sufficient for the calculation of pKa 1360 
values. However, when strong and specific solute-solvent 1361 
hydrogen bonding interactions are expected to contribute 1362 
significantly to the aqueous phase, a single explicit molecule 1363 
inserted to the continuum significantly improves pKa 1364 
calculation. Using their own implicit continuum model (SM6), 1365 
it is found that addition of further explicit waters, up to three, 1366 

significantly increases the accuracy of the calculation. 1367 
However, the use of alternative continuum models, namely 1368 
SM5.43R and PCM, finds a worsening of results when an 1369 
increasing number of explicit atoms are added. This 1370 
exemplifies the importance of choosing a suitable continuum 1371 
representation in implicit/explicit hybrid models. 1372 
 Zhu and Krilov76 discussed two flexible boundary hybrid 1373 
solvation models for biomolecular systems, based upon the 1374 
traditional hybrid model with both explicit and implicit solvent 1375 
regions. The proposed models aim to account for short-range 1376 
solvent effects via elimination of PBC by limiting the number 1377 
of explicit solvent molecules to two or three solvation shells. 1378 
The first model, the dynamic boundary model, imposes a 1379 
confining potential on the solvent, which responds dynamically 1380 
to fluctuations in solvent distribution and solute conformation. 1381 
The second model, the exchange boundary solvation model, 1382 
allows pairwise exchanges between the explicit and implicit 1383 
regions of the system, maintaining a uniform hydration of the 1384 
solute. Comparison of the two methods with traditional PBC 1385 
methods shows good agreement between calculated energies, 1386 
and the two models are found to improve computational 1387 
efficiency by up to two orders of magnitude, attributed to the 1388 
reduced number of explicit solvent molecules in comparison to 1389 
other models.   1390 
 Chaudhury et al.77 recently discussed the discrepancies 1391 
between explicit and implicit methods for solvation models of 1392 
biological systems such as proteins, and consequently 1393 
investigate a Hybrid Replica Exchange Molecular Dynamics 1394 
(REMD) method for protein solvation. Temperature-based 1395 
REMD involves running multiple simultaneous simulations at a 1396 
wide-range of temperatures, while allowing temperature 1397 
exchange between simulation steps. This relates the relative 1398 
probability of finding each conformation at a given temperature 1399 
to conformational energy. Traditional REMD successfully 1400 
models small peptides and proteins, but becomes more cost-1401 
constrained for larger systems. In order to account for 1402 
discrepancies between implicit and explicit methods, the 1403 
authors propose a hybrid implicit/explicit method with each 1404 
simulation step run exclusively in explicit solvent. During 1405 
exchange between time steps, the entire solvent system is 1406 
replaced with an implicit solvent model. Finally, the explicit 1407 
solvent is re-inserted for the next simulation step. The use of an 1408 
implicit solvent model during exchange significantly reduces 1409 
computational cost. Where implicit and explicit models give 1410 
different behaviours, the hybrid method gives mixed results in 1411 
terms of thermodynamic and structural descriptions. However, 1412 
the explicit model of solvent molecules describes solvent-1413 
specific features of energy landscapes well.  1414 
 A further emerging method that similarly attempts to reduce 1415 
the cost-constraints of explicit methods is Grid Cell Theory 1416 
(GCT).78 GCT spatially resolves the enthalpic and entropic 1417 
components of hydration on a 3D grid, covering a volume of 1418 
space around a solute. The grid can be non-uniform and 1419 
unevenly spaced. The solute is constrained to adopt a single 1420 
conformation, speeding up convergence by only allowing rigid 1421 
body translations and rotations of water molecules. A second 1422 
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benefit of GCT is that graphical analysis of a calculated grid is 1423 
possible. A drawback of GCT method development emanates 1424 
from the fact that there does not exist a unique method of 1425 
partitioning a free energy into a sum of contributions, as 1426 
contributions are susceptible to coupling. Gerogiokas et al.78 1427 
have recently proposed a GCT method, and evaluate the 1428 
enthalpic and entropic contributions to hydration, making 1429 
visualisation of hydration thermodynamics possible. GCT is a 1430 
slower method than other thermodynamic integration methods, 1431 
but such alternative methods are not as descriptive in terms of 1432 
thermodynamic contributions.  1433 

6. Outlook and Conclusions 1434 

 The aim of this review is to introduce the multitude of 1435 
available methods and concepts for the calculation of solution 1436 
free energies, and the modelling of systems in solution. 1437 
Through the highlighting of many traditional and emerging 1438 
methods within explicit, implicit, informatics and hybrid 1439 
methods, it has become clear that each modelling category has 1440 
its own advantages and disadvantages. The trade-off between 1441 
the inaccuracies of implicit solvent models and the 1442 
computational cost-constraints of explicit models are a 1443 
prominent issue, and have conceived a number of hybrid 1444 
solvation methods, each of which aims to provide a model of 1445 
reasonable accuracy at an appropriate cost. The plethora of such 1446 
available methods exemplifies the importance of accurate 1447 
solvation models.  1448 
 We have placed particular emphasis on 3D-RISM and its 1449 
derived counterparts, as we believe that RISM based methods 1450 
are a strong contender in the challenge of finding a 1451 
computationally viable solubility prediction method which is 1452 
also descriptive enough for the theoretical study of a system’s 1453 
thermodynamics. However, it is also noted that such methods 1454 
are a long way from perfection, and require further refinements 1455 
of solute-solvent correlation functions.   1456 
 With the increase of computing power, as described by 1457 
Moore’s law, it is hard to predict how much of an issue 1458 
computational costs associated with solvation modelling will be 1459 
over the coming years. However, increases in computing power 1460 
will inevitably allow more accurate methods to be employed 1461 
within a faster timeframe. We predict the emergence of hybrid 1462 
models which describe the theoretical and physical components 1463 
of solvation at an ever increasing rate, with the need to trade off 1464 
accuracy over time becoming less as computing power 1465 
increases.  1466 
 Although future prospects for solvation modelling are 1467 
bright, we are also aware that there is a very present need for 1468 
good models. We would like to note that the best choice in 1469 
model for solvation is entirely dependent on the requirements 1470 
of the user. For high-throughput screening of molecules of 1471 
similar structural features, we suggest QSPR/QSAR as a 1472 
suitable and reliable approach for thermodynamic property 1473 
calculation (e.g., solvation free energy). However, where 1474 
specific physical and mechanistic meaning is desired, it is best 1475 
to employ either explicit solvent representations, suitable for 1476 

relatively small solute sizes, or where larger solutes are used, 1477 
hybrid models. The choice of hybrid models for such 1478 
investigations is not intuitively obvious, as highlighted within 1479 
this review, as some systems are described sufficiently with 1480 
addition of a single solute molecule, whereas for other systems 1481 
it is necessary to add enough explicit solvent molecules to 1482 
describe full solvation shells. Thus, it is often necessary to 1483 
consider whether solvent behaviour is a significant contributor 1484 
to the property of interest. If so, explicit/hybrid methods are 1485 
advisable, dependent upon available computing resources. 1486 
Otherwise, continuum models could offer sufficient physical 1487 
description of the solvent environment. Of course, where 1488 
sufficient and trustworthy experimental data are available, 1489 
several models should be tested and evaluated for correlation 1490 
with available experimental data. 1491 
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