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We study the charge transport properties of triangular quantum dot molecule (TQDM) connected to metallic elec-
trodes, taking into account all correlation functions and relevant charging states. The quantum interference (QI)
effect of TQDM resulting from electron coherent tunneling between quantum dots is revealed and well interpreted by
the long distance coherent tunneling mechanism. The spectra of electrical conductance of TQDM with charge filling
from one to six electrons clearly depict the many-body and topological effects. The calculated charge stability dia-
gram for conductance and total occupation numbers match well with the recent experimental measurements. We also
demonstrate that the destructive QI effect on the tunneling current of TQDM is robust with respect to temperature
variation, making the single electron QI transistor feasible at higher temperatures.

1 Introduction

Molecule transistors (MTs) provide a brightened scenario
of nanoelectronics with low power consumption.1–3 To
date, the implementation of MTs remains challenging,
and a good theoretical understanding of their charac-
teristics is essential for advancing the technology. The
current-voltage (I-V) curves of MTs are typically pre-
dicted by calculations based on the density functional
theory (DFT).3 However, the DFT approach cannot fully
capture the correlation effect in the transport behavior
of MTs in the Coulomb-blockade regime. A theoretical
framework to treat adequately the many-body problem
of a molecular junction remains elusive due to the com-
plicated quantum nature of such devices. Experimental
studies of a artificial molecule with simplified structures
are important not only for the advances of novel nanoelec-
tronics, but also for providing a testing ground of many
body theory. For example, the coherent tunneling be-
tween serially coupled double quantum dots (DQDs) was
studied and demonstrated for application as a spin filter
in the Pauli spin blockade regime.4 Recent experimen-

† Electronic Supplementary Information (ESI) available. See DOI:
10.1039/b000000x/
a Department of Physics, University of Illinois at Urbana-
Champaign, Urbana, Illinois 61801, USA.
b Research Center for Applied Sciences, Academic Sinica, Taipei,
11529 Taiwan. E-mail: yiachang@gate.sinica.edu.tw
c Department of Physics, National Cheng-Kung University,
Tainan, 70101 Taiwan.
d Department of Electrical Engineering and Department of
Physics, National Central University, Chungli, 320 Taiwan. E-
mail: mtkuo@ee.ncu.edu.tw

tal studies have been extended to serially coupled triple
quantum dots (SCTQDs) for studying the effect of long
distance coherent tunneling (LDCT) in electron trans-
port.5–7 Triangular quantum dot molecule (TQDM) pro-
vides the simplest topological structure with quantum
interference (QI) phenomena.8–10 The QI effect in the
coherent tunneling process of TQDM junctions has been
studied experimentally.11,12

It was suggested that the tunneling currents through
benzene molecules can also show a destructive QI behav-
ior.3,9 The tunneling current through a single benzene
molecule was theoretically studied by DFT.9 However,
the influence of the strong correlation on the QI effect
remains unclear due to the limitation of DFT. Many the-
oretical works have pointed out that electron Coulomb
interactions have strong influence not only on the elec-
tronic structures of TQDM,13,14 but also on the prob-
ability weights of electron transport paths.15–18 When
both the intradot and interdot Coulomb interactions in
a TQDM are included, the transport behavior involving
multiple electrons becomes quite complicate. The setup
for the TQDM junction of interest is depicted in Fig. 1.
Here we present a full many-body solution to the tunnel-
ing current of TQDM, which can well illustrate the Pauli
spin blockade effect of DQDs,4 LDCT of SCTQDs5−7

and QI of TQDMs11 for both equilibrium and nonequilib-
rium cases. Thus, our theoretical work can provide useful
guidelines for the design of future molecular electronics
and the realization of large scale quantum registers built
by multiple QDs.19

We adopt the equation of motion method (EOM),
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Fig. 1 Illustration of the TQDM junction system of
interest.

which is a powerful tool for studying electron transport,
taking into account electron Coulomb interactions.15–18

This method has been applied to reveal the transport
behaviors of a single QD with multiple energy levels16

and DQDs.17,18 For a TQDM with one level per QD,
there are 64 configurations for electrons to transport be-
tween electrodes.20 Previous theoretical works have ig-
nored the high-order Green functions resulting from elec-
tron Coulomb interactions to simplify the calculation.20

To have a full solution becomes crucial for depicting the
charge transport involving a few electrons. We solve the
EOM of Green functions up to six electrons, taking into
account all correlations caused by electron Coulomb in-
teractions and electron hopping between TQDM. This
involves solving 4752 Green’s functions and 923 correla-
tion functions self-consistently.

2 Model

We consider an artificial molecule made of nanoscale
QDs, in which the energy level separations are much
larger than the on-site Coulomb interactions and ther-
mal energies. Thus, only one energy level for each quan-
tum dot is included. The extended Hubbard-Anderson
model is employed to simulate the TQDM junction with
Hamiltonian given by H = H0 + HT + HQDs, where

H0 =
∑

k,σ,α εkc
†
k,σ,αck,σ,α is the Hamiltonian for free

electrons in the electrodes. c†k,σ,α(ck,σ,α) creates (de-
stroys) an electron of momentum k and spin σ with en-

ergy εk in the α electrode. HT =
∑

k,`,α(Vk,α,`c
†
k,σ,αd`,σ+

V ∗k,α,`d
†
`,σck,σ,α). Vk,α,` describes the coupling between

the α electrode and the `-th QD. d†`,σ (d`,σ) creates (de-
stroys) an electron in the `-th dot. HQDs is the extended

Hubbard Hamiltonian for multiple QDs.

HQDs =
∑
`,σ

E`n`,σ +
∑
`

U`n`,σn`,σ̄ (1)

+
∑

`<j,σ,σ′

U`jn`,σnj,σ′ +
∑
` 6=j,σ

t`jd
†
`,σdj,σ,

where E` is the spin-independent QD energy level, n`,σ =

d†`,σd`,σ, U` and U`j (` < j) denote the intradot and
interdot Coulomb interactions, respectively and t`j de-
scribes the electron interdot coupling. The interdot
Coulomb interactions as well as intradot Coulomb inter-
actions are important for nanoscale semiconductor QDs
and molecules. Therefore, U`,j cannot be ignored.

Using the Keldysh-Green’s function technique15,21, the
electrical current from reservoir α to the TQDM junction
is calculated according to the Meir-Wingreen formula

Jα =
ie

h

∫
dε

∑
jσ

Γαj [G<jσ(ε) + fα(ε)(Grjσ(ε)−Gajσ(ε))],

(2)
where Γαj (ε) =

∑
k |Vk,α,j |2δ(ε− εk) is the tunneling rate

between the α-th reservoir and the j-th QD. Through-
out the paper, for two-terminal devices we assume that
the left (right) lead is only coupled to the left (right)
QD with tunneling rate ΓL (ΓR), while there is no cou-
pling between the center QD and the two leads. For
three-terminal devices, the coupling between the cen-
ter QD and a third gate is described by the tunnel-
ing rate ΓC . fα(ε) = 1/{exp[(ε − µα)/kBT ] + 1} de-
notes the Fermi distribution function for the α-th elec-
trode, where µα is the chemical potential and T is
the temperature of the system. e, h, and kB de-
note the electron charge, the Planck’s constant, and
the Boltzmann constant, respectively. G<jσ(ε), Grjσ(ε),
and Gajσ(ε) are the frequency domain representations of
the one-particle lessor, retarded, and advanced Green’s
functions G<jσ(t, t′) = i〈d†j,σ(t′)dj,σ(t)〉, Grjσ(t, t′) =

−iθ(t − t′)〈{dj,σ(t), d†j,σ(t′)}〉, and Gajσ(t, t′) = iθ(t′ −
t)〈{dj,σ(t), d†j,σ(t′)}〉, respectively. These one-particle
Green’s functions are related recursively to other Green’s
functions and correlators via the many-body equation
of motion,16–18 which we solve via an iterative numer-
ical procedure to obtain all n-particle Green’s func-
tions (n = 1, · · · , 6) and correlators for the TQDM.
(See supplemental materials.) Our procedure is valid
in the Coulomb blockade regime, but not the Kondo
regime.22,23 Throughout this paper, we assume the on-
site Coulomb interaction U` = U0 = 100Γ0 for all three
QDs and the same tunneling rates at all leads, Γαj = Γ
with j labeling the QD directly connected to lead α.
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Fig. 2 Electrical conductance (Ge) of TQDM as a function
of central QD energy for different tLR strengths in the Pauli
spin blockade configuration with EL = EF and
ER = EF − UR. (a) tLC = tCR = 3Γ0, and (b) t`,j replaced
by −t`,j . Other physical parameters are kBT = 1Γ0,
Γ = 0.3Γ0, ULC = UCR = 30Γ0, and ULR = 0.

3 Results and discussion

Although the QI of TQDM was theoretically investi-
gated previously24,25, the effect of intradot and inter-
dot Coulomb interactions was not considered. Here, we
utilize the LDCT effect to tune the effective hopping
strength between outer QDs to achieve the destructive
and constructive QIs in the presence of electron Coulomb
interaction. We consider a TQDM junction in the Pauli
spin blockade (PSB) configuration4,18 with EL = EF ,
ER = EF − U0, tLC = tCR = 3Γ0, ΓL = ΓR = 0.3Γ0,
ULC = UCR = 30Γ0, and ULR = 0. Fig. 2(a) shows
the electrical conductance (Ge) as a function of central
QD energy level (∆C = EC − EF ) for tLR varying from
0 to 0.2Γ0 at kBT = 1Γ0 (in weak interdot coupling
regime). For ∆C less than −15Γ0, Ge is not sensitive
to the variation of tLR, indicating that the transport is
mainly through the upper path involving the center QD
as shown in the inset of Fig. 2(a). In the case of tLR = 0,
Ge can be well explained by the LDCT effect when EC is
far away from EF .26 The central QD provides an interme-
diated state for electrons in the outer QDs. Through the
upper path, TQDM behaves like a double QD with an ef-
fective hopping teff = −tLCtCR/(UCR+ ∆C), which can
also be understood by the second order perturbation the-
ory.26 Once tLR 6= 0 (the lower path turns on), electron
transport through the two paths with teff and tLR lead
to a destructive QI. Note that Ge for the case of tLR 6= 0
is reduced compared to the case of tLR = 0. In particular,

Ge is vanishingly small at the value of ∆C where |teff |
crosses tLR as indicated by dashed lines in Fig. 2(a). For
illustration, the curve for |teff | = |tLCtCR|/(UCR + ∆C)
is also shown in Fig. 2(a). (See short-dashed curve)
The vanishing Ge occurs at lower ∆C with increasing
|tLR| (Compare dash-dotted with dashed curves). Due
to topological effect, the electron-hole symmetry does not
hold for the energy spectrum of TQDM.13 When TQDM
has identical QD energy levels (E` = E0) and homoge-
nous electron hopping strengths t`,j = t, we have one
level ε = E0 + 2t and one doubly degenerate level with
ε = E0− t for the case of U` = U`,j = 0. Unlike the cases
of DQDs and SCTQDs, the lowest energy level depends
on the sign of t`,j . This is a manifesting result of electron-
hole asymmetrical behavior of TQDM. Therefore, it will
be interesting to examine the sign effect of t`,j on the QI
behavior. Physically, the sign of t`,j depends on the sym-
metry properties of orbitals, which can change in different
configurations. We can replace t`,j by −t`,j to examine
the QI effect with respect to the electron-hole symmetry.
The results are shown in Fig. 2(b). We find that Ge is
enhanced with increasing tLR, which is attributed to the
constructive QI effect, in contrast to the destructive QI
effect shown in Fig. 2(a).

To gain deeper understanding of the destructive and
constructive QI shown in Fig. 2, we compare our
full calculation with the weak interdot-coupling the-
ory,18,26 which allows simple closed-form expression for
the electrical conductance of TQDM. We obtain Ge =
2e2/h

∫
dεT (ε)[∂f(ε)/∂EF ] ≈ (2e2/h)T (EF ) at low-

temperature limit, where the transmission coefficient
T (ε) with 64 configurations is approximately given by

TPSB(ε) (3)

=
4ΓLΓRPPSBFQI

|µ1µ2µ3 − t2CRµ1 − t2LCµ3 − t2LRµ2 − 2tLRtLCtCR|2
,

where FQI = µ2
2(tLCtCR/µ2 + tLR)2 is a factor related

to QI. µ1 = ε − EL + iΓL, µ2 = ε − EC − URC and
µ3 = ε− ER − UR + iΓR. PPSB denotes the probability
weight in the PSB configuration.18 From Eq. (3), we have

Ge =
2e2

h

PPSB4Γ2(teff + tLR)2

(Γ2 + 2teff tLR + t2LR)2 + Γ2 (th1 + th2)2
,

(4)
where teff = −tLCtCR/(UCR+∆C), th1 = −t2LC/(UCR+
∆C), and th2 = −t2CR/(UCR + ∆C) with ΓL = ΓR ≡ Γ.
For tLC = tCR = tc = 0, Eq. (4) reduces to the con-
ductance of DQD,17 while for tLR = 0, it reduces to the
Ge of SCTQD.26 At ∆C = 15Γ0 and 60Γ0, which sat-
isfy the condition of teff + tLR = 0 for tLR = 0.2Γ0

and tLR = 0.1Γ0, respectively, and we see Ge vanishes
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there. This well illustrates the destructive QI seen in
Fig. 2(a). Once we make the substitution t`,j → −t`,j
in Eq. (4), we can reveal the constructive QI in Ge as
shown in Fig. 2(b). Note that in the weak coupling regime
(teff/Γ� 1), the probability weight PPSB of Eq. (4) cal-
culated according to the procedures in Ref. 18, where the
interdot two-particle correlation functions are factorized
as the product of single occupation numbers, is consis-
tent with the full calculation, but not for teff/Γ � 1.
Away from the weak coupling regime, the interdot elec-
tron correlations become important. To explicitly reveal
the importance of electron correlation effects, we plot the
curve of tLR = 0.2Γ0 (with triangle marks) calculated by
the procedure of Ref. 18 (including 64 configurations)
in Fig. 2(a). Comparison between the full solution and
the approximation considered in Ref. 18, we find that
the electron correlation effects become very crucial when
teff/Γ� 1. Once electron transport involves more elec-
trons, the high-order (beyond two-particle) Green func-
tions and correlation functions should be included (see
the results of Fig. 3). The difference between the con-
ventional mean-field theory of Ref. 3 with the full solution
is even larger. The comparison between mean-field the-
ory and the procedure of Ref. 18 has been discussed in
the appendix of Ref. 18.

According to Eq. (4), constructive and destructive QI
effects depend on the sign of t`,j . Therefore, if the wave-
function of the center dot has opposite parity (say, an
x-like state) with respect to the wavefunctions in two
outer dots (assumed to be s-like), then tLC will have op-
posite sign compared with tCR and tLR, and the sign of
teff will be flipped. Consequently, the destructive QI
shown in Fig. 2(a) will become constructive QI. Thus,
for a center QD with an s-like ground state and an ex-
cited p-like state, it is possible to see the change of QI
between destructive and constructive by tuning the gate
voltage, which sweeps through different resonance ener-
gies of the center QD in addition to the change of sign of
teff when the Fermi level goes from below the resonance
level to above the resonance level. From the results of
Fig. 2, QI effect can be electrically controlled by the en-
ergy level Ec. This advantage of TQDM may be useful
for improving the spin filtering of DQDs4.

In addition to QI effects, spin frustration and topo-
logical effects (due to electron-hole asymmetry) on the
measured quantities (electrical conductance or current)
are also interesting issues.11 Fig. 3(a) shows Ge as a
function of gate voltage, ∆g for E` = EF + 10Γ0 − ∆g;
` = L,C,R at two different temperatures, kBT = 0 and
1Γ0. Here, we consider the homogenous configuration
with ULR = ULC = UCR = 30Γ0 and t`,j = tc = 3Γ0. At
low temperature, there are six main peaks in the Ge spec-
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Fig. 3 (a) Electrical conductance of TQDMs as a function
of gate voltage ∆g with EL = ER = EC = EF + 10Γ0 − ∆g

and Γ = 1.6Γ0.(b) Correlation functions for kBT = 0Γ0.
Other physical parameters are t`,j = 3Γ0 and
ULR = ULC = UCR = 30Γ0.

trum, labeled by εn, n = 1, · · · , 6 and some secondary
peaks. At higher temperature, the six main peaks are
suppressed and broadened as shown by the dashed curve,
and the secondary peaks are washed out. We also plot the
total occupation number, N =

∑
σ(NL,σ +NR,σ +NC,σ)

as the black solid curve, which shows a stair-case behav-
ior with plateaus at N = 1, · · · , 6, corresponding to the
filling of TQDM with 1 to 6 electrons. It can be seen that
the six main peaks occur at ∆g where N is increased by 1.
Thus, the peak positions εn correspond to the chemical
potential of electrons in TQDM, i.e. the energy needed
to add an electron to the system. The main peak posi-
tions can be approximately obtained by the calculation
of chemical potential of TQDM without considering the
coupling with leads as done in Ref. 13. For example,
ε1 = EL − 2|tc|, ε2 = EL + ULC − 8t2/(U0 − ULC) and
ε3 = EL + 2U`,j − 3Jex/2 + 2|tc| + 16t2c/(U0 − ULC) un-
der the condition U0 > ULC � tc, where Jex ≡ E0(S =
3/2)−E0(S = 1/2) is the difference in energy between the
spin-3/2 and spin-1/2 configuration.13 However, the rel-
ative strengths of peaks in the conductance spectrum can
only be obtained by solving the full Anderson-Hubbard
model self-consistently.

Unlike the Ge spectrum of DQDs,17 the Ge spectrum
of TQDM does not show the electron-hole symmetry due
to topological effect. Note that N = 4 and N = 5 cor-
respond to two-hole and one-hole configurations, respec-
tively. A large Coulomb blockade separation between ε3
and ε4 is given by ∆34 = U0 + 3Jex − 4tc − 8t2c/(U0 −
ULC). Here, ε4 corresponds to the two hole ground state
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with spin triplet instead of singlet. The magnitude of
Ge is smaller than the quantum conductance 2e2/h for
tLR/Γ� 1 as a result of electron Coulomb interactions.17

The mechanism for understanding the unusual Ge be-
havior in nanostructure junction systems is a subject of
high interest.27 Due to electron Coulomb interactions,
the magnitudes of peaks are related to the probability
weights of quantum paths, which are related to single-
particle occupation numbers and many-particle correla-
tion functions.18

To reveal the configurations for each main peak, the
one-particle occupation number N`,σ ≡ 〈n`,σ〉, inter-
dot two particle correlation functions 〈n`,σnj,σ̄〉 , and
three particle correlation functions (〈nL,σnC,−σnR,σ〉,
and 〈nL,σnC,−σnR,σ〉) are plotted in Fig. 3(b). We al-
ways have the relation NL,σ = NR,σ 6= NC,σ, because
the outer QDs are directly coupled to electrodes, but not
the central QD. Such a relation also holds for two-particle
and three-particle correlation functions. The six main
peaks in Fig. 3(a) indicate the filling of TQDM up to
the n-electron ground state for n = 1, · · · , 6. For ex-
ample, ε2 indicates the formation of two-electron state
with spin singlet, while ε3 indicates the formation of
three-particle state with total spin S = 1/2, which can
be described as the spin-frustration state11,13,28. Be-
cause the on-site Coulomb interaction favors homoge-
neous distribution of three electrons in TQDM, whereas
the interdot Coulomb repulsion favors the charge fluc-
tuation. As seen in Fig. 3(b), for ∆g ≤ ε3 ( 78Γ0) N`
in each dot clearly displays the charge fluctuation be-
havior. When TQDM goes into a three-particle state
(∆g > ε3), the charge fluctuation is suppressed, and
each QD is filled with one particle (with NL,σ = NR,σ =
NC,σ = 0.5), while 〈nL,σnC,σnR,−σ〉=〈nL,σnC,−σnR,σ〉 =
〈nL,−σnC,σnR,−σ〉. This also demonstrates the spin frus-
tration condition as depicted in the inset of Fig. 3(a).

Figure 4 shows the charge stability diagram for zero-
bias electrical conductance (Ge) and total occupation
number (N) as functions of gate voltages exerted on any
two QDs (labeled by Vg1 and Vg2) for a TQDM connected
to three terminals. The magnitudes of Ge and N are indi-
cated by different colors. It is noticed that Ge is enhanced
on the borders that separate domains of different values
of occupation number (N) with larger Ge occurring at
Vg1 = Vg2. This is a result of higher degeneracy and
charge-fluctuation in the state. The largest Ge for N ≤ 3
occurs at the junction betweenN = 1 andN = 2 domains
when Vg1 = Vg2. This feature corresponds to the ε2 peak
of Fig. 3(a). The diagram Fig. 4(a) is simply a collection
of curves displayed in Fig. 3(a) at different values of Vg2
that shifts the QD energy levels. We note that in the
domains of N = 1 and N = 2, the areas with stripes
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Fig. 4 Charge stability diagram of TQDM. Γ` = Γ0,
kBT = 1.5Γ0, ULC = UCR = ULR = 12Γ0, t`,j = 3Γ0. The
energy levels are shifted according to
E` = EF − ULR −

∑2
m=1 β`,meVgm, where the gate coupling

constants are βL,1 = 0.5, βC,1 = 1, βR,1 = 0.5, βL,2 = 1,
βC,2 = 0.5, and βR,2 = 1.

are not symmetrical with respect to gate voltage. In Ref.
11, a capacitive interaction model was employed to plot
the diagram of N . In their model, the electron hopping
strength t`,j was ignored. Consequently, the charge sta-
bility diagram of Ge cannot be obtained. The charge
stability diagram of Ge obtained by our full calculation
[as shown in Fig. 4(a)] bears close resemblance to the
experimental results as shown in Fig. 2 of Ref. 11.

So far, the results shown in Figs. 2-4 are all related
to the linear response. To further clarify the QI effect
at finite bias (Va = 10Γ0) for different temperatures, we
plot in Fig. 5(a) the tunneling current as a function of
center QD energy, EC = EF + ∆c for the configura-
tion shown in the inset of Fig. 5(b). For ∆C ≥ 2Γ0,
the tunneling current is suppressed as temperature in-
creases. This is attributed to a reduction of electron pop-
ulation in the electrodes for electrons with energy near
EF + 10Γ0. For ∆C ≤ 2Γ0, we notice that Nc,σ quickly
jumps to 0.4, indicating that the central QD is filled
with charge, which causes an interdot Coulomb block-
ade for electrons entering the left QD. (See the reduc-
tion of NL,σ in Fig. 5(b)). This explains the sharp dip
of Ge for ∆C ≤ 2Γ0 in Fig. 5(a). As temperature in-
creases, such a dip in tunneling current is smeared out.
At ∆C = 10Γ0 + tLCtCR/tLR ≡ ∆QI , the tunneling cur-
rent vanishes for all temperatures considered due to the
QI effect. Such a robust destructive QI effect with respect
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Fig. 5 (a) Tunneling current as a function of
∆C = EC − EF at finite bias Va = 10Γ0 for various
temperatures. (b) Occupation numbers as a function of ∆C

at kBT = 0. The other physical parameters used are
EL = ER = EF + 10Γ0, ULC = UCR = 30Γ0, ULR = 10Γ0,
tLC = tCR = 3Γ0, tLR = 0.4Γ0, and Γ = Γ0.

to temperature provides a remarkable advantage for the
realization of single electron QI transistors at room tem-
perature.12 To understand the interdot correlation effect,
we also plot the case without interdot Coulomb interac-
tion (U`,j = 0) for kBT = 0 in Fig. 5(a). (See solid
curve) We notice that the QI effect remains qualitatively
the same, except that the tunneling current is slightly
enhanced with interdot Coulomb interaction turned off.
As the QI effect suppresses the current flow, the charge
will accumulate in the left dot. Thus, NL,σ reaches the
maximum at ∆C = ∆QI while NR reaches the minimum
as seen in Fig. 5(b). This implies that the QI effect can
be utilized to control charge storage in TQDM.

4 Conclusions

In summary we have obtained full solution to the charge
transport through TQDM junction in the presence of
electron Coulomb interactions, which includes all n-
electron (n = 1, · · · , 6) Green’s functions and correlation
functions. The destructive and constructive QI behaviors
of TQDM are clarified by considering the LDCT effect on
the conductance spectrum. The conductance spectrum of
TQDM with total occupation number varying from one
to six directly reveals the electron-hole asymmetry due
to topological effect. The calculated correlation func-
tions also illustrate the charge fluctuation and spin frus-
tration behaviors of TQDM. Our numerical results for
charge stability diagram match experimental measure-

ments very well. Finally, we demonstrated that the QI
effect in TQDM is robust against temperature variation
and it can be utilized to control the charge storage.
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