This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Coligand Syntheses, Crystal Structures, Luminescence and Photocatalytic Properties of Five Coordination Polymers Based on Rigid Tetracarboxylic Acids and Imidazole Linkers

Liming Fan,a,b Weiliu Fan,a Bin Li,a Xian Zhao*a and Xiutang Zhang*a,b

DOI: 10.1039/c5ce00000x

ABSTRACT: Five coordination polymers (CPs) with distinct structures, namely, [Cu(H\textsubscript{2}tptc)(1,4-bidb)], (1), [Co\textsubscript{2}(tptc)(1,3,5-tib)(H\textsubscript{2}O)]\textsubscript{7}H\textsubscript{2}O\textsubscript{11} (2), [Ni(tptc)(1,3-bimb)]\textsubscript{2}H\textsubscript{2}O\textsubscript{11} (3), [Zn(qptc)(1,4-bim)].3H\textsubscript{2}O\textsubscript{11} (4), and [Zn(qptc)(1,3-bimb)]\textsubscript{2}H\textsubscript{2}O\textsubscript{11} (5) (H\textsubscript{2}tptc = terphenyl-3,3',5,5'-tetracarboxylic acid, H\textsubscript{4}qptc = quaterphenyl-3,3',5,5'-tetracarboxylic acid, 1,4-bidb = 1,4-bis(1-imidazol-yl)-2,5-dimethyl benzene, 1,3,5-tib = 1,3,5-tris(1-imidazol-yl)benzene, 1,3-bimb = 1,3-bis(imidazol-1-ylmethyl)benzene, 1,4-bimb = 1,4-bis(imidazol-1-ylmethyl)benzene), have been synthesized through the mixed ligands strategy. Complex 1 features a new 3D (4,6)-connected net with the Schläfli symbol of (44648410)(648510) topology. Complex 2 displays a 3D 2-fold interpenetrated framework with the unprecedented (3,3,4,4)-connected (648510)(648510) topology. Complex 3 exhibits a (34526371kgm layer featured a 2D+2D→3D packing supramolecular structure interweaved through the [Ni(1,3-bimb)] lock knots. Complex 4 shows an unprecedented 3D (4,4)-connected 84 net. And complex 5 is also a 2D+2D→3D supramolecular structure featured by the kgm sheets hinged together through the [Zn(1,3-bimb)] lock knots. Besides, the luminescent properties of 4 and 5 have been investigated. Moreover, complexes 1-3 show relatively good photocatalytic activities for dye methylene blue (MB) degradation in aqueous solution under UV light.

Introduction

Considerable attention in crystalline functional coordination polymers (CPs) stems from their interesting topologies and potential applications in gas absorption and separation, catalysis, luminescence, magnetism, drug delivery, and so on.1–3 As is well known, applications are determined by properties, which are essentially determined by structure. Thus, the design and syntheses of functional CPs remains a considerable challenge at this stage.4,5

Generally speaking, CPs are constructed form organic spacers (polycarboxylates, nitrogen heterocyclic linkers, organic phosphorus, and so on) and inorganic building blocks (metal ions, metal cluster, or secondary building units (SBUs)) under a given situation.6,7 Hitherto, a great deal of aromatic polycarboxylates were extensively employed to construct multi-dimensional and functional CPs due to that the aromatic polycarboxylates can serve as excellent candidates for building highly connected, self-penetrating, or helical coordination frameworks for their bent backbones and versatile bridging fashions.8 Apart from that the length, rigidity, coordination modes, functional groups, or substituents of organic acids have consequential effects on the final structures of MOFs.9 Moreover, our previous researches proved that the stability of the frameworks can be enhanced by introducing the N-donors as the auxiliary ligands.10–12 Moreover, the ancillary N-donor ligands also play an important role in adjusting the coordination mode of polycarboxylate acid, rarely documented to date.13 The particular behaviors allow them to be promising candidates for designing beautiful frameworks with diverse topologies. Based on the above mentioned points and following our recent research, two rectangular organic spacers (H\textsubscript{2}tptc = terphenyl-3,3',5,5'-tetracarboxylic acid, H\textsubscript{4}qptc = quaterphenyl-3,3',5,5'-tetracarboxylic acid) were employed to react with transition metal ions with the help of imidazole linkers, successfully obtained five CPs with distinct structures ranging from 3D (4,4)-connected 84 net (1), 3D (4,6)-connected (44648410)(648510) net (4), 3D (4,6)-connected (44648410)(648510) net (5), to 2-fold 3D (3,3,4,4)-connected (648510)(648510) net (2). Besides, the luminescent properties of 4 and 5 have been investigated. Moreover, complexes 1-3 show relatively good photocatalytic activity for dye methylene blue (MB) degradation in aqueous solution under UV light.

![Scheme 1. Structures of two tetracarboxylic acids and four ancillary imidazole ligands](image-url)
Experimental Section

Materials and Methods. All chemical reagents were purchased from Jinan Henghua Sci. & Tec. Co. Ltd. without further purification. IR spectra were measured on a NEXUS 670 FTIR spectrometer in the range of 600-4000 cm\(^{-1}\). Elemental analyses were carried out on a CE instruments EA 1110 elemental analyzer. TGA was measured from 25 to 800 °C on a SDT Q600 instrument at a heating rate 5 °C/min under the N\(_2\) atmosphere (100 mL/min). X-ray powder diffractions of 1–5 were measured and on a Panalytical X-Pert pro diffractometer with Cu-K\(_a\) radiation. Solid UV–visible spectra were obtained in the 200–800 nm range on a JASCOUV-660 spectrophotometer. Fluorescence spectra were performed on a Hitachi F-4500 fluorescence spectrophotometer at room temperature. Photocatalytic reactions were performed on a Hitachi F-4500 fluorescence spectrophotometer. A 125 W high-pressure mercury lamp was used as the UV source. Experiments in aqueous solutions were performed in a 30 mL test tube. Five CPs were synthesized under hydrothermal conditions and the oxalic acid act as the buffering agent in the formation of complex 2 and 3. Moreover, other influences, such as metal ions, pH, and auxiliary ligands also plays an important role on adjusting the coordination modes of H\(_{2}\)ptc/H\(_4\)ptc as well as the final crystal packing structures. For 1–5, the IR absorption bands around 3450 cm\(^{-1}\) can be attributed to the characteristic peaks of O-H vibrations. The vibrations at about 1400 cm\(^{-1}\) and 1610 cm\(^{-1}\) correspond to the asymmetric and symmetric stretching vibrations of the carbonyl groups, respectively (Fig. S1).13

Synthesis of [Cu(H\(_{2}\)ptc)(1,4-bidb)] (1). A mixture of H\(_2\)ptc (0.15 mmol, 0.061 g), 1,4-bidb (0.20 mmol, 0.048 g), CuCl\(_2\)·2H\(_2\)O (0.30 mmol, 0.051 g), NaOH (0.30 mmol, 0.012 g), and 12 mL H\(_2\)O was sealed in a 25 mL Teflon-lined stainless steel vessel, which was heated to 170 °C for 3 days and then cooled to room temperature slowly. Blue rodlike crystals of 1 were obtained. Yield 46% based on H\(_2\)ptc. Anal. (%) calcd. for C\(_{16}\)H\(_{32}\)CuN\(_2\)O\(_{4}\): C, 50.76; H, 3.32; N, 9.60. Found: C, 50.61; H, 3.32; N, 9.68. IR (KBr pellet, cm\(^{-1}\)) : 3643 (w), 3123 (m), 1585 (m), 1540 (vs), 1422 (vs), 1371 (s), 1286 (m), 1141 (m), 862 (m), 848 (m), 744 (m).

Synthesis of [{Ni(ptc)}\(_{5}\)(1,3-bimb)] \(\cdot\)H\(_2\)O (3). A mixture of H\(_2\)ptc (0.15 mmol, 0.061 g), 1,3-bimb (0.20 mmol, 0.048 g), NiCl\(_2\)·6H\(_2\)O (0.30 mmol, 0.071 g), Oxalic acid (0.30 mmol, 0.027 g), NaOH (0.40 mmol, 0.016 g), 13 mL H\(_2\)O and 2 mL DMF was sealed in a 25 mL Teflon-lined stainless steel vessel, which was heated to 170 °C for 3 days and then cooled to room temperature slowly. Green crystals of 3 were obtained. Yield 43% based on H\(_2\)ptc. Anal. (%) calcd. for C\(_{29}\)H\(_{32}\)N\(_4\)O\(_{4}\)·H\(_2\)O: C, 58.17; H, 4.10; N, 10.85. Found: C, 57.96; H, 4.13; N, 10.81. IR (KBr pellet, cm\(^{-1}\)) : 3058 (vs), 1698 (w), 1608 (s), 1578 (s), 1542 (s), 1357 (vs), 1160 (m), 1017 (m), 977 (m), 827 (m), 762 (m).

Synthesis of ([Zn(qptc)](1,4,1-bimb)]·3H\(_2\)O (4). A mixture of H\(_2\)qptc (0.15 mmol, 0.072 g), Zn(OAc)\(_2\)·2H\(_2\)O (0.30 mmol, 0.066 g), 1,4-bimb (0.30 mmol, 0.071 g), NaOH (0.60 mmol, 0.024 g), 8 mL H\(_2\)O and 8 mL EtOH was placed in a Teflon-lined stainless steel vessel, which was heated to 170 °C for 3 days and then cooled to room temperature slowly. Colorless block crystals of 4 were obtained. Yield of 52% (based on H\(_2\)qptc). Anal. (%) calcd. for C\(_{28}\)H\(_{32}\)N\(_4\)O\(_{4}\): C, 56.34; H, 4.56; N, 9.39. Found: C, 56.30; H, 4.48; N, 9.27. IR (KBr pellet, cm\(^{-1}\)) : 3139 (m), 2360 (m), 2324 (m), 1610 (m), 1558 (s), 1513 (vs), 1405 (s), 1352 (s), 1258 (s), 1066 (s), 962 (m), 818 (s), 721 (m).

Synthesis of ([Zn(qptc)](1,3,5-bimb)]·2H\(_2\)O (5). The same synthetic procedure as for complex 4 was used except the 1,4-bimb was replaced by the 1,3-bimb. Colorless block crystals of 5 were obtained. Yield of 45% (based on H\(_2\)qptc). Anal. (%) calcd. for C\(_{30}\)H\(_{32}\)N\(_4\)O\(_{3}\): C, 59.96; H, 4.13; N, 9.99. Found: C, 59.92; H, 4.06; N, 9.89. IR (KBr pellet, cm\(^{-1}\)) : 3368 (m), 1652 (s), 1590 (vs), 1561 (s), 1523 (s), 1382 (s), 1287 (s), 1214 (s), 1159 (m), 1006 (m), 858 (m), 744 (w).

X-ray crystallography. Intensity data collection was carried out on a Siemens SMART diffractometer equipped with a CCD detector using Mo-K\(_\alpha\) monochromatized radiation (\(\lambda = 0.71073\) Å). The absorption correction was based on multiple and symmetry-equivalent reflections in the data set using the SADABS program. The structures were solved by direct methods and refined by full-matrix least-squares using the SHELXLX package.15 All non-hydrogen atoms were refined anisotropically. Hydrogen atoms except those on water molecules were generated geometrically with fixed isotropic thermal parameters, and included in the structure factor calculations. The SQUEEZE procedure was applied to eliminate the disordered solvent molecules of complexes 2–4, and then the new files were generated. The hydrogen atoms attached to oxygen were refined with O-H=0.85Å and U\(_{eq}\)(H)=1.2U\(_{eq}\)(O). The carbon atoms in the phenyl rings of H\(_2\)ptc\(_2\) ligands in complex 1 are disordered and refined with the occupancy ratio of 50:50 for C(16), C(17) and C(16A), C(17A), respectively. Crystallographic data for complexes 1–5 are given in Table 1. Selected bond lengths and angles for 1–5 are listed in Table S1. For complexes of 1–5, further details of the crystal structure can be obtained from the http://www.ccdc.cam.ac.uk/deposit, on quoting the depository number CCDC-1420870 for 1, 1420871 for 2, 1420872 for 3, 923460 for 4, and 923461 for 5.
Table 1 Crystal data for 1–5

<table>
<thead>
<tr>
<th>Compound</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C₃₀H₂₆CuN₄O₈</td>
<td>C₇₄H₄₄CoN₁₂O₁₈</td>
<td>C₂₅H₂₁N₄NiO₅</td>
<td>C₅₆H₴₂N₈O₈Zn</td>
<td>C₂₈H₂₃N₄O₅Zn</td>
</tr>
<tr>
<td>Formula weight</td>
<td>706.15</td>
<td>1624.93</td>
<td>516.17</td>
<td>1085.72</td>
<td>560.8</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Triclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>C₂/c</td>
<td>P-1</td>
<td>Monoclinic</td>
<td>P2₁/n</td>
<td>P2₁/n</td>
</tr>
<tr>
<td>a (Å)</td>
<td>24.15(2)</td>
<td>11.573(3)</td>
<td>7.455(6)</td>
<td>10.0940(10)</td>
<td>9.928(2)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>14.463(13)</td>
<td>13.892(4)</td>
<td>17.478(14)</td>
<td>16.5379(8)</td>
<td>16.369(4)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>8.914(8)</td>
<td>14.655(4)</td>
<td>17.024(13)</td>
<td>18.0472(9)</td>
<td>17.650(4)</td>
</tr>
<tr>
<td>α (°)</td>
<td>90</td>
<td>90.251(16)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β (°)</td>
<td>90.251(16)</td>
<td>68.977(4)</td>
<td>101.686(13)</td>
<td>101.0940(10)</td>
<td>99.023(4)</td>
</tr>
<tr>
<td>γ (°)</td>
<td>90</td>
<td>68.800(4)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>3113(5)</td>
<td>1897.2(8)</td>
<td>2172(3)</td>
<td>2745.9(2)</td>
<td>2547.5(10)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Dcalcd (Mg/m³)</td>
<td>1.507</td>
<td>1.422</td>
<td>1.578</td>
<td>1.313</td>
<td>1.462</td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>0.764</td>
<td>0.935</td>
<td>0.941</td>
<td>0.933</td>
<td>1.011</td>
</tr>
<tr>
<td>T(K)</td>
<td>298(2)</td>
<td>293(2)</td>
<td>293(2)</td>
<td>296(2)</td>
<td>296(2)</td>
</tr>
<tr>
<td>Rint</td>
<td>0.0444</td>
<td>0.0313</td>
<td>0.0641</td>
<td>0.0277</td>
<td>0.0250</td>
</tr>
<tr>
<td>Final R indices</td>
<td>0.0762 (0.1812)</td>
<td>0.0544 (0.1395)</td>
<td>0.0553 (0.1341)</td>
<td>0.0476 (0.1280)</td>
<td>0.0574 (0.1738)</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>0.0914 (0.2004)</td>
<td>0.0830 (0.1533)</td>
<td>0.0931 (0.1506)</td>
<td>0.0706 (0.1359)</td>
<td>0.0866 (0.1937)</td>
</tr>
<tr>
<td>Gof</td>
<td>1.037</td>
<td>1.033</td>
<td>0.963</td>
<td>1.090</td>
<td>1.049</td>
</tr>
</tbody>
</table>

Figure 1. (a) Crystal structure of complex 1 (Symmetry codes: A: –x, y, –1/2–z; B: –x, y, 1/2–z; C: 1/2–x, 1/2–y, –z; D: 1/2–x, –1/2+y, 1/2–z; E: x, 1–y, –1/2+z.). (b) The 3D porous [Cu₂(tptc)]₄ networks view along c axis. (c) Schematic view of the 3D frameworks of 1. (d) The unprecedented 3D (4,6)–connected (4²·6⁴)(4²·6⁴·7·8⁸) topology of 1 (green spheres: Cu ions, red spheres: tptc⁻ ligands, olive green bonds: 1,4-bib ligands).

Scheme 2. The diverse coordination modes of two tetracarboxylic acids.

Result and Discussion

Structural Description of [Cu(H₂tptc)(1,4-bidb)]₄ (1). Structural analysis reveals that complex 1 crystallizes in the monoclinic system, space group C2/c. As shown in Fig. 1a, the asymmetric unit consists of a half of Cu²⁺ ion, a half of 1,4-bidb ligand, and a half of H₂tptc⁻ ligands. Each Cu²⁺ ion lies on an inversion centre of a planar quadrilateral geometry (with the τ₄ parameter is 0), tetra-coordinated by two carboxyl O atoms from two H₂tptc⁻ ligands and two N atoms from two 1,4-bidb ligands.
In **1**, H$_2$tpc is partially deprotonated and linked two CuII ions through the monodentate carboxyl groups. The other two protonated carboxyl groups have strong interactions with the CuII ions (Cu-O3D=2.764(5) Å). Thus, the H$_2$tpc$^-$ can be view as a four-connected node with (κ1-κ0)-(κ1-κ0)-(κ1-κ0)-(κ1-κ0)-μ$_d$ coordination mode (Mode I, Scheme 2). CuII ions are connected by H$_2$BDP2 to form a 3D [CuH$_2$tpc]$_n$ framework consisting of 1D channels with 12.952(5) × 8.540(9) Å2 opening along c axis (Fig. 1b). Then the 1D [Cu(1,4-bibbd)]$_n$ chains (Fig. S2) occupied those 1D channels via connecting adjacent CuII ions, finally given 3D net (Fig. 1c). Topology analysis shows that the overall network of **1** features a new 3D (4,6)-connected net with the Schlafli symbol of (42 65)(42 62·7·82) by denoting the H$_2$tpc2 ligands as 4-connected nodes, and CuII ions as 6-connected nodes, respectively (Fig. 1d).16

Figure 2. (a) Crystal structure of complex **2** (Symmetry codes: A: –x, 2–y, 1–z; C: –1+x, y, z; D:1+x, 1+y, –1+z; E: 2–x, 1–y, –z.). (b) The 1D [Co(1,3,5-tib)$_2$]$_n$, chain (the above) and [Co(tpc)$_2$]$_n$, bilayer (the below). (c) The 3D porous frameworks of **3** views along a direction. (d) The interesting 2-fold interpenetrated framework with the (3,3,4,4)-connected (6·82·10)(6·82) topology for 2.

The completely deprotonated tpc$^-$ exhibits (κ1-κ0)-(κ1-κ0)-(κ1-κ0)-(κ1-κ0)-μ$_d$ coordination mode (Mode II) and coordinates four cobalt ions to form a 2D [Co(tpc)]$_n$ bilayer with 1D semicircle channels (diameter is about 11.366(4) Å) (Fig. 2b). While the tripodal 1,3,5-tib acts as the μ$_d$-bridge to connect adjacent Co ions through imidazole N atoms, finally resulting in a 1D [Co(1,3,5-tib)]$_n$, chain with the Co(1)···Co(1) distance being 11.573(0) Å (Fig. 2b). Then the 1D [Co(1,3,5-tib)]$_n$ chains hinged the neighbouring 2D [Co(tpc)]$_n$ bilayers together, finally exhibiting a porous network with two kinds of channels along a axis (Fig. 2c). Two adjacent networks interacted with each other through the hydrogen bonds, which make the interpenetrated supramolecular more stable (Fig. S3).

Topology analysis reveals that complex **2** is a 3D 2-fold interpenetrated framework with the unprecedented (3,3,4,4)-connected (6·82·10)(6·82) topology by simplifying 1,3,5-tib and Co(2) as 3-connected nodes, and Co(1) and tpc$^-$ ligands as 4-connected nodes, respectively (Fig. 2d).

Structural Description of [{Co$_2$(tpc)(1,3,5-tib)(H$_2$O)]$_n$·7H$_2$O}$_n$ (2). Structural analysis reveals that complex **2** crystallizes in the monoclinic space group **P2$_1$/n**. The asymmetric unit consists of two CoIII ions, one tpc$^-$, one 1,3,5-tib ligand, one coordinated, and seven lattice water molecules (Fig. 2a). Co (1) is tetracoordinated by two O atoms from two different tpc$^-$ ligands and two N atoms from two different 1,3,5-tib linkers, exhibiting a distorted tetrahedral geometry (τ$_d$=0.88(8)). Co (2) locates in a similar tetrahedral [CoNO$_3$] coordination environment with the τ$_d$ parameter being 0.79(8), completed by two O atoms from two tpc$^-$ ligands, one O atom from the associated water molecule, and one N atom from one 1,3,5-tib ligand. Besides, the Co-O/N bond lengths span in the range of 1.935(1)-2.023(5) Å, respectively.
ions are bridged by 1,3-bimb linkers to result in a 1D [Ni(1,3-
bimb)]ₙ snake chain, which can be defined as a single left- or
right-handed helix with the Ni···Ni distance being 8.711(4) Å
(Fig. S4). The [Ni₂(qptc)]ₙ sheet cooperated with the 1D
[Ni(1,3-bimb)]ₙ snake chain, finally showing a 2D sheet (Fig.
3c). It is noteworthy that the adjacent sheets interact with each
other through the “lock knot” structure, finally leaving a
2D→3D entangled network (Fig. S5). From the topology
viewpoint, the whole structure of complex 3 can be defined as a

Figure 3. (a) Crystal structure of complex 3 (Symmetry codes: A: 3–x, 1–y, 1–z; C: 1/2+x, 3/2–y, 1/2+z.). (b) The 2D [Ni₂(qptc)]ₙ layer view along a
direction. (c) Schematic view of the 2D sheet of 3 along a direction. (d) (3²·6²·7²)-kmg sheet entangled 3D packing supramolecular structure of 3.

Figure 4. (a) Crystal structure of complex 4 (Symmetry codes: A: –x, –y, 1–z; B: 2–x, 1–y, 1–z; C: 2–x, –y, –z; E: –1/2+x, 1/2–y, –1/2+z.). (b) The 2D
[Zn₂(qptc)]ₙ network with right- and left- handed helix chains. (c) Schematic view of the 3D frameworks of 4 along a direction. (d) The novel 3D (4,4)–
connected 8⁶ net of 4 (green spheres: Zn ions, dark blue spheres: qptc⁻⁻ ligands, olive green bonds: 1,4-bimb ligands).
Structural Description of \{[\text{Zn(qptc)}_n(1,4-bimb)]·3H_2O\}_\alpha (4).
Single-crystal X-ray analysis reveals that 4 crystallizes in monoclinic system, P2/n space group and the asymmetric unit consists of one ZnII ion, a half of qptc4- ligand which lying about independent inversion centre, one 1,4-bimb ligand, and three lattice water molecules (Fig. 4a). Each ZnII ion is tetracoordinated with two O atoms from two different qptc4- ligands, and two N atoms from two different 1,4-bimb linkers, exhibiting distorted tetrahedral coordination geometry (τ\textsubscript{4} = 0.92(4)). The Zn-O/N bond lengths are in the range of 1.9592(18)–2.0175(19) Å.

The H\textsubscript{2}qptc ligand is completely deprotonated in complex 4 and linked four ZnII ions via its four monodentate carboxyl groups, resulting in a 2D \((4^2\cdot6^2)\)-sqil \{\text{Zn(qptc)}_n\}_\alpha sheet with right- and left-handed helices alternately arranged (Fig. 4b). And the ZnII ions bridged by the 1,4-bimb linkers, successfully constructed a 1D \{Zn(1,4-bimb)\}_\alpha wave chain, with the 1,4-bimb separated Zn⋯Zn distance are 13.920(5) and 14.5528(8) Å (Fig. S6). Sharing the ZnII ions, the 2D \{\text{Zn(qptc)}_n\}_\alpha sheets worked by the 1D \{Zn(1,4-bimb)\}_\alpha wave chains, successfully generated an unprecedented (4,4)-connected net with the Schläfli symbol of \(8^6\) by denoting both the qptc4- ligands and ZnII ions to 4-connected nodes (Fig. 4d).

Figure 5. (a) Crystal structure of complex 5 (Symmetry codes: A: -1-x, -y, 1-z; C: -1/2+x, 1/2-y, -1/2+z.). (b) The 2D sheet of complex 5 view along a direction. (c) The 2D 4-connected \(\{3^2\cdot6^2\cdot7^2\}\)-kgm sheet of 5 (green spheres: Zn ions, red spheres: qptc4- ligands, olive green bonds: 1,3-bimb ligands). (d) The 3D supramolecular structure featured by the sheets hinged together through the lock knots.

Table 2 The detailed comparisons of complexes 1–5.

<table>
<thead>
<tr>
<th>Coord./Modes</th>
<th>H\textsubscript{2}qptc motifs</th>
<th>(\tau) or (\tau) parameter</th>
<th>Final Structure and Topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mode I</td>
<td>3D {Cu\textsubscript{4}(H\textsubscript{2}qptc)}_\alpha net</td>
<td>(\tau_4 = 0) for CuI</td>
</tr>
<tr>
<td>2</td>
<td>Mode II</td>
<td>2D {Co\textsubscript{3}(qptc)}_\alpha bilayer</td>
<td>(\tau_4 = 0.88(8)) for CoI, (\tau_4 = 0.79(8)) for CoII</td>
</tr>
<tr>
<td>3</td>
<td>Mode III</td>
<td>2D {Ni\textsubscript{3}(qptc)}_\alpha sheet</td>
<td>(\tau_4 = 0.07(2)) for NiI</td>
</tr>
<tr>
<td>4</td>
<td>Mode IV</td>
<td>2D {Zn\textsubscript{3}(qptc)}_\alpha sheet</td>
<td>(\tau_4 = 0.92(4)) for ZnI</td>
</tr>
<tr>
<td>5</td>
<td>Mode V</td>
<td>2D {Zn\textsubscript{3}(qptc)}_\alpha sheet</td>
<td>(\tau_4 = 0.91(7)) for ZnII</td>
</tr>
</tbody>
</table>

\(\tau_4 = [360°-(\alpha+\beta)]/141°; \tau_4 = \beta/\alpha/60°; \alpha \text{ and } \beta \text{ are the two largest bond angles in the four or five-coordinate complex.}
Syntheses and Structural Comparison. As shown in Scheme 2, in complex 1-5, the deprotonated H₂ptc/H₂qptc ligands all act as μ₄ linkers, connecting four metal ions with monodentate or cheating carboxyl groups, and thus resulted in 2D [M(ptc)]ₙ or 2D [M(qptc)]ₙ sheets. The metal ions as well as the imidazole auxiliary linkers have great influences on the assembly of the final structures: i) the τₓ (τₓ = [360°-(α+β)]/141°) or τᵧ (τᵧ = β/α/60°) parameter of metal ions (Table 2), for four-coordinated metal ions (1, 2, 4, and 5), the Cuᴵᴵ in complex 1 lies in a planar quadrilateral geometry with τₓ = 0, indicating the expanded direction along a plane, rather than the space expanded for 2, 4, and 5. And the Niᴵᴵ in complex 3 lies in a square pyramidal coordination geometry (τᵧ = 0.07(0)), which proved the expanded direction is three dimensional; ii) the imidazole auxiliary linkers act as the bridging or tripodal linkers, holding distinct lengths, coordination modes and flexibilities, adjust themselves by rotating, folding, twisting to satisfy the coordination preferences of different metal ions, given 1D flat [Cu(1,4-bidb)] chain for 1, 1D zigzag [Co(1,3,5-tib)] chain for 2, 1D double helix [Ni(1,3-bimb)] chain for 3, 1D wave [Zn(1,4-bimb)] chain for 4, and 1D double helix [Zn(1,3-bimb)] chain for 5. The synergistic effects of two rectangular organic spacers and imidazole auxiliary linkers make the five CPs obtained, in which a systematic variation exhibited from 3D (4,4)-connected 8⁺ net (4), 3D (4,6)-connected (4²·6²·6⁵·7·8⁴) net (1), [Zn(1,3-bimb)] lock knots featured 2D+2D→3D entangled networks (3 and 5), to 2-fold 3D (3,3,4,4)-connected (6·8²·6⁵·8²·10·6³·8⁴) net (2).

X-ray Powder Diffraction Analyses and Thermal Analyses. In order to check the phase purity of these complexes, the PXRD patterns of title complexes were checked at room temperature. As shown in Fig. S8, the peak positions of the simulated and experimental PXRD patterns are in agreement with each other, demonstrating the good phase purity of the complexes, and the differences of the PXRD patterns may be due to the preferred orientation of the crystalline powder sample. The experiments of thermogravimetric analysis (TGA) were performed on samples of 1-5 under N₂ atmosphere with a heating rate of 10 °C min⁻¹, shown in Fig. S9. For complex 1, the networks remains stable until the temperature up to 320 °C, finally the complex was pyrolyzed with a result of thermal decomposition. For complex 2, the first weight loss at about 100 °C can be attributed to the release of coordinated and lattice water molecules (obsd: 6.3%; calcd: 6.2%). And the second weight loss around 380 °C corresponds to the loss of the organic ligands, finally given some unknown powder. There are also two main stages of weight loss in the sample collapses of complex 3. The first weight loss of 3.71 % below 100 °C is ascribed to the release of lattice water molecules (3.49 %). And then the frameworks exist stably below 350 °C. Above this temperature, the net collapsed with both the ptc⁺ and 1,3-bimb released. In the case of complex 4, the weight loss of 8.83 % from 70 to 150°C is attributed to the loss of lattice water molecules (calc. 9.05 %). The weight loss corresponding to the release of organic ligands starts at 340°C with a result of thermal decomposition. For complex 5, the lattice water molecules loss around 100°C, with the weight loss of 4.96 % (calc. 4.73 %). And then the organic pillars of the frameworks begin to pyrolyze when the temperature up to 360 °C, finally given a result of thermal decomposition.
Photocatalytic Investigation. As we all know, in the coordination architectures, the redox properties of the central metal ions directly determines the efficiency of photocatalysis. The diffuse-reflectance UV-vis spectra reveal the absorption features of complexes 1–3 (Fig. S10), and all spectra consist of absorption components in the UV region. The main intense absorption peaks at 283, 257, and 267 nm for 1, 2, and 3, which should be noted that the charge-transfer transition of complexes 1–3 occurs in the UV region, which may be given a higher photocatalytic activity with UV-light.18 Hence, we selected fresh prepared complexes 1–3 as the catalysts evaluate the photocatalytic activities in the purification of Methylene blue (MB), because the Zn$^{2+}$ ion is difficult to oxidize or reduce due to its d10 configuration. The decomposition of dye methylene blue (MB) was monitored by the characteristic absorption band at 665 nm. As illustrated in Fig. 7, changes in the concentration of MB solution were plotted versus irradiation time. The calculation results show that the degradation efficiency of MB is up to 97.3 % after 2 hours for 1, 77.4 % for 2, 66.8 % for 3, respectively. Under the same conditions, the total catalytic degradation efficiencies of the control experiments under dark and under illumination (without catalyst) after 2 hours are 9.6 % and 28.7 %, respectively (Fig. S11). The photocatalytic investigation shows complex 1 exhibiting relatively good photocatalytic activity than complex 2 and 3 for dye methylene blue (MB) degradation in aqueous solution under UV light, which indicating different metal ions holding distinct photocatalytic activities for their redox properties.19 The possible mechanism for the MB degradation is proposed as described in the previous literature.20 Under the irradiation of UV-Vis light, the organic ligands were induces to produce O or N-metal charge transfer promoting electrons from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). Therefore, the HOMO strongly needs one electron to return to its stable state. Thus, one electron was captured from water molecules, which was oxygenated to generate the ·OH radicals. And then the ·OH active species could decompose the MB effectively to complete the photocatalytic process.

Conclusions

In summary, we successfully obtained five CPs with distinct structures ranging from 3D (4,4)–connected 8^2 net (4), 3D (4,6)-connected (42-6^3-7^4-8^5) net (1), [Zn(1,3-bimb)]$^{2+}$] lock knots featured 2D+2D→3D entangled networks (3 and 5), to 2-fold 3D ($3,3,4,4$)-connected (6 8)2(6^8-8^10)2(68-8^10) net (2) by using two rectangular tetracarboxylates and the imidazole linkers. This study broadens the exploration of the synthetic strategy on CPs construction. The solid-state photoluminesence studies revealed that 4 and 5 exhibit strong blue emission mainly originating from charge transfer between the delocalized π bonds of the aromatic ligands. Moreover, complexes 1–3 shows relatively good photocatalytic activity for dye methylene blue (MB) degradation in aqueous solution under UV light.

Acknowledgements. The work was supported by financial support from the Natural Science Foundation of China (Grant Nos. 21101097, 21451001), key discipline and innovation team of Qilu Normal University.

Notes

The authors declare no competing financial interest.

References

Coligand Syntheses, Crystal Structures, Luminescence and Photocatalytic Properties of Five Coordination Polymers Based on Rigid Tetracarboxylic Acids and Imidazole Linkers

Liming Fan (L. Fan), Weiliu Fan (W. Fan), Bin Li (B. Li), Xian Zhao (X. Zhao) and Xiutang Zhang (X. Zhang)

Five coordination polymers, featuring various 2D sheets or 3D nets, have been assembled from two rectangular tetracarboxylic acids and imidazole linkers.