PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

1	Electrochemical reduction of aromatic ketones in
2	1-butyl-3-methylimidazolium-based ionic liquids in the
3	presence of carbon dioxide: the influence of the ketone
4	substituent and the ionic liquid anion on bulk electrolysis
5	product distribution
6	
7	Shu-Feng Zhao, ^{†‡} Mike Horne, ^{*‡} Alan M. Bond [†] and Jie Zhang ^{*†}
8	

[†]School of Chemistry and Australian Research Council Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria, 3800, Australia. E-mail: <u>jie.zhang@monash.edu</u>; Tel: +61 3 99056289; Fax: +61 3 99054597.

[‡]CSIRO Process Science and Engineering, Box 312, Clayton South, Victoria, 3168, Australia. Email: <u>Mike.Horne@csiro.au;</u> Tel: +61 3 9545 8866; Fax: +61 3 9562 8919.

1 Abstract

2 Electrochemical reduction of aromatic ketones, including acetophenone, benzophenone 3 and 4-phenylbenzophenone, has been undertaken in 1-butyl-3-methylimidazolium-based 4 ionic liquids containing tetrafluoroborate ($[BF_4]$), trifluoromethanesulfonate ([TfO]) and 5 tris(pentafluoroethyl)trifluorophosphate ([FAP]) anions in the presence of carbon dioxide in 6 order to investigate the ketone substituent effect and the influence of the acidic proton on the 7 imidazolium cation (C2-H) on bulk electrolysis product distribution. For acetophenone, the 8 minor products were dimers (< 10%) in all ionic liquids, which are the result of acetophenone 9 radical anion coupling. For benzophenone and 4-phenylbenzophenone, no dimers were 10 formed due to steric hindrance. In these cases, even though carboxylic acids were obtained, 11 the main products generated were alcohols (> 50%) derived from proton coupled electron 12 transfer reactions involving the electrogenerated radical anions and C2-H. In the cases of both 13 acetophenone and benzophenone, the product distribution is essentially independent of the 14 ionic liquid anion. By contrast, 4-phenylbenzophenone shows a product distribution that is 15 dependent on the ionic liquid anion. Higher yields of carboxylic acids (~40%) are obtained 16 with [TfO]⁻ and [FAP]⁻ anions because in these ionic liquids the C2-H is less acidic, making 17 the formation of alcohol less favourable. In comparison with benzophenone, a higher yield of 18 carboxylic acid (> 30% versus ~15%) was obtained with 4-phenylbenzophenone in all ionic 19 liquids due to the weaker basicity of 4-phenylbenzophenone radical anion.

20

2

hysical Chemistry Chemical Physics Accepted Manuscript

1 1. Introduction

2 Hydroxy carboxylic acids are an important class of compound that have been widely used as intermediates in the production of pharmaceutical materials¹⁻⁵ such as anti-inflammatory 3 agents, cosmetic drugs and spasmolytics. Conventional synthesis of hydroxyl carboxylic 4 5 acids proceeds via the corresponding cyanohydrins using ketones as precursors. However, the 6 use of highly toxic cyanides makes this method less palatable for pharmaceutical 7 applications. Consequently, alternative synthetic routes for producing hydroxy carboxylic have been extensively explored.⁶⁻⁹ and 8 among these alternatives, acids the 9 electrocarboxylation of aromatic ketones which involves bulk electrolysis in the presence of carbon dioxide has been recognized as being effective and environmentally benign.⁹⁻¹⁶ So far, 10 the majority of bulk electrolysis studies under a carbon dioxide (CO₂) atmosphere have been 11 carried out in molecular solvents such as dimethylformamide (DMF)^{5, 14, 17}, N-methyl-2-12 pyrrolidone (NMP)¹¹⁻¹³ and acetonitrile (MeCN)^{5, 14}. Apart from the major hydroxy 13 14 carboxylic acid products, common side products in the electroreduction of aromatic ketones 15 under a CO₂ atmosphere are dimers and alcohols which are derived from dimerization and proton coupled electron transfer reactions, respectively (Scheme 1). Isse *et al.*¹⁸ have shown 16 17 that the product distribution is strongly medium dependent. Higher yields of carboxylic acids 18 were obtained when solvents with higher CO_2 solubilities and lower proton availabilities are 19 used.

$$R_{1}R_{2}C=O + e^{-} \rightarrow [R_{1}R_{2}C-O]^{-} \begin{pmatrix} \hline R_{1} + R_{2} + R_{1} \\ R_{2}R_{2} \\ \hline R_{1}R_{2}C=O + e^{-} \rightarrow [R_{1}R_{2}C-O]^{-} \\ \hline R_{1}R_{2}C-OH + R_{1}R_{2}C-OH \\ \hline R_{1}R_{2}C-OH + R_{1}R_{2}C-OH \\ \hline R_{1}R_{2}C-OH + R_{1}R_{2}C-OH \\ \hline R_{1}R_{2}C-OH \\ \hline R_{1}R_{2}C-OC \\ \hline R_{1}R_{2}C-OC \\ \hline R_{1}R_{2}C-OC \\ \hline CO_{2} \\ R_{1}R_{2}C-OC \\ \hline CO_{2} \\ \hline \\ \hline CO_{2}$$

1 Scheme 1 Competing reaction pathways for the electroreduction of aromatic ketones under a

In recent years, ionic liquids¹⁹⁻²¹ have received considerable attention in both fundamental 3 4 and applied electrochemical research because they are inherently conductive, exhibit 5 excellent electrochemical stability, and display versatile solvent properties that differ from 6 those found with molecular solvents containing added supporting electrolytes. From the thousands of ionic liquids reported so far, those based on the imidazolium cation^{20, 22} are most 7 commonly used for the electrocarboxylation of organic compounds such as alkenes,²³ 8 alcohols²⁴⁻²⁶, ketones^{5, 16, 27, 28} and halides²⁹⁻³¹ because they are synthesised easily and can 9 dissolve large amounts of many organic compounds and CO₂. However, when using 1-butyl-10 11 3-methylimidazolium tetrafluoroborate ($[Bmim][BF_4]$) as the medium for bulk electrolysis of acetophenone under a CO₂ atmosphere, Zhao et al.²⁸ found that 1-phenylethanol was the 12 13 main product with a high yield of 97%. It was proposed in that study that the presence of CO_2 14 enhances the C2-H donating ability in [Bmim]⁺ due to strong complex formation between deprotonated [Bmim]⁺, N-heterocyclic carbene (NHC), and CO₂, resulting in a 15 16 thermodynamically favourable proton coupled electron transfer pathway. This postulated 17 mechanism is supported by observations made during the electroreduction of acetophenone 18 under CO_2 in dry 1-butyl-2,3-dimethylimidazolium tetrafluoroborate ([Bmmim][BF₄]) and 1-19 butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([Bmpyrd][TFSI]), both of which have low proton availabilities.¹⁶ In dry [Bmmim][BF₄] where the reactive C2-H is 20 21 substituted by a methyl group, a significant amount of 2-hydroxy-2-phenylpropionic acid 22 (15% yield) was obtained, even though 1-phenylethanol (60% yield) was still the major 23 product. By contrast, in dry [Bmpyrd][TFSI] where a reactive proton source is essentially absent³², the carboxylic acid yield is 98%. Clearly, the reaction mechanism is strongly 24

dependent on the proton availability in ionic liquids: those with a lower proton availability

2 CO_2 atmosphere.

25

1 favour carboxylate formation. It is also noteworthy that in a recent study by Feroci *et al.*³³, a 2 significant yield of the product generated from the reaction between NHC and benzaldehyde 3 was detected when benzaldehyde was added to [Bmim][BF₄] after reductive electrolysis. This 4 experimental evidence further supports the proposed mechanism based on a proton coupled 5 electron transfer reaction involving the radical anion of the substrate and C2-H in 6 [Bmim][BF₄] under a CO₂ atmosphere.

The results^{16, 28} to date from our laboratory show that the imidazolium-based ionic liquids 7 8 previously used are not suitable for electrocarboxylation of aromatic ketones due to the acid-9 base chemistry associated proton coupled electron transfer reaction involving reactive C2-H 10 of imidazolium cations and the basic electrogenerated aromatic ketone radical anions. Cathodic instability^{34, 35} also may be an issue. In principle, the thermodynamics and kinetics 11 12 of the undesirable acid-base reaction depend on the basicity of the proton acceptor (the 13 radical anion of the aromatic ketone) and the acidity of the proton donor, C2-H. The former 14 can be varied by introducing electron donating or withdrawing groups substituted onto the 15 aromatic ketone. The latter is governed by the ionic liquid anion as suggested by studies using NMR³⁶, voltammetry, infrared spectroscopy and thermogravimetric techniques³³. 16 According to ¹H NMR data reported by Cremer *et al.*³⁶ on imidazolium-based ionic liquids 17 with a common cation, but different anions ([C1], [Br], [I], [NO₃], [BF₄], [PF₆], [TfO] 18 19 (trifluoromethanesulfonate), [TFSI]⁻, [FAP]⁻ (tris(pentafluoroethyl)trifluorophosphate) and 20 $[Pf_2N]$ (bis(pentafluoroethylsulfonyl)imide)), the C2-H chemical shift is the smallest with 21 ionic liquids having [FAP] as an anion. This implies that imidazolium-based ionic liquids 22 having [FAP]⁻ anions exhibit with the weakest acidity of the C2-H within the range of anions investigated in their study. In addition, Feroci et al.³³ have suggested that the rate of reaction 23 between NHC and CO₂ is affected by the nature of the ionic liquid anion. This group's 24 25 investigations with imidazolium-based ionic liquids having [BF₄], [PF₆], [TfO], [TFSI] and 1 $[CF_3CO_2]^{-}$ as anions, showed that the rate of the reaction between NHC and CO₂ was much 2 slower when $[TfO]^{-}$ was the ionic liquid anion. Presumably, weaker NHC interaction with 3 CO_2 occurs when $[TfO]^{-}$ or $[FAP]^{-}$ anions are present. As a result, the acidity of the C2-H is 4 lower. It therefore follows that the distribution of products from the electroreduction of 5 aromatic ketones under a CO_2 atmosphere depends on the nature of both the substrate and 6 ionic liquid anion.

In this study, bulk electrolysis of the aromatic ketones acetophenone, benzophenone and
4-phenylbenzophenone (Scheme 2) has been investigated under a CO₂ atmosphere in
[Bmim][BF₄], 1-butyl-2,3-dimethylimidazolium trifluoromethanesulfonate ([Bmim][TfO])
and 1-butyl-2,3-dimethylimidazolium tris(pentafluoroethyl)trifluorophosphate
([Bmim][FAP]) (structures shown in Scheme 3) in order to probe the aromatic ketone
substituent effect and the influence of the ionic liquid anions on the product distribution.

14 **Scheme 2** Structures of aromatic ketones: (a) acetophenone, (b) benzophenone and (c) 4-

15 phenylbenzophenone.

16

13

17 Scheme 3 Structures of ionic liquids: [Bmim][BF₄]; [Bmim][TfO]; [Bmim][FAP].

1 **2. Experimental section**

2 Chemicals

3 [Bmim][BF₄] was purchased from IOLITEC (Germany). [Bmim][TfO] and [Bmim][FAP] 4 were purchased from Merck (99%). The ionic liquids were dried over basic alumina for at 5 least 24 h, then placed under vacuum at 80 °C for 24 h prior to use. The water content after 6 these procedures as measured by Karl-Fischer titration (Metrohm 831 Karl Fischer 7 coulometer) was 65 ± 10 ppm (or 3.0 mM) for [Bmim][BF₄], 118 ± 10 ppm (or 7.1 mM) for 8 [Bmim][TfO] and 43 ± 10 ppm (or 2.0 mM) for [Bmim][FAP]. Acetophenone 9 (ReagentPlus®, 99%), benzophenone (ReagentPlus®, 99%), diethyl ether (Analytical 10 reagent, > 99%) and ferrocene (Fc) ($\ge 98\%$) were purchased from Sigma Aldrich, while 4-11 phenylbenzophenone was purchased from ABCR GmbH & CO. KG (Germany). All the 12 aromatic ketones were used as received.

13 Voltammetric measurements

14 Voltammetric measurements were made using a CHI 700 electrochemical workstation 15 (CH Instruments, Texas, USA) and a standard three-electrode cell. For transient cyclic 16 voltammetric experiments, a glassy carbon macrodisc electrode (GC, d = 1.0 mm) was used 17 as the working electrode. Platinum wire was used as both the quasi-reference and counter 18 electrodes. Addition of 5 mM Fc to each experiment and studies on its voltammetry allowed 19 the Pt quasi-reference potential scale to be converted into the Fc/Fc^{+} reference potential scale. 20 The working electrodes were polished with an aqueous $0.3 \,\mu\text{m}$ alumina slurry on a polishing 21 cloth (Buehler), sonicated in deionized water, rinsed with deionized water and acetone, and 22 then dried under a flow of nitrogen before use. All voltammetric experiments were 23 undertaken at room temperature (20 ± 2 °C). Experiments with carefully dried ionic liquids

were undertaken under a nitrogen atmosphere in a dry box to minimize the effect of
 atmospheric water and oxygen.

3 Bulk electrolysis and product analysis

4 Unless otherwise stated, controlled potential bulk electrolysis experiments were undertaken at 20 \pm 2 °C, under a CO₂ atmosphere in a two compartment divided cell 5 6 equipped with glassy carbon rods as both cathode and anode. A silver wire mounted into a 7 capillary sealed with a sintered glass disk served as a quasi-reference electrode. 8 [Bmpyrd][TFSI] was used as the electrolyte in the reference electrode element. The same 9 solution 50 mM of the selected aromatic ketone in the selected ionic liquid was used in both 10 compartments of the cell. A constant stream of CO_2 flowed through the cell to maintain a 11 constant concentration of CO₂ throughout the electrolysis period. After electrolysis, the 12 catholyte was acidified with aqueous HCl ($pH \sim 3$), extracted three times with diethyl ether. 13 The products remaining after extraction were evaporated to dryness. After dissolving in 14 diethyl ether, the product was analysed by HPLC (High-performance liquid chromatography 15 system equipped with a UV detector detection wavelength of 254 nm, Agilent 1200 Infinity 16 Series, Agilent, USA) using a C18 column (Waters). The mobile phase was a mixture of 17 water and acetonitrile (90/10).

18 **3. Results and Discussion**

19 **3.1 Voltammetric studies**

20 Cyclic voltammetric experiments were initially undertaken on the aromatic ketones in all 21 three imidazolium-based ionic liquids under both N_2 and CO_2 atmospheres. Based on 22 previous studies on the electroreduction of acetophenone in $[Bmim][BF_4]^{28}$, GC is known to 23 be relatively inert for direct CO_2 reduction in the potential region of acetophenone reduction.

Thus, GC was chosen for detailed investigations for the electroreduction of aromatic ketones in all three imidazolium-based ionic liquids under both N_2 and CO_2 atmospheres. These analyses focussed on how the ketone substituent and the ionic liquid anion affected the electrochemical reduction of aromatic ketones and reactivity of the electrochemically generated radical anions under a CO_2 atmosphere.

Cyclic voltammograms obtained at a scan rate of 0.1 V s⁻¹ at a 1.0 mm GC electrode in 6 neat [Bmim][BF₄] and after addition of 10 mM benzophenone under either N₂ or CO₂ 7 8 atmospheres. Data in absence (curve a in Figure 1) and presence (curve b in Figure 1) of CO_2 9 in neat [Bmim][BF₄] suggest that direct electroreduction of CO₂ at a GC electrode is minimal 10 in the potential region related to reduction of the ketones. The results also confirm that the 11 negative potential window limit at a GC electrode is sufficient for reduction of aromatic 12 ketones under our experimental conditions. Consequently, GC was as the electrode material 13 for a detailed investigation of the electroreduction of aromatic ketones under both N₂ and CO₂ atmospheres. In the N₂ case, two reduction processes (curve c in Figure 1) were 14 observed with peak potentials of -2.02 and -2.11 V vs Fc/Fc⁺, respectively. A small counter 15 16 oxidation component was detected when the potential was reversed immediately after the first 17 reduction process (curve d in **Figure 1**), suggesting that the initial step is partially reversible 18 on the voltammetric timescale recorded in **Figure 1**. In contrast, no oxidation component was 19 detected for the second reduction process, suggesting that this process is chemically irreversible under these conditions. Based on the studies in DMF³⁷ and [Bmim][BF₄]³⁸, the 20 21 first process is assigned to the reduction of benzophenone to the benzophenone radical anion. 22 In the second reduction process, the radical anion is further reduced to the dianion which is 23 rapidly protonated by the C2-H from the imidazolium cation. The magnitude of the current 24 for the second process is significantly smaller than for the first one, even though both 25 processes are one electron reductions (Figure 1). This difference is attributed to the

Physical Chemistry Chemical Physics Accepted Manuscript

- 1 formation of an adduct between benzophenone and its dianion³⁸. This adduct is then oxidized
- 2 at -0.67 V in the reverse (positive potential direction) sweep of potential.³⁸

Figure 1 Cyclic voltammograms recorded at a 1.0 mm diameter GC electrode (scan rate = 0.1 V s^{-1}) in neat [Bmim][BF₄] under (a) N₂ or (b) CO₂ atmospheres (1 atm), and after addition of 10 mM benzophenone under (c and d) N₂ or (e) CO₂ atmospheres (1 atm). The Fc/Fc⁺ process (at 0 V) derived from oxidation of 5.0 mM Fc is included for comparison purposes.

9

3

10 Upon saturation of $[Bmim][BF_4]$ with CO₂, the two reduⁱction processes merged into one 11 and a larger total reduction current was evident. The peak potential shifted in the positive 12 direction from -2.02 V to -1.92 V vs Fc/Fc⁺. Compton *et al.*³⁹ found that the diffusion 13 coefficient of Fc in CO₂-saturated (1 atm) 1-ethyl-3-methylimidazolium

1 bis(trifluoromethylsulfonyl)imide ([Emim][TFSI]) is significantly higher compared to that 2 found in N₂-saturated [Emim][TFSI] (1 atm). If a diffusion coefficient change of this 3 magnitude also applies in our study, the increase in the peak current could be attributed to 4 enhanced diffusivity. To assess this possibility under our experimental conditions, a control 5 experiment using 5 mM Fc was conducted in [Bmim][BF₄] containing 10 mM benzophenone 6 under both N_2 and CO_2 atmospheres (curves c and e in **Figure 1**). The results suggest that the oxidation peak current for the reversible Fc/Fc⁺ process^{40, 41, 42} in [Bmim][BF₄] remains 7 essentially unaltered by the replacement of N2 with CO2. Since the peak current associated 8 9 with a reversible electron transfer process is proportional to the square root of the diffusion coefficient when the effect of uncompensated resistance is negligible,⁴³ this result implies 10 11 that the diffusion coefficient of Fc and presumably that of benzophenone remain essentially 12 unaltered. Consequently, the enhanced reduction current and positive shift of peak potential 13 associated with the benzophenone reduction process under a CO_2 atmosphere relative to a N_2 14 one, are attributed to the presence of a new multi-electron reaction pathway. Analogous observations in DMF^{5, 10}, MeCN¹⁰ and NMP¹¹⁻¹³ were attributed to the presence of an overall 15 16 two electron transfer step that is a result of either a proton coupled electron transfer pathway, or an electrocarboxylation pathway, or a combination of both. 17

Figure 2 Cyclic voltammograms obtained at a 1.0 mm diameter GC electrode (scan rate = 0.1
 V s⁻¹) in [Bmim][BF₄] containing 10 mM acetophenone and 4-phenylbenzophenone under (a)
 N₂ or (b) CO₂ atmospheres (1 atm).

4

5 Related results were obtained with acetophenone and 4-phenylbenzophenone (Figure 2), 6 except that only one reduction process was observed for acetophenone reduction under a N_2 atmosphere. Based on previous reports,^{28, 44, 45} this may result from rapid dimerization of the 7 8 acetophenone radical anion to form products that cannot be further reduced within the 9 potential window available in [Bmim][BF4]. A small oxidation peak observed at -1.09 V under a N₂ atmosphere was assigned to the oxidation of the head-to-tail type of dimer based 10 on results available in previous studies²⁸. Again, control experiments with the Fc/Fc⁺ 11 reference process suggest that the increased peak current magnitude under a CO₂ atmosphere 12 13 is not attributable to an enhanced mass transport rate. Consequently, the voltammetric 14 changes in the presence of CO_2 imply the introduction of new chemistry. It is also worth 15 noting that the magnitudes of the peak currents for the irreversible reduction of 16 benzophenone and 4-phenylbenzophenone are smaller than that of acetophenone in all ionic 17 liquids. This is due to differences in their diffusion coefficients and the reactivity of the 18 electrogenerated radical anions. In comparison with acetophenone⁴¹, a smaller diffusion coefficient for benzophenone⁴⁰ in dry [Bmpyrd][TFSI] also has been reported in our previous 19 20 studies.

Figure 3 Cyclic voltammograms obtained at a 1.0 mm diameter GC electrode (scan rate = 0.1 V s⁻¹) in [Bmim][TfO] and [Bmim][FAP] containing 10 mM benzophenone, acetophenone and 4-phenylbenzophenone under (--) N₂ or (--) CO₂ atmospheres (1 atm). The insert figures show cyclic voltammograms recorded at a 1.0 mm diameter GC electrode (scan rate = 0.1 V s⁻¹) in neat [Bmim][TfO] and [Bmim][FAP] under N₂ or CO₂ atmospheres (1 atm).

1

8 Cyclic voltammograms obtained for the neat [Bmim][TfO] and [Bmim][FAP] ionic 9 liquids and after addition of aromatic ketones (**Figure 3**) are similar to those in [Bmim][BF₄] 10 under either N_2 or CO_2 atmospheres. The cathodic potential window limits are about at -2.4 11 *vs.* Fc/Fc⁺ at a GC electrode in both ionic liquids under either N_2 or CO_2 atmospheres. In all 12 cases, the increase of reduction current for reduction of the aromatic ketones under a CO_2 13 atmosphere is attributed to the introduction of new chemistry that involves the transfer of 14 more electrons than applies under a N_2 atmosphere.

Peak potentials are summarized in **Table 1**. Under a N₂ atmosphere, the peak potential associated with the first reduction processes (E_{p1,N_2}) of acetophenone, benzophenone and 4-

1 phenylbenzophenone in three ionic liquids are -2.25 ± 0.03 V, -2.05 ± 0.03 V and $-1.98 \pm$ 2 0.02 V vs Fc/Fc⁺, respectively. Assuming the reversible potential of the reference Fc/Fc⁺ 3 process is independent on the identity of the ionic liquid, these voltammetric data leads to the conclusion that the E_{p1,N_2} values are not strongly dependent on the identity of the ionic 4 5 liquid, which is consistent with results reported for electroreduction of benzophenone in ionic liquids³⁸. However, E_{p1,N_2} values vary substantially with the identity of the ketone substituent. 6 7 The most negative peak potential was observed for acetophenone reduction while the 8 corresponding values for benzophenone and 4-phenylbenzophenone are more positive 9 because they contain electron withdrawing phenyl and diphenyl groups. This aromatic ketone substituent effect has also been observed in organic solvent media.⁵ 10

11

12 **Table 1** Peak potential data extracted from the cyclic voltammograms^a of aromatic ketones 13 recorded at 1.0 mm diameter GC electrode in imidazolium-based ionic liquids under N_2 and

-	A romatia katana	Ionic liquid	E_{p1,N_2} ^b /V vs	E_{p,CO_2}^{c} V vs	$\Delta E^{\rm d}/{\rm mV} vs {\rm Fc/Fc}$
	Aromatic Retone		Fc/Fc ⁺	Fc/Fc^+	
-		[Bmim][BF ₄]	-2.23	-2.18	50
	Acetophenone	[Bmim][TfO]	-2.26	-2.21	50
		[Bmim][FAP]	-2.28	-2.23	50
-	Benzophenone	[Bmim][BF ₄]	-2.02	-1.92	100
		[Bmim][TfO]	-2.07	-1.95	120
		[Bmim][FAP]	-2.08	-1.96	120
-	4-Phenylbenzophenone	[Bmim][BF ₄]	-1.96	-1.86	100
		[Bmim][TfO]	-2.00	-1.88	120
		[Bmim][FAP]	-2.00	-1.89	110

14 CO_2 atmospheres at 22 °C.

15 ^a Experimental conditions are as stated in the caption to **Figure 1**.

^b Peak potential for first process in the reduction of the aromatic ketone under a N_2 atmosphere.

18 ^c Peak potential under a CO_2 atmosphere.

19 ^d Separation between the first reduction peak potential under a N_2 atmosphere and the

 $20 \qquad \mbox{reduction peak potential under a CO}_2 \ \mbox{atmosphere.}$

21 22 Physical Chemistry Chemical Physics Accepted Manuscript

1 Under a CO₂ atmosphere, all reduction peak currents increase significantly and the peak potentials (E_{p,CO_2}) shift positively. For benzophenone and 4-phenylbenzophenone, the second 2 3 reduction process disappears completely. The peak potentials (E_{p,CO_2}) for reduction under 4 CO₂ for acetophenone, benzophenone and 4-phenylbenzophenone in three ionic liquids are -5 2.20 ± 0.03 V, -1.94 ± 0.02 V and -1.87 ± 0.02 V vs Fc/Fc⁺, respectively, at a scan rate of 0.1 V s⁻¹ and independent on the identity of the ionic liquid anion. Thus, peak potential 6 7 differences (ΔE) obtained under N₂ and CO₂ atmospheres are also essentially ionic liquid 8 anion independent, which in turn suggests that the kinetics of the coupled homogeneous reaction (probably pseudo first order⁴³) are not highly sensitive to the identity of the ionic 9 10 liquid anion.

11 **3. 2** Bulk electrolysis of the aromatic ketones under a CO₂ atmosphere.

To identify which reaction pathway is followed during electroreduction of the aromatic ketones under a CO_2 atmosphere, preparative scale bulk electrolysis experiments were undertaken in ionic liquids using GC rods as both cathode and anode in a divided cell. After electrolysis, the cathodic products were separated and identified *via* HPLC analysis, and the results are summarized in **Table 2**.

Aromatic ketone	Ionic liquid	E_{app}^{a}/V Product yield ^b /%			0
Alomatic Retolic		vs Fc/Fc ⁺	Acid	Alcohol	Dimer
	[Bmim][BF ₄]	-2.25	0.0	90.6 ^f	9.4
Acetophenone ^c	[Bmim][TfO]	-2.30	0.0	93.6	6.4
	[Bmim][FAP]	-2.32	0.0	90.6	9.4
	[Bmim][BF ₄]	-2.10	16.2	83.4	0.0
Benzophenone ^d	[Bmim][TfO]	-2.12	14.5	85.3	0.0
	[Bmim][FAP]	-2.05	15.0	83.1	0.0
4 Dhanylhanzanhanana ^e	[Bmim][BF ₄]	-2.05	32.8	66.5	0.0
4-r nenyittenzophenone	[Bmim][TfO]	-2.00	38.5	60.5	0.0

Table 2 Products derived from reduction of 50 mM aromatic ketone in imidazolium-based
 ionic liquids under a CO₂ atmosphere.

	[Bmim][FAP]	-2.07	40.7	59.0	0.0
1	^a Applied potential used for bulk electrolys	is.			
2	^b HPLC yields based on the consumed subs	strate.			
3	^c Acid = 2-hydroxy-2-phenylpropionic ac	id; alcohol =	= 1-phenyleth	nanol; dimer	= 1-[4-(1-
4	hydroxy-ethylidene)-cyclohexa-2,5-dienyl]	-1-phenyl-eth	anol and 2	2,3-diphenyl-l	outane-2,3-
5	diol.				
6	^d Acid = 2 -hydroxy- 2 , 2 -diphenylacetic aci	id; alcohol =	diphenylmet	hanol; dimer	= 1,1,2,2,-
7	tetraphenylethane-1,2-diol.				
8	^e Acid = $2 \cdot ([1, 1'-biphenyl] - 4 - yl) - 2 - hydroxy$	y-2-phenylace	etic acid; alco	hol = [1, 1'-b]	iphenyl]-4-
9	yl(phenyl)methanol; dimer = 1,2-di([1,1'-b	iphenyl]-4-yl)-1,2-dipheny	lethane-1,2-d	iol.

¹⁰ ^f The alcohol yield determined by HPLC was slightly less than that determined by GC-MS in identical conditions in another study $(97\%)^{28}$.

12

For the electroreduction of acetophenone, based on HPLC analysis, a small amount of 13 14 dimer was obtained, no carboxylic acid was detected and the major product (>90%) was 1-15 phenylethanol in all three ionic liquids, which is consistent with a proton coupled electron 16 transfer providing the major reaction pathway. These results are consistent with those in our 17 previous study, which suggested 97% of the product was 1-phenylethanol from the electrolysis of acetophenone in [Bmim][BF₄] based on GC-MS analysis^{16, 28}. Small 18 19 differences in reaction yields (91% vs 97%) reported in these two studies could result from 20 systematic differences between these different analytical techniques.

21 No dimer products were detected by HPLC analysis after the electroreduction of 22 benzophenone and 4-phenylbenzophenone in any of the ionic liquids under a CO_2 atmosphere. As reported in studies in molecular organic solvents¹², this difference may result 23 24 from steric hindrance associated with the larger size of these substrates. Furthermore, in 25 contrast to acetophenone reduction, the target products (carboxylic acids) were obtained in all 26 ionic liquids, although alcohols were still the major products. In the case of benzophenone, 27 the reduction product distribution of ~15% carboxylic acid and ~85% alcohol is essentially 28 independent on the identity of ionic liquid anion. In contrast, in the case of 4-29 phenylbenzophenone, an ionic liquid anion dependent reduction product distribution is

2

Physical Chemistry Chemical Physics

clearly evident in that the yields of carboxylic acid obtained in [Bmim][TfO] and [Bmim][FAP] are considerably larger than in [Bmim][BF₄].

3 When reaction products and their yields are compared, the influence of the ketone 4 substituent on the product distribution clearly emerges. Alcohols are the major product and 5 dimers are the minor product for the electroreduction of acetophenone. In contrast, dimers are 6 absent in the electroreduction of either benzophenone or 4-phenylbenzophenone. While 7 alcohols remain the major products, substantial yields of carboxylic acid are now also 8 obtained with these latter two aromatic ketones. The reduction of 4-phenylbenzophenone 9 produces a higher yield of carboxylic acid and lower yield of alcohol than benzophenone. 10 This could be due to the fact that the 4-phenylbenzophenone radical anion is a weaker base 11 than benzophenone radical anion (diphenyl is a stronger electron withdrawing group than 12 phenyl). Consequently, the driving force for protonation to form an alcohol is weaker in the 13 case of the 4-phenylbenzophenone radical anion.

14 As shown in **Table 2**, with 4-phenylbenzophenone, the highest yield of acid and lowest 15 yield of alcohol were obtained in [Bmim][FAP]. This anion dependent product distribution is unlikely to be a consequence of differences in CO₂ concentration since the solubility of CO₂ 16 in all ionic liquids at room temperature and 1 atm is comparable (approximately 100 mM).⁴⁶, 17 ⁴⁷ Although the concentration of CO₂ is close to the stoichiometric amount required for 18 19 electrocarboxylation of 50 mM aromatic ketones (Scheme 1), depletion of CO₂ during 20 electrolysis is unlikely, due to the faster diffusion of smaller sized CO₂ and the fact that a 21 constant CO₂ stream was employed in all bulk electrolyses. The above discussion is based on 22 the assumption that the molecular form of CO₂ is the reactive CO₂ species in all three ionic 23 liquids. This should be a reasonable assumption, since the chemical interaction between CO_2 and [FAP]⁻, though unique among the ionic liquids under investigation, is rather weak.⁴⁸ It 24 25 should also be noted that the yields of carboxylic acid and alcohol remain essentially

unchanged when a lower concentration of 4-phenylbenzophenone, 25 mM instead of 50 mM,
 was used in the electrolysis (results not shown). This observation again confirms that the
 amount of CO₂ is adequate.

4 To explain this experimental observation on ionic liquid anion dependent product distribution, we refer to the NMR study of Cremer et al.³⁶ who showed that the bonding 5 6 strength of C2-H of imidazolium and hence its acidity depends on the ionic liquid anion. In 7 their work, with ten imidazolium-based ionic liquids having different anions ([Cl]⁻, [Br]⁻, [I]⁻, 8 $[NO_3]^{-}$, $[BF_4]^{-}$, $[TfO]^{-}$, $[PF_6]^{-}$, $[TFSI]^{-}$, $[FAP]^{-}$ and $[Pf_2N]^{-}$) NMR data showed that the C2-H 9 donating ability increases when the size of the anions increases, and the basicity and 10 coordinating strength of the anions correspondingly decrease. Of the anions investigated, the 11 ionic liquid containing the [FAP]⁻ anion exhibited the lowest ability to donate C2-H. 12 Furthermore, since C2-H only becomes sufficiently active under electrocarboxylation 13 conditions as a result of NHC-CO₂ interaction, the activity of C2-H should also depend on the stability of this complex. Feroci et al.³³ investigated the reactivity of electrogenerated NHC 14 15 towards CO_2 in $[Bmim]^+$ -based ionic liquids containing anions, such as $[BF_4]^-$, $[PF_6]^-$, 16 $[CF_3CO_2]^{-}$, $[TfO]^{-}$ and $[TFSI]^{-}$. The results of this study using voltammetry, infrared 17 spectroscopy and thermogravimetric analysis suggested that the kinetics of the NHC-CO₂ 18 reaction are dependent upon the ionic liquid anion, with the slowest rate being observed in 19 [Bmim][TfO]. This result implies that [Bmim][TfO] should have the weakest proton donating 20 ability in the presence of CO₂ of all the ionic liquids investigated in this study. On these 21 bases, higher yields of acid product may be expected with 4-phenylbenzophenone from 22 imidazolium-based ionic liquids containing [TfO]⁻ and [FAP]⁻ anions. However, the product 23 distribution for acetophenone and benzophenone reduction does not depend on the identity of 24 the anion. This may be a result of the basicity of acetophenone and benzophenone radical 25 anions being so much stronger than that of the 4-phenylbenzophenone radical anion.

Consequently, differences in proton availability in the ionic liquids may be inadequate to
 significantly alter the reaction pathway, hence leading to an anion independent product
 distribution.

4 **Conclusion**

5 Electrochemical reduction of the aromatic ketones acetophenone, benzophenone and 4-6 phenylbenzophenone under a CO_2 atmosphere in imidazolium-based [Bmim][BF₄], 7 [Bmim][TfO] and [Bmim][FAP] ionic liquids reveal bulk electrolysis product distribution is 8 influenced by the nature of substrate and the anion of the ionic liquid. The yields of 9 carboxylic acids were found to be dependent on both the nature of the substrate and the anion 10 of the ionic liquid, with the highest yield obtained via reduction of 4-phenylbenzophenone in 11 [Bmim][FAP]. Formation of alcohol as a side reaction through a proton coupled electron 12 transfer pathway is least favourable in this system since the 4-phenylbenzophenone radical 13 anion is the weakest base and C2-H in [Bmim][FAP] is the weakest acid. Although higher 14 yields of carboxylic acid may be obtained in imidazolium-based ionic liquids if an optimal 15 combination of aromatic ketone and ionic liquid anion are selected, the results obtained in 16 this confirm the unsuitability of imidazolium-based ionic liquids study for electrocarboxylation of aromatic ketones reported in our previous study²⁸. 17

18 Acknowledgement

SFZ gratefully acknowledges the CSIRO Office of the Chief Executive for provision of a postdoctoral research fellowship. JZ would like to thank the Australian Research Council and the Monash University Researcher Accelerator program for financial support.

22 Reference

23 1. E. J. Van Scott and R. J. Yu, *Cutis*, 1989, **43**, 222.

1	2.	C. R. Sexton and M. G. Rubin, <i>Dermatol. Nurs.</i> , 1994, 6 , 17.
2	3.	A. K. Datta, P. A. Marron, C. J. H. King and J. H. Wagenknecht, J. Appl. Electrochem.,
3		1998, 28 , 569.
4	4.	E. J. Van Scott and R. J. Yu, <i>Arch. Dermatol</i> , 1974, 110 , 586.
5 6	5.	SF. Zhao, H. Wang, YC. Lan, X. Liu, JX. Lu and J. Zhang, <i>J. Electroanal. Chem.</i> , 2012. 664 , 105.
7	6.	C. Schuster, M. Knollmueller and P. Gaertner, <i>Tetrahedron: Asymmetry</i> , 2006, 17 .
8	-	2430.
9	7.	R. Levine and J. R. Stephens, <i>J. Am. Chem. Soc.</i> , 1950, 72 , 1642.
10	8.	A. S. C. Chan, T. T. Huang, J. H. Wagenknecht and R. E. Miller, J. Org. Chem., 1995,
11		60 , 742.
12	9.	A. A. Isse and A. Gennaro, <i>Collect. Czech. Chem. Commun.</i> , 2003, 68 , 1379.
13	10.	S. Wawzonek and A. Gundersen, J. Electrochem. Soc., 1960, 107 , 537.
14	11.	O. Scialdone, A. Galia, C. La Rocca and G. Filardo, <i>Electrochim. Acta</i> , 2005, 50 ,
15		3231.
16	12.	O. Scialdone, C. Amatore, A. Galia and G. Filardo, J. Electroanal. Chem., 2006, 592,
17		163.
18	13.	O. Scialdone, M. A. Sabatino, C. Belfiore, A. Galia, M. P. Paternostro and G. Filardo,
19		Electrochim. Acta, 2006, 51 , 3500.
20	14.	K. Zhang, H. Wang, S. F. Zhao, D. F. Niu and J. X. Lu, <i>J. Electroanal. Chem.</i> , 2009,
21		630 , 35.
22	15.	SF. Zhao, MX. Zhu, K. Zhang, H. Wang and JX. Lu, <i>Tetrahedron Lett.</i> , 2011, 52 ,
23	4.6	
24	16.	SF. Zhao, M. Horne, A. M. Bond and J. Zhang, <i>Green Chem.</i> , 2014, 16 , 2242.
25	17.	G. Q. Yuan, Z. F. Li and H. F. Jiang, <i>Chin. J. Chem.</i> , 2009, 27 , 1464.
26 27	18.	A. A. Isse, A. Galla, C. Belfiore, G. Silvestri and A. Gennaro, J. Electroanal. Chem., 2002, 526 , 41.
28	19.	J. P. Hallett and T. Welton, <i>Chem. Rev.</i> , 2011, 111 , 3508.
29	20.	P. Hapiot and C. Lagrost, <i>Chem. Rev.</i> , 2008, 108 , 2238.
30	21.	T. Welton, <i>Chem. Rev.</i> , 1999, 99 , 2071.
31	22.	H. Yang, Y. Gu, Y. Deng and F. Shi, Chem. Commun. (Camb) 2002, 274.
32	23.	H. Wang, G. R. Zhang, Y. Z. Liu, Y. W. Luo and J. X. Lu, <i>Electrochem. Commun.</i> , 2007,
33		9 , 2235.
34	24.	LX. Wu, H. Wang, ZY. Tu, BB. Ding, Y. Xiao and JX. Lu, <i>Int. J. Electrochem. Sci.</i> ,
35	. -	2012, 7, 11540.
36	25.	X. Yuan, B. Lu, J. Liu, X. You, J. Zhao and Q. Cai, <i>J. Electrochem. Soc.</i> , 2012, 159 ,
57	26	E183.
38	26. 27	L. Zhang, D. Niu, K. Zhang, G. Zhang, Y. Luo and J. Lu, <i>Green Chem.</i> , 2008, 10 , 202.
39 40	27.	Q. Felig, K. Hualig, S. Liu, J. Yu and F. Liu, <i>Electrochim. Acta</i> , 2011, 50 , 5137.
+0 4 1	20.	12 2461
+1 17	20	13, 5401. O Fong K Huang S Liu and Y Wang <i>Electrochim Acta</i> 2010 55 5741
+∠ 13	2).	V Higiima M Hayashi A IIda S Oya H Kondo H Sanhoku and K Takahashi
44	50.	Phys Chem Chem Phys 2010 12 1953
45	31	D F Niu I B Zhang K Zhang T Xue and I X Lu <i>Chin I Chem</i> 2009 27 1041
46	32.	I. Ding, D. Zhou, G. Spinks, G. Wallace, S. Forsyth, M. Forsyth and D. MacFarlane.
47		<i>Chem. Mater.</i> , 2003, 15 , 2392.
48	33.	M. Feroci, I. Chiarotto, G. Forte, S. Vecchio Ciprioti and A. Inesi. <i>ChemElectroChem</i> .
49		2014, 1 , 1407.

1 2 3	34. 35.	M. C. Buzzeo, R. G. Evans and R. G. Compton, <i>ChemPhysChem</i> , 2004, 5 , 1106. L. E. Barrosse-Antle, A. M. Bond, R. G. Compton, A. M. O'Mahony, E. I. Rogers and D. S. Silvester, <i>Chem. Asian. L.</i> 2010, 5 , 202.
4 5 6	36.	T. Cremer, C. Kolbeck, K. R. J. Lovelock, N. Paape, R. Wölfel, P. S. Schulz, P. Wasserscheid, H. Weber, J. Thar, B. Kirchner, F. Maier and HP. Steinrück, <i>Chem. Eur. J.</i> , 2010, 16 , 9018.
7	37.	S. H. Wang, P. S. Singh and D. H. Evans, J. Phys. Chem. C, 2009, 113 , 16686.
8	38.	SF. Zhao, JX. Lu, A. M. Bond and J. Zhang, <i>Chem. Eur. J.</i> , 2012, 18 , 5290.
9 10	39.	L. E. Barrosse-Antle, L. Aldous, C. Hardacre, A. M. Bond and R. G. Compton, <i>J. Phys. Chem. C</i> , 2009, 113 , 7750.
11 12	40.	N. Fietkau, A. D. Clegg, R. G. Evans, C. Villagrán, C. Hardacre and R. G. Compton, <i>ChemPhysChem</i> , 2006, 7 , 1041.
13	41.	C. Lagrost, D. Carrié, M. Vaultier and P. Hapiot, <i>I. Phys. Chem. A</i> , 2003, 107 , 745.
14	42.	The results (not shown) obtained from calculations using the equation given on
15		p 641, Chapter 15: Determination of Electrode Kinetics, M.V. Mirkin, Handbook of
16		Electrochemistry; Cynthia G. Zoski ed. 2007) and numerical simulations using
17		the electron transfer rate constant and diffusion coefficient data provided in
18		references 40 and 41 suggest that departure from reversibility of the
19		ferrocene/ferrocenium process would only be observed at scan rates $\geq \sim 30 \text{ V/s}$
20	43.	A. J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and
21		applications, Wiley, New York, 2001.
22	44.	C. Lagrost, P. Hapiot and M. Vaultier, <i>Green Chem.</i> , 2005, 7, 468.
23	45.	F. Andre, P. Hapiot and C. Lagrost, <i>Phys. Chem. Chem. Phys.</i> , 2010, 12 , 7506.
24 25	46.	M. Althuluth, M. T. Mota-Martinez, M. C. Kroon and C. J. Peters, <i>J. Chem. Eng. Data</i> , 2012, 57 , 3422.
26 27	47.	C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke and E. J. Maginn, <i>J. Am. Cham. Soc.</i> 2004, 126 , 5300
28	48	A Vokozeki M B Shiflett C P Junk I. M Grieco and T Foo I Phys Chem B
20 29	10.	2008, 112 , 16654.
30		
31		
32		
33		
34		