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Summary 

A silicate-phosphate-glass was placed into a furnace preheated to 1200 °C in order to crystallize 

rod-shaped fluoroapatite crystals. The partially crystalline melt is extruded to align the crystal 

rods, leading to oriented glass-ceramics with anisotropic mechanical properties. These glass-

ceramics are cut parallel and perpendicular to the extrusion direction and treated using chemical 

etching, ion milling and polishing procedures in order to enable electron backscatter diffraction 

(EBSD) measurements. The ability to obtain EBSD-patterns is strongly affected by the crystal 

orientation and the glass-ceramics are shown to be sensitive towards the electron beam and hence 

susceptible to sample modification during EBSD-analyses.    
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1. Introduction  

Glasses and glass-ceramics used as implants for permanent or temporary bone replacements 

usually either form apatite on the surface in contact with the biological environment or already 

contain apatite.1-4 These materials may then directly bond to the human bone without the 

formation of an interconnecting tissue.  

Glasses allowing the crystallization of apatite have been described in the literature.5,6 One 

drawback of these materials is their fairly low mechanical strength of usually below 100 MPa. 

Apatite containing glass-ceramics with aligned, rod-shaped apatite crystals have been prepared 

by the extrusion of a partially crystalline melt.7-13 While the apatite orientation does not lead to an 

anisotropic hardness of the glass-ceramic, anisotropic crack propagation was detected.7 A 

mechanical toughness of up to 1.46 MPa*m-1/2 has been reported perpendicular to the extrusion 

direction while it was only 0.9 MPa*m-1/2 parallel to the extrusion direction.7  

In the past, a crystallographic texture with the c-axes preferably oriented parallel to the extrusion 

direction while the a- and b-axes orientations are randomly distributed has been described using 

X-ray diffraction (XRD),7-11 and texture goniometry.9 The texture is especially relevant because 

the orientation of the apatite crystals inside a biomaterial widely affects the growth of dentine and 

supposedly also that of bone in a biological environment.14,15 This has been shown for the growth 

of dentine on oriented apatite glass-ceramics in mineralizing solutions with the support of a 

leucin-rich amelogenin peptide. The apatite crystals of the dentin grow preferentially in the 

direction of the crystallographic c-axis of the apatite.  

This paper features glasses in the system SiO2/Al2O3/CaO/P2O5/Na2O/K2O/F-. If these glasses are 

heated slowly, a liquid/liquid phase separation occurs which leads to the formation of droplets 
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enriched in F, P and Ca while depleted of Al and Si.12 Secondary droplets inside the primary 

droplets have also been described which contain elevated Al concentrations and may crystallize 

to form AlPO4.
12 The primary droplets crystallized to apatite which then has an approximately 

spherical shape. If, however, these glasses are rapidly heated by transferring them to a furnace 

preheated to 1200 °C, the phase separation is prevented and rod-shaped apatite crystals are 

formed. The aspect ratio of these rods is limited due to intracrystalline Ostwald ripening13; the 

details of the time dependent crystal development at various temperatures have been described 

elsewhere.6,11,13  

During the extrusion of a melt containing these anisotropic crystals, the formation of oriented 

structures is closely related to the occurrence of shear thinning, i.e. non-Newtonian flow behavior 

above a certain shear stress.10,11 Below the threshold where Newtonian behavior is observed, the 

alignment of anisotropic flow units does not take place.10,11 Above the threshold, the morphology 

of the apatite crystals has a large effect on the flow behavior of the melt.10 

Extrusion has also been used to produce oriented glass-ceramics containing mica,16-18 where a 

glass containing plate-like crystals was extruded. In the case of lithium disilicate glass-ceramics, 

orientation is also achieved by extruding the uncrystallized glass and subsequently annealing 

it.18,19 By contrast, extruding the glass used for the apatite formation before the crystallization did 

not result in a subsequent oriented crystal growth in this system.9 

 

Recent studies of oriented glass-ceramics using electron backscatter diffraction (EBSD) in a 

scanning electron microscope (SEM) have shown that this method frequently provides novel 

insights into crystal orientations and textures in these systems. EBSD enables to obtain local 
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orientation information down to the nm scale allowing a much more detailed insight into crystal 

orientations compared to the texture measurement methods noted above.  

Up to now, this method has typically been used to determine the texture in glass-ceramics 

crystallized using localized nucleation, such as surface crystallization21-25 or electrochemically 

induced crystallization.26,27 Here EBSD has shown that surface crystallization is frequently 

initiated by oriented nucleation21,24 while the textures observed after electrochemically induced 

nucleation are rather a result of the experimental setup instead of oriented nucleation or growth 

along an electrical field.26,27  

In this article we apply EBSD to oriented apatite glass ceramics produced by the extrusion of a 

partially crystalline melt. It is the first report featuring EBSD-analyses of extruded glass-

ceramics.  

 

2. Results and Discussion 

 

Figure 1 shows XRD-patterns of samples cut a) parallel and b) perpendicular to the extrusion 

direction. All occurring peaks may be attributed to hexagonal fluoroapatite of the composition 

Ca2(PO4)3F, but the intensities of the XRD-lines depend notably on the cut plane. In agreement 

with the literature,7-11 the peaks attributed to the 002 and 004 planes are absent in pattern a) while 

they are of exaggerated intensity in patter b) indicating a preferred orientation to the crystals with 

their c-axes aligned to the extrusion direction.    

 

Page 5 of 17 CrystEngComm

C
ry

st
E

ng
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t



6 

 

 

 

Figure 1: XRD-patterns of extruded glass ceramics cut: a) parallel and b) perpendicular to the 

extrusion direction. The pattern of JCPDS file 15-0876 representing apatite is shown for 

comparison.  

 

 

Figure 2: SEM-micrographs of cut planes a) parallel and b) perpendicular to the extrusion 

direction. While the EBSD-patterns 1 and 2 are representative of the cut plane a), the patterns 3 

and 4 feature the best patterns obtainable from the sample and originate from elongated crystals 

which are probably not aligned to the extrusion direction. 
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Polished cut planes of extruded glass-ceramics cut a) parallel or b) perpendicular to the extrusion 

direction are presented in Figure 2 along with the EBSD-patterns 1-4 obtained from these 

surfaces. Please note that the pattern quality of crystals cut parallel to their long axes greatly 

exceeds that of crystals cut perpendicular to it. In fact the crystals forming very regular hexagons 

fail to provide any discernible EBSD-patterns independent of whether the final step of sample 

preparation was chemo-mechanical polishing, chemical etching or ion milling. The apatite 

crystals assume the morphology of rods with a hexagonal cross section as visualized by the 

etched surface presented in Figure 3 a). Applying ion beam milling to this surface led to the 

surface presented in Figure 3 b) without significantly increasing the ability to obtain EBSD-

patterns.  

 

 

Figure 3: SEM-micrograph of a) an over etched surface tilted by 70° to offer a 3D impression of 

the apatite crystals in the glass-ceramic and b) the same sample after ion milling.  

 

Figure 4 features a) an SEM-micrograph obtained using a voltage of 20 kV where the origins of 

the EBSD-patterns 1-8 are marked by the positions 1-8, b) an SEM-micrograph obtained using a 

voltage of 2 kV where surface modifications due to EBSD-pattern acquisition are highlighted by 

white arrows (patterns 1, 3 and 4), and c) a forward-scattering-detector (FSD) image obtained 

Page 7 of 17 CrystEngComm

C
ry

st
E

ng
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t



8 

 

 

from the surface. The FSD image is very sensitive to a strong orientation contrast and in this case 

shows that there is very little difference between the backscattering properties of crystals oriented 

perpendicular to each other. The clear difference in the pattern quality of the patterns 1-8 is 

independent from the polishing procedure or the carbon coating as the entire surface was treated 

homogenously. Hence the difficulty to acquire EBSPs is mostly orientation dependent, either due 

to an orientation dependent sensitivity to the surface treatment or due to orientation dependent 

diffraction properties. Orientation dependent backscattering properties can be neglected based on 

the FSD-micrograph. While the patterns 1 and 2 (long axis of the crystal parallel to the surface) 

may be indexed reliably using a material file based on a fluoroapatite of hexagonal symmetry 

((C6h)[6/m], a=9.343 Å, c=6.823 Å), the patterns 3-8 could not be indexed reliably.  

 

Figure 4: SEM-micrographs of a glass-ceramic with a lower degree of orientation obtained using 

the stated parameters. The EBSD-patterns 1-8 were acquired at the locations 1-8. The arrows 

highlight sample modifications caused by the EBSD-pattern acquisition. The FSD-micrograph 

shows no significant difference between the crystals independent of their cut plane.  
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Figure 5: SEM-micrograph (2 kV) of a cut plane parallel to the extrusion direction superimposed 

by a frame indicating where an EBSD-scan was performed. The IQ-map of the entire scan as well 

as the IQ+IPF-map of a data set containing only points CI>0.1 are presented as well as wire 

frames illustrating selected crystal orientations. The distribution of the Euler Angle Φ in a larger 

scan covering 43x92 µm2 is presented below as well as the 0001-pole figure and 0001-texture of 

the data set. 

 

An EBSD-scan was performed on the area framed in the SEM-micrograph of Figure 5. The 

image quality (IQ) map of the unfiltered dataset is presented and areas of interest are circled in 

red. Please note that the elongated crystals appear bright, indicating a relatively high IQ, while 

the locations of crystals cut perpendicular to their long axis actually appear darker than the glass 

matrix. These low IQ-values indicate that the EBSD patterns exhibit very low contrast where no 

bands are detected. If the same experiment is performed using no pattern processing or only the 
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background subtraction, these crystals receive slightly higher IQ-values than the residual glass 

due to their higher density. This effect has just recently been utilized in more detail while using 

the EBSD-camera for electron imaging.28 The IPF+IQ-map of the CI-filtered data set hence only 

contains information on crystals which are oriented with their c-axis somewhat parallel to the 

surface as the wire frames of selected crystals illustrate. The distribution of the Euler Angle Φ, 

the 0001-pole figure (PF) and a 0001-texture calculated from a much larger scan covering an area 

of 43x92 µm2 with a step size of 120 nm are presented below. The angle Φ describes the tilt of 

the c-axis of a crystal from the SEM-stage in this system; Φ=90° indicates a c-axis parallel to the 

surface. The histogram implies that crystals with a c-axis tilted by more than ca. 30° from the 

polished cut plane do not provide reliably indexable EBSD-patterns. While the PF and texture 

show that the c-axes of the crystals are roughly aligned to the extrusion direction, these plots are 

not representative because many crystals showing orientations not matching the described texture 

do not produce EBSPs and hence do not occur in the datasets this analysis is based upon.   

 

Figure 6 a) features a cut plane perpendicular to the extrusion direction after a performed EBSD-

scan. The framed area is presented in greater detail in Figure 6 b) where traces of the electron 

beam can be discerned in the crystals as well as the matrix of the scanned part (right). The IQ-

map of this part of the performed scan is presented in Figure 6 c): while the crystal cut parallel to 

its long axis shows high IQ-values and provided reliably indexable EBSD-patterns, the other 

crystals only show IQ-values slightly higher than the glass matrix and their orientation cannot be 

evaluated. 
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Figure 6: An extruded glass ceramic cut perpendicular to the extrusion direction after a 

performed EBSD-scan: a) SEM-micrograph, b) the framed area in higher detail: scan traces are 

clearly discernible in the right part. c) IQ-map of the apatite crystal cut parallel to its long axis 

and surrounded by apatite crystals cut perpendicular to their long axis as well as residual glass. 

 

If the energy input per volume during an EBSD-scan is increased by e.g. decreasing the step size 

or applying a 2x2 binning instead of the 4x4 binning applied during the scans presented above, 

these glass ceramics are very sensitive to EBSD-pattern degradation which has been proposed to 

be mainly caused by the thermal buildup in the sample29 as these materials have low thermal 

conductivities. Figure 7 presents SEM-micrographs obtained after EBSD-scans had been 

performed with a too high energy input for the glass-ceramic.  

 

 

Page 11 of 17 CrystEngComm

C
ry

st
E

ng
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t



12 

 

 

 

Figure 7: SEM-micrographs acquired after EBSD-scans performed with a to high energy input 

for the material: a) scan traces, b) slight swelling of the glass matrix and c) strong surface 

deformation.  

 

3. Experimental 

A silicate phosphate glass was prepared in batches of 75 g from SiO2 (quartz), Na2CO3, K2CO3, 

CaCO3, Al(PO3)3, Na3AlF6, K3AlF6 and AlOOH·H2O. The raw materials were melted in an 

alumina crucible at 1500 °C for 1 h and the resulting glass was cast into a carbon mold. It was 

then re-melted in a platinum crucible at 1550 °C for 1 h and again cast into a carbon mold. The 

cooled glass was cut into samples which were placed into a furnace preheated to 1200 °C where 

they were held for 1 h. The high heating rate prevented the liquid/liquid phase separation and 

hence resulted in the crystallization of rod-shaped fluoroapatite. The hot, partially crystalline melt 

was extruded from a Nicrofer chamber of an inner diameter of 21.5 mm using a Nicrofer piston. 

Extrusion was performed through a graphite die of 5 mm diameter using a velocity of 1 mm/min 

at temperatures in the range from 675 to 800 °C.  

X-ray diffraction (XRD) was performed using CuKα–radiation in a SIEMENS D5000 

diffractometer.  
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In order to perform Scanning Electron Microscope (SEM) studies, crystallized and extruded 

samples were cut and polished with abrasive slurries down to diamond paste of 1 µm grain size. 

A final finish of 30 min using colloidal silica was applied. Some polished samples were etched 

using a 2% solution of HF/HNO3 (1:1) for 20-40 s. Ion beam milling was performed using Ar-

ions in a BAL-TEC RES 010 mill and an incidence angle of ca. 5°. All samples were contacted 

with Ag-paste and coated with a thin layer of carbon at about 10-3 Pa to avoid surface charging in 

the SEM. 

SEM analyses were performed using a scanning electron microscope (SEM JeolJSM 7001F) 

equipped with an EDAX Trident analyzing system containing a Digiview 3 EBSD-camera. 

EBSD-scans were performed using a voltage of 20 kV and a current of ca. 2.40 nA. The scans 

were captured and evaluated using the software TSL OIM Data Collection 5.31 and TSL OIM 

Analysis 6.2. Unreliable data points were removed in all datasets used for orientation analysis by 

applying a Confidence Index (CI) filter of 0.1 after performing a grain CI standardization. This 

results in only considering orientation solutions which are correct with a probability of at least 

95 %.in EBSD-maps. No further cleanups which actually modify orientations were applied.  

 

4. Conclusion 

EBSD-analyses of the apatite crystals in these extruded glass-ceramics is possible. However, a 

highly orientation dependent ability to obtain EBSD-patterns after all the applied preparation 

techniques severely limits texture analysis. Patterns of sufficient quality for orientation analysis 

could only be obtained from crystals oriented with their c-axes more or less parallel to the cut 

plane with a maximum deviation of roughly ±30°. This is especially noteworthy as the effect may 
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go unnoticed during the analysis of a sample containing randomly oriented apatite crystals but 

would then lead to the false description of a texture.  

However, the partial results obtained using EBSD are in agreement with the results obtained by 

X-ray based methods. The apatite containing glass-ceramics featured in this article are quite 

sensitive to the electron beam and hence susceptible to sample modification during EBSD-

analyses. 
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