CrystEngComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/crystengcomm

CrystEngComm

A series of open-framework magnesium phosphate-oxalates with pore apertures ranging from 8-membered ring (8 MR) to 20 MR were prepared for the first time under solvent-free conditions.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

CrystEngComm Accepted Manuscript

Solvent-free synthesis of new magnesium phosphate-oxalates displaying diverse framework topologies[†]

Wei Zhang,^{*} Maoping Kang,^{*} Meng Yang,^{*} Daibing Luo^b and Zhien Lin^{*}

Received (in XXX, XXX) Xth XXXXXXXX 200X, Accepted Xth XXXXXXXX 200X 5 DOI: 10.1039/b000000x

A series of open-framework magnesium phosphate-oxalates were prepared for the first time under solvent-free conditions. The pore apertures of these compounds range from small 8-membered ring (8 MR) to large 12 MR and 10 extra-large 16 MR and 20 MR. Topological analyses reveal that they display ins, pcu, mmt, dia, fsh, fsc, and ths networks, respectively.

Solvent-free synthesis is of current interest in the preparation of open-framework inorganic solids, metal-organic frameworks, ¹⁵ covalent-organic frameworks, and inorganic-organic hybrid solids.¹ This synthetic approach features simple process, low system pressure, and reduced pollution.² It avoids the influence of solvents on the framework structures, indicating that many new crystalline compounds that are unstable under hydrothermal and

20 solvothermal conditions are potentially achieved.

Open-framework metal phosphate-oxalates are an important class of inorganic-organic hybrid solids due to their appealing physical properties such as photoluminescence.³ Most crystalline metal phosphate-oxalates reported to date are based on transition

- ²⁵ metals and group 13 elements.⁴ The use of rare earth ions as framework cations has also been investigated.⁵ However, the synthesis of magnesium phosphate-oxalates is a particularly unexplored area. This is surprising given the similar ionic radius of Mg²⁺ to many transion metal ions (Mg²⁺, 0.68 Å; Co²⁺, 0.69 Å;
- ³⁰ Ni²⁺, 0.70 Å; Zn²⁺, 0.71 Å) and the gravimetric advantage of magnesium in the synthesis of porous materials.⁶ The experimental difficulty in the synthesis of magnesium phosphate-oxalates may be associated with the high solvation enerty of Mg²⁺.
- Here we use magnesium phosphate-oxalates as a model system ³⁵ to demonstrate the advantages of solvent-free synthesis in the creation of new open-framework structures. A series of new magnesium phosphate-oxalates were prepared in the presence of different amines as the structure-directing agents. A suitable single crystal of each compound was selected for single-crystal
- ⁴⁰ X-ray diffraction analysis (Table 1). Using Olex2, the structures were solved by direct methods and refined with the *ShelXL* refinement package.⁷ These compounds display seven distinct topological features, including ins, pcu, mmt, dia, fsh, fsc, and ths networks.⁸ As far as we know, the fsc and ths topologies have
- ⁴⁵ been observed for the first time in metal phosphate-oxalate structures.

In a typical synthesis, a mixture of $Mg(CH_3COO)_2 \cdot 4H_2O$, $H_2C_2O_4 \cdot 2H_2O$, H_3PO_4 (85 wt%), and ethylenediamine in a

stoichiometric ratio was sealed in a Teflon-lined stainless steel ⁵⁰ autoclave and heated at 150 °C for 7 days. The autoclave was subsequently allowed to cool to room temperature. Colorless crystals of compound **1** were obtained in a yield of 72.4%. Other magnesium phosphate-oxalates were prepared under similar synthetic conditions. It should be noted that when large quantities

⁵⁵ of water were added in the reactions, a hydrated magnesium phosphate MgHPO₄·3H₂O with a layered structure was always obtained as the resulting product.⁹

Compounds 1 and 2 are isostructural, therefore, only crystal structure of 1 is described as representative. Compound 1 ⁶⁰ crystallizes in the monoclinic space group $P2_1/n$ (No. 14). The asymmetric unit contains one magnesium atom, one HPO₄ unit, one half of an oxalate ligand, one water molecule, and one half of an H₂en cation. The H₂en cation and oxalate ligand lie about independent inversion centers in the structure. The linkages ⁶⁵ between magnesium atoms and HPO₄ groups create hcb-type inorganic layers parallel to the *ac* plane, which are further pillared by oxalate ligands to give rise to a three-dimensional structure (Fig. 1a). Viewed along the [100] direction, the structure shows large 12-membered ring (12 MR) channels accomodating H₂en ⁷⁰ cations. By regarding MgO₆ octahedra and HPO₄ groups as 4-, and 3-connected nodes, respectively, the hybrid framework has a (3,4)-connected ins topology (Fig. 1b).

Compound 3 crystallizes in the triclinic space group P-1 (No. 2). The asymmetric unit contains two magnesium atoms, one 75 HPO₄ unit, one and a half of oxalate ligands, one water molecule, and one half of an H₂dab cation. One of the oxalate ligands and the H₂dab lie about independent inversion centers in this structure. This compound has an open-framework structure templated by H₂dab cations. It contains magnesium phosphate 80 ladders and magnesium oxalate ladders as the building blocks. Similar as compounds 1 and 2, each phosphorus atom in the structure makes three P-O-Mg linkages to adjacent magnesium atoms. Two types of oxalate ligands are present in the structrue. A type I oxalate ligand adopts a typical chelating bis-bidentate 85 coordination mode, and a type II oxalate ligand adopts a chelating/bridging bis-bidentate coordination mode. The compound features 8 MR channels and a (3,6)-connected network with Mn₂O₁₀ dimers and HPO₄ groups as 6-, and 3-connected nodes, respectively (Fig. 1c). The point symbol for the net is $_{90}$ (4².6)(4⁴.6¹⁰.8). The network can be further simplified as a pcu network if large Mg₄P₂ clusters are regarded as the 6-connectd nodes (Fig. 1d).

Table 1. Summary of crystal data and refinement results.

Compound ^{<i>a</i>}	Space group	a (Å)	b, (Å)	c (Å)	α (°)	β (°)	γ(°)	<i>R</i> (F)	Net ^b
$H_2 en \cdot Mg_2 (HPO_4)_2 (ox) (H_2O)_2 (1)$	$P2_1/n$	5.4112(3)	14.2338(7)	8.9052(4)	90	95.922(5)	90	0.0340	ins
H_2 dap·Mg ₂ (HPO ₄) ₂ (ox)(H ₂ O) ₂ (2)	$P2_1/n$	5.4134(2)	15.2590(6)	9.0176(4)	90	94.704(4)	90	0.0464	ins
$H_2dab \cdot Mg_4(HPO_4)_2(ox)_3(H_2O)_2$ (3)	<i>P</i> -1	7.6627(3)	7.8432(3)	9.7695(3)	72.092(3)	83.275(3)	84.998(3)	0.0416	pcu
H_2 dab·Mg ₂ (H_2 PO ₄) ₂ (ox) ₂ (4)	Pccn	8.23203(11)	16.34232(15)	13.28134(15)	90	90	90	0.0539	mmt
Hmor·Mg(H ₂ PO ₄)(ox) (5)	$P2_1/n$	9.3755(2)	7.47460(10)	15.4310(2)	90	100.119(2)	90	0.0420	dia
$H_{3}ipa \cdot Mg_{4}(H_{2}PO_{4})_{3}(ox)_{4} \cdot 2H_{2}O(6)$	C2/c	15.1014(2)	10.96857(17)	22.3338(4)	90	103.0993(15)	90	0.0486	fsh
$(H_2 pip)_2 \cdot Mg_4 (HPO_4) (H_2 PO_4)_2 (ox)_4 \cdot 2H_2 O(7)$	<i>P</i> 1	7.7738(3)	9.4840(3)	11.9243(5)	78.102(3)	78.574(4)	86.183(3)	0.0473	fsc
$H_{3}dpta \cdot Mg_{2}(HPO_{4})(H_{2}PO_{4})(ox)_{2}(H_{2}O) \cdot 2H_{2}O \ (\textbf{8})$	<i>P</i> -1	9.3254(2)	9.4280(3)	14.3060(4)	96.449(2)	103.879(2)	104.350(2)	0.0462	ths

^{*a*} en = ethylenediamine; ox = oxalate; dap = 1,3-diaminopropane; dab = 1,4-diaminobutane; mor = morpholine; ipa = 3,3'-iminobis(N,N-dimethylpropylamine); pip = piperazine; dpta = dipropylenetriamine. ^{*b*} For definitions of three-letter abbreviations, see Reticular Chemistry Structure Resource (http://rcsr.net/).

Fig.1. A view of the framework structures of various magnesium phosphate-oxalates: (a) 1 and 2; (c) 3; (e) 4; (g) 5; (i) 6; (k) 7; m) 8. These compounds display interesting networks: (b) ins; (d) pcu; (f) mmt; h) dia; (j) fsh; (l) fsc; (n) ths. The amine molecules within the channels are omitted for clarity.

Compound **4** was prepared in the presence of the same amine as that used for compound **3**. However, the two compounds have different framework structures as a result of different molar ratio of the starting materials used in the reactions. Compound **4** ⁵ crystallizes in the orthorhombic space group *Pccn* (No. 56). The asymmetric unit contains one magnesium atom, one H₂PO₄ unit, two halves of oxalate ligands, and one half of an H₂dab cation. Of the two different oxalate ligands, one lies about an inversion center and the other lies about a twofold axis. The H₂dab cation

¹⁰ lies disordered about another twofold axis. This compound has an open-framework structure with 12 MR channels (Fig. 1e). It consists of magnesium phosphate chains and magnesium oxalate chains as the building blocks. Each phosphorus atom in the structure makes two P–O–Mg linkages to adjacent metal atoms. ¹⁵ The structure has a 4-connected mmt network by regarding MnO₆ octahedra as the structural nodes (Fig. 1f).

Compound **5** crystallizes in the monoclinic space group $P2_1/n$ (No. 14). The asymmetric unit contains one magnesium atom, one H₂PO₄ unit, two halves of oxalate ligands, and one Hmor ²⁰ cation. Each oxalate ligand lies about an independent inversion center. This compound has a three-dimensional framework containing 12 MR channels along the [100] and [010] directions (Fig. 1g). It consists of similar magnesium phosphate chains and magnesium oxalate chains as found in compound **4**. Topological ²⁵ analysis reveals that compound **5** has a 4-connected dia network with 6⁴ cage unit (Fig. 1h), which is different from the mmt network (for compound **4**) containing 6⁶ cage unit. It is of interest to compare the openness of compounds **4** and **5** based on the number of magnesium atoms per 1000 Å³. The values is 3.76 Mg/1000 Å³ for compound **5**, which is smaller than that of 4.48 Mg/1000 Å³ for compound **4**. This suggests that compound **5** has a lower framework density than compound **4**. A void space

⁵ analysis employing *PLATON* indicates that "solvent accessible" space in compound **5** occupies 40.4% of the unit cell volume.¹⁰ In comparison, only 26.7% of the unit cell volume is "solvent accessible" in compound **4**.

Compound 6 crystallizes in the monoclinic space group C2/c

- ¹⁰ (No. 15). The asymmetric unit contains two magnesium atoms, one and a half of H_2PO_4 units, two oxalate ligands, one water molecule, and one half of an H_3 ipa cation. The central N(2) atom of the H_3 ipa cation and the P(2) atom lie on a twofold axis. This compound contains single-chain magnesium phosphate and
- ¹⁵ double-chain magnesium oxalate as the building blocks. The two types of building blocks share common MgO_6 octahedra and Mg_2O_{10} dimers, forming a three-dimensional structure with 12 MR channels running along the [110] direction (Fig. 1i). By regarding MgO_6 octahedra as 4-connected nodes and Mg_2O_{10} ²⁰ dimers as 6-connected nodes, the compound has a (4,6)-

connected fsh topology (Fig. 1j). It should be noted that the framework topologies of **1-6** are also realized in some transition metal phosphate-oxalates.¹¹ One benefit of the use of magnesium atom as the framework cation is

²⁵ its gravimetric advantage in the synthesis of low-density materials. For example, the density of compound **2** (1.918 g cm⁻³) is only ca. 90% that of its manganese analogue (2.141 g cm⁻³).¹²

Compound 7 crystallizes in the triclinic space group P1 (No.

- The asymmetric unit contains three magnesium atoms, one ³⁰ HPO₄ unit, two H₂PO₄ units, four oxalate ligands, two water molecules, and two H₂pip cations. This compound has a threedimensional structure containing two different types of inorganic building blocks: a cyclic Mg₂P₂ tetramer constructed from two MgO₆ octahedra and two HPO₄ groups, and an infinite
- ³⁵ magnesium phosphate chain constructed from alterternating Mg_2O_{10} dimers and H_2PO_4 groups. These inorganic building blocks are further bridged by oxalate ligands to create an open-framework structure with 16 MR channels (Fig. 1k). By regarding Mg_2P_2 tetramers and Mg_2O_{10} dimers as 4-, and 6-40 connected nodes, the compound has an fsc topology (Fig. 1l).
- The most interesting structural feature of **7** is its resemblance to that of $(H_2mpip)_{1.5}$ ·Mn₃(HPO₄)(H₂PO₄)(ox)₃ with a (4,6)connected sqc125 topology.¹³ Both compounds have interrupted pcu topologies containing M₂O₁₀ dimers and M₂P₂ tetramers as
- ⁴⁵ the structural nodes (M = Mg, Mn). For a pcu topology, all the structural nodes are M_2O_{10} dimers. If half of M_2O_{10} dimers in the pcu topology are replaced by cyclic M_2P_2 tetramers, the (4,6)-connected fsc topology may be created. If one third of M_2O_{10} dimers in the pcu topology are replaced by cyclic M_2P_2 tetramers,
- ⁵⁰ the (4,6)-connected sqc125 topology may be created. It is believed that the cyclic M_2P_2 tetramers serve as "structural scissors" for the formation of different (4,6)-connected networks. Compound **8** crystallizes in the triclinic space group *P*-1 (No.
- 2). The asymmetric unit contains two magnesium atoms, one ⁵⁵ HPO₄ unit, one H_2PO_4 unit, four halve of oxalate ligands, three water molecules, and one H_3 dpta cation. Each oxalate ligand lies about an independent inversion center. This compound has a three-dimensional structure containing chain-like magnesium

oxalate building blocks. The magnesium oxalate chains run along ⁶⁰ the [100] and [010] directions, respectively, and are further bridged by HPO₄ groups to form an open-framework structure. Viewed along the [100] direction, the structure displays large 20 MR channels (Fig. 1m). The pore size of the 20 MR window, delimited by ten MgO₆ octahedra, six oxalate ligands, and four

- ⁶⁵ HPO₄ groups, is about 7.0×9.4 Å² (calculated from the distance between two oxygen atoms across the window). Similar 20 MR channels are also observed along the [010] and [001] directions. However, the terminal H₂PO₄ groups attach to the walls of these 20 MR channels and reduce the free space. By regarding MgO₆ 70 octahedra as 3-connected nodes, the compound has a ths topology
- (Fig. 1n). Prior to this work, metal phosphate-oxalates with 3connected nodes always possess an hcb topology.

In summary, the use of magnesium ions as framework cations in the synthesis of new hybrid open-framework solids have been

- 75 explored under solvent-free conditions. Seven types of framework topologies were created during the course of such investigations. The fsc and ths topologies are unprecedanted in metal phosphate-oxalate structures. The 20 MR pore found in this compositional domain represents one of the largest pores in metal
- ⁸⁰ phosphate-oxalates. The present work illustrates that solvent-free synthesis will offer a lab-scale preparative method to find novel hybrid open-framework solids. Further work is in progress to scale-up this type of synthesis.

This work was supported by the NSFC (no. 21171121), and ⁸⁵ the Program for New Century Excellent Talents in University (no. NCET-12-0375).

Notes and references

 ^a College of Chemistry, Sichuan University, Chengdu 610064, P. R. China. E-mail: ouyame@sina.com (M. Yang); zhienlin@scu.edu.cn (Z.
 ⁹⁰ Lin)

^b Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China.

[†] Electronic Supplementary Information (ESI) available: X-ray data in CIF format, experimental details, additional figures, IR spectra, powder

- 95 XRD patterns, and TGA curves. CCDC 1431026-1431033. See DOI: 10.1039/b000000x/
 - ‡ W. Z. and M. K. contributed equally to this work.
- S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friščić, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed and D. C. Waddell, *Chem. Soc. Rev.*, 2012, 41, 413; R. E. Morris and S. L. James, *Angew. Chem. Int. Ed.*, 2013, 52, 2163; C. Duan, D. Luo, R. Shang and Z. Lin, *CrystEngComm*, 2013, 15, 5602; B. P. Biswal, S. Chandra, S. Kandambeth, B. Lukose, T. Heine and R. Banerjee, *J. Am. Chem. Soc.*, 2013, 135, 5328; Q. Wu, X. Liu, L. Zhu, L. Ding, P. Gao, X. Wang, S. Pan, C. Bian, X. Meng, J. Xu, F. Deng, S. Maurer, U. Müller and F.-S. Xiao, *J. Am. Chem. Soc.*, 2015, 137, 1052.
- J.-B. Lin, R.-B. Lin, X.-N. Cheng, J.-P. Zhang and X.-M. Chen, *Chem. Commun.*, 2011, **47**, 9185; H. Sakamot, R. Matsuda and S. Kitagawa, *Dalton Trans.*, 2012, **41**, 3956; Q. Wu, X. Wang, G. Qi, Q.
- Guo, S. Pan, X. Meng, J. Xu, F. Deng, F. Fan, Z. Feng, C. Li, S. Maurer, U. Müller and F.-S. Xiao, *J. Am. Soc. Soc.*, 2014, **136**, 4019;
 D. Crawford, J. Casaban, R. Haydon, N. Giri, T. McNally and S. L. James, *Chem. Sci.*, 2015, **6**, 1645.
- ¹¹⁵ 3 S. Natarajan and S. Mandal, *Angew. Chem. Int. Ed.*, 2008, **47**, 4798; Y.-C. Yang and S.-L. Wang, *J. Am. Chem. Soc.*, 2008, **130**, 1146; M. Nagarathinam, K. Saravanan, E. J. H. Phua, M. V. Reddy, B. V. R. Chowdari and J. J. Vittal, *Angew. Chem. Int. Ed.*, 2012, **51**, 5866.
- K.-H. Lii and C.-Y. Chen, *Inorg. Chem.*, 2000, **39**, 3374; A.
 Choudhury, S. Natarajan and C. N. R. Rao, *Chem. Eur. J.*, 2000, **6**, 1168; Z. A. D. Lethbridge, S. K. Tiwary, A. Harrison and P.

Lightfoot, *Dalton Trans.*, 2001, 1904; T. Loiseau, G. Férey, M. Haouas and F. Taulelle, *Chem. Mater.*, **2004**, *16*, 5318; H. Meng, G.-H. Li, Y. Xing, Y.-L. Yang, Y.-J. Cui, L. Liu, H. Ding and W.-Q. Pan, *Polyhedron*, 2004, **23**, 2357; Z. A. D. Lethbridge, M. J. Smith, S.

- K. Tiwary, A. Harrison and P. Lightfoot, *Inorg. Chem.*, 2004, 43, 11;
 R. Yu, X. Xing, T. Saito, M. Azuma, M. Takano, D. Wang, Y. Chen,
 N. Kumada and N. Kinomura, *Solid State Sci.*, 2005, 7, 221;
 T. Huang, B. A. Vanchura, Y. Shan and S. D. Huang, *J. Solid State Chem.*, 2007, 180, 2110;
 Z. A. D. Lethbridge, G. J. Clarkson, S. S.
 Turner and R. I. Walton, *Dalton Trans.*, 2009, 9176.
- 5 C.-M. Wang, Y.-Y. Wu, C.-H. Hou, C.-C. Chen and K.-H. Lii, *Inorg. Chem.*, 2009, 48, 1519.
- 6 S. S. Batsanov, Acta Cryst., 2013, B69, 563; S. R. Caskey, A. G. Wong-Foy and A. J. Matzger, J. Am. Chem. Soc., 2008, 130, 10870;
- Y. E. Cheon, J. Park and M. P. Suh, *Chem. Commun.*, 2009, 5436; Q.
 Lin, T. Wu, S.-T. Zheng, X. Bu and P. Feng, *Chem. Commun.*, 2011,
 47, 11852; Q. Zhai, Q. Lin, T. Wu, S.-T. Zheng, X. Bu and P. Feng,
 Dalton Trans., 2012, 41, 2866; Z.-F. Wu, B. Tan, M.-L. Feng, A.-J.
 Lan and X.-Y. Huang, *J. Mater. Chem. A*, 2014, 2, 6426; Z.-F. Wu, B.
- 20 Tan, C.-F. Du, M.-L. Feng, Z.-L. Xie and X.-Y. Huang, *CrystEngComm*, 2015, **17**, 4288.
- 7 O. V. Dolomanov, L. J. Bourhis, R. J, Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339. G M. Sheldrick, *Acta Cryst.*, 2008, **A64**, 112.
- 25 8 M. O'Keeffe, M. A. Peskov, S. J. Ramsden and O. M. Yaghi, Acc. Chem. Res., 2008, 41, 1782.
 - 9 D. J. Sutor, Acta Crystallogr., 1967, 23, 418.
 - 10 A. L. Spek, Acta Crystallogr., Sect. A, 1990, 46, C34.
- 11 C. Duan, D. Luo, H. Zeng, M. Kang and Z. Lin, CrystEngComm,
- 2012, 14, 5734; L. Luan, J. Li, C. Chen, Z. Lin and H. Huang, *Inorg. Chem.*, 2015, 54, 9387; L. Luan, M. Yang, Y. Bian, Z. Lin and H. Huang, *Dalton Trans.*, 2015, 44, 13485; L. Luan, H. Ding, M. Yang, Z. Lin and H. Huang, *Inorg. Chem.*, 2015, 54, 19.
- 12 Z. A. D. Lethbridge, A. D. Hillier, R. Cywinski and P. Lightfoot, *J. Chem. Soc., Dalton Trans.*, 2000, 1595.
- 13 L. Luan, J. Li, C. Yin, Z. Lin and H. Huang, *Dalton Trans.*, 2015, 44, 5974.