This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Periodic and incommensurately modulated phases in (2-methylimidazolium) tetraiodobismuthate(III) thermochromic organic-inorganic hybrid

A. Gągor,* M. Węcławik, B. Bondziór and R. Jakubas

(2-methylimidazolium) tetraiodobismuthate(III) (abbreviated as (2-MIm)BiI₄) hybrid undergoes structural phase transition to incommensurately modulated phase at 308 K. The relative coordinates of the modulation q-vector do not change down to 150 K indicating the stability of the incommensurate crystal packing that may be modeled by the sinusoidal wave of displacements. The transformation is triggered by the deformation of [BiI₄]ₙ chains which entails ordering of 2-MIm⁺ counterions that couple to the anionic substructure via weak hydrogen bond interactions. Differential scanning calorimetry (DSC) and dielectric spectroscopy methods confirm the phase transition at 308 K (I→II). Two dielectric relaxation processes that may be assigned to the dynamics of the polar 2-MIm⁺ cations are present; a low frequency relaxator close to Tc and high frequency one in a wide temperature region over the phase II. The compound shows significant thermochromism characteristic for direct gap semiconductors. DOS calculations together with asymmetric local environment of bismuth ions imply the presence of the stereochemically active bismuth lone pair 6s² electrons in both phases.

Introduction

The possibility of combining the rigidity and stability of inorganic frameworks and diversity of organic molecules into single structure makes organic-inorganic hybrids almost an infinite source of new materials. Among them, Pb²⁺, Sn²⁺, Bi³⁺, Sb³⁺ - metal halide units arranged with various organic counterions appear to be highly attractive candidates for novel functional materials. To date, a great number of them have been extensively studied in order to discover new controllable nonlinear optical materials and polar media [1, 2, 3]. Metal-halide hybrids that bear Pb²⁺, Sn²⁺, Bi³⁺, Sb³⁺ - halide units in combination with organic counter-ions exhibit tremendous structural diversity due to the variety of the anionic substructures that may be adopted by these metal halide salts.

An important role in creation of collective properties of these materials has to be assigned to the nonbonding valence electron pairs around metal centers. Activation of the lone pairs is crucial from the point of view of emerging phase transitions [4]. By inducing cations’ center displacements in their coordination sphere may lead to acentric phases with polar or ferroelectric properties [5, 6]. The inert lone pairs, on the other hand, are attributed to improved transport properties in semiconducting hybrids [7, 8].

The anion substructures comprise of MX₆ octahedra or MX₅ square pyramids that may be linked by edges, corners or faces. The vast number of connections results in numerous polymeric (1D, 2D or 3D) or discrete (0D) units, starting with isolated octahedra and square pyramids through more complex separated clusters, poly-anionic chains and layers. Low dimensional (1D and 2D) substructures enhance physical properties associated with organic and inorganic components such as nonlinear optical response and hyperpolarizability of the cations [9, 10]. Among the family of R₂MₓX₄₋ₜ₊ₙ where R stands for organic cation, M for Sb(III) or Bi(III) and X for Cl, Br, I more than 40 possible anionic forms have been known almost two decades ago [11], among only iso-bismuthates(III) more than 60 compounds have been structurally characterized and about 20 different structural types have been revealed [12 and references therein]. The major factor that induces the formation of various metal-halide networks is templating effect of cations. The dehydration of a iodobismuthate hybrid built up from Bi₄I₁₆ clusters and protonated L-cystine molecules leads to 1D BiI₄ chains and 1D helical molecular chains [13] whereas the dehydration of tris(imidazolium)SbBr₅.H₂O lead to formation of pentakis(imidazolium)Sb₂Br₁₁ ferroelectric with corner shared bicontahedra [14].

The polar properties in organic-inorganic hybrids based on the Sb³⁺ and Bi³⁺ ions (or metal halides MX₃) are usually associated with the organic part of the crystal structures. The long-range order of dipolar organic cations is a source of the spontaneous polarization. However, the anionic frameworks also matter. The ferroelectricity appears in all known R₂MₓX₄₋ₜ crystals that possess only discrete (0D) anionic units [15].
Spontaneous polarization in certain salts, e.g. in (CH$_3$NH$_3$)$_2$Bi$_2$X$_5$, is comparable to this found in tri-glycine sulfate (TGS) family [16]. On the other hand in R$_2$M$_2$X$_6$ connections ferroelectricity seems to be limited to 2D anionic network, despite the fact that four various anionic substructures may be formed from MX$_6$ octahedra [17, 18]. Ferroelectric properties have been observed also for R$_2$MX$_4$ and RMX$_4$ compositions with 1D polymeric connection of polyhedra [19, 20]. The appearance of ferroelectricity in these compounds has been attributed to the deformation of inorganic chains associated with the change of the degree of sterically chemical activity of the Sb$^{3+}$ and Bi$^{3+}$ lone pairs.

The halogenobismuthates(III) and halogenoantimonates(III) that crystallize in MRX$_4$ composition exhibit rich polymorphism. (4-aminopyridinium)SbCl$_4$, which appeared to have ferroelectric properties, undergoes a sequence of phase transitions form C2/c to ferroelectric phase with Cc symmetry at 270 K, and monoclinic P2$_1$/c at 240 K [21]. Polymorphism has been revealed also in other pyridinium or substituted pyridinium analogs as: (PyH)BiCl$_4$ [22], (4-NH$_2$PyH)SbBr$_4$ [23] or (4-NH$_2$PyH)BiCl$_4$ [24] with phase transitions governed by the dynamics of counter-ions anchored in large voids between [MX$_6$]$^+$ chains. The phase transitions have an order-disorder character. They are associated with freezing of thermally induced motions of cations at low temperatures that are weakly bonded to the inorganic framework by the hydrogen bonds.

Despite the distinct number of various crystal structures in R$_2$M$_2$X$_6$(3b+a) hybrids and rich, temperature induced polymorphism among them this is the first report on the polymorphism. The starting materials were commercial (BiO)$_2$CO$_3$ (Fluka, purum 80-82%) and 2-methylimidazole (Aldrich, 99%). (2pMIm)BiI$_4$ crystals were prepared by dissolving stoichiometric compositions with 1D polymeric connection of polyhedra [19, 20]. The appearance of ferroelectricity in these compounds has been attributed to the deformation of inorganic chains associated with the change of the degree of sterically chemical activity of the Sb$^{3+}$ and Bi$^{3+}$ lone pairs.

The halogenobismuthates(III) and halogenoantimonates(III) that crystallize in MRX$_4$ composition exhibit rich polymorphism. (4-aminopyridinium)SbCl$_4$, which appeared to have ferroelectric properties, undergoes a sequence of phase transitions form C2/c to ferroelectric phase with Cc symmetry at 270 K, and monoclinic P2$_1$/c at 240 K [21]. Polymorphism has been revealed also in other pyridinium or substituted pyridinium analogs as: (PyH)BiCl$_4$ [22], (4-NH$_2$PyH)SbBr$_4$ [23] or (4-NH$_2$PyH)BiCl$_4$ [24] with phase transitions governed by the dynamics of counter-ions anchored in large voids between [MX$_6$]$^+$ chains. The phase transitions have an order-disorder character. They are associated with freezing of thermally induced motions of cations at low temperatures that are weakly bonded to the inorganic framework by the hydrogen bonds.

Despite the distinct number of various crystal structures in R$_2$M$_2$X$_6$(3b+a) hybrids and rich, temperature induced polymorphism among them this is the first report on the polymorphism.

The halogenobismuthates(III) and halogenoantimonates(III) that crystallize in MRX$_4$ composition exhibit rich polymorphism. (4-aminopyridinium)SbCl$_4$, which appeared to have ferroelectric properties, undergoes a sequence of phase transitions form C2/c to ferroelectric phase with Cc symmetry at 270 K, and monoclinic P2$_1$/c at 240 K [21]. Polymorphism has been revealed also in other pyridinium or substituted pyridinium analogs as: (PyH)BiCl$_4$ [22], (4-NH$_2$PyH)SbBr$_4$ [23] or (4-NH$_2$PyH)BiCl$_4$ [24] with phase transitions governed by the dynamics of counter-ions anchored in large voids between [MX$_6$]$^+$ chains. The phase transitions have an order-disorder character. They are associated with freezing of thermally induced motions of cations at low temperatures that are weakly bonded to the inorganic framework by the hydrogen bonds.

Despite the distinct number of various crystal structures in R$_2$M$_2$X$_6$(3b+a) hybrids and rich, temperature induced polymorphism among them this is the first report on the polymorphism.

The halogenobismuthates(III) and halogenoantimonates(III) that crystallize in MRX$_4$ composition exhibit rich polymorphism. (4-aminopyridinium)SbCl$_4$, which appeared to have ferroelectric properties, undergoes a sequence of phase transitions form C2/c to ferroelectric phase with Cc symmetry at 270 K, and monoclinic P2$_1$/c at 240 K [21]. Polymorphism has been revealed also in other pyridinium or substituted pyridinium analogs as: (PyH)BiCl$_4$ [22], (4-NH$_2$PyH)SbBr$_4$ [23] or (4-NH$_2$PyH)BiCl$_4$ [24] with phase transitions governed by the dynamics of counter-ions anchored in large voids between [MX$_6$]$^+$ chains. The phase transitions have an order-disorder character. They are associated with freezing of thermally induced motions of cations at low temperatures that are weakly bonded to the inorganic framework by the hydrogen bonds.

Despite the distinct number of various crystal structures in R$_2$M$_2$X$_6$(3b+a) hybrids and rich, temperature induced polymorphism among them this is the first report on the polymorphism.

The halogenobismuthates(III) and halogenoantimonates(III) that crystallize in MRX$_4$ composition exhibit rich polymorphism. (4-aminopyridinium)SbCl$_4$, which appeared to have ferroelectric properties, undergoes a sequence of phase transitions form C2/c to ferroelectric phase with Cc symmetry at 270 K, and monoclinic P2$_1$/c at 240 K [21]. Polymorphism has been revealed also in other pyridinium or substituted pyridinium analogs as: (PyH)BiCl$_4$ [22], (4-NH$_2$PyH)SbBr$_4$ [23] or (4-NH$_2$PyH)BiCl$_4$ [24] with phase transitions governed by the dynamics of counter-ions anchored in large voids between [MX$_6$]$^+$ chains. The phase transitions have an order-disorder character. They are associated with freezing of thermally induced motions of cations at low temperatures that are weakly bonded to the inorganic framework by the hydrogen bonds.

Despite the distinct number of various crystal structures in R$_2$M$_2$X$_6$(3b+a) hybrids and rich, temperature induced polymorphism among them this is the first report on the polymorphism.

The halogenobismuthates(III) and halogenoantimonates(III) that crystallize in MRX$_4$ composition exhibit rich polymorphism. (4-aminopyridinium)SbCl$_4$, which appeared to have ferroelectric properties, undergoes a sequence of phase transitions form C2/c to ferroelectric phase with Cc symmetry at 270 K, and monoclinic P2$_1$/c at 240 K [21]. Polymorphism has been revealed also in other pyridinium or substituted pyridinium analogs as: (PyH)BiCl$_4$ [22], (4-NH$_2$PyH)SbBr$_4$ [23] or (4-NH$_2$PyH)BiCl$_4$ [24] with phase transitions governed by the dynamics of counter-ions anchored in large voids between [MX$_6$]$^+$ chains. The phase transitions have an order-disorder character. They are associated with freezing of thermally induced motions of cations at low temperatures that are weakly bonded to the inorganic framework by the hydrogen bonds.
Fourier maps with maximum 1.08 e/Å³. Basing on these features the split atom model for apical I(2) iodide has been introduced during the refinements at 220 and 150 K. The final refined I(2)/I(21) fractions were identical for both temperatures within the estimated standard uncertainty and equal to 0.75(1)/0.25(1). Disorder of terminal iodides that results in splitting positions is often encountered in halobismuthates(III) [30]. The sections through superspace of electron density maps confirmed continuous harmonic modulation of atoms’ positions. Figure 1 presents the observed (Fo) electron density with modulation wave and difference Fourier map (Fo-Fc) for the atom I(2) which has the highest amplitude of the modulation function. As can be noted the first order harmonics describe well the I(2) modulation and the electron density residuals are low.

Table 1 Selected bond lengths and interatomic distances in (2pMIm)BiI₄ at 330 and 150 K.

<table>
<thead>
<tr>
<th>Bi-I distances</th>
<th>Phase I</th>
<th>Phase II</th>
<th>T=150K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi(1)-I(2)₁</td>
<td>2.9080(6)</td>
<td>2.916(4)</td>
<td>2.879(5)</td>
</tr>
<tr>
<td>Bi(1)-I(2)₂</td>
<td>2.9080(6)</td>
<td>2.916(4)</td>
<td>2.879(5)</td>
</tr>
<tr>
<td>Bi(1)-I(21)₁</td>
<td>2.921(11)</td>
<td>2.882(15)</td>
<td>2.988(7)</td>
</tr>
<tr>
<td>Bi(1)-I(21)₂</td>
<td>2.921(11)</td>
<td>2.882(15)</td>
<td>2.988(7)</td>
</tr>
</tbody>
</table>

Bridging				
Bi(1)-I(1)₁	3.0938(5)	3.0908(9)	3.0650(9)	3.1104(9)
Bi(1)-I(1)₂	3.0938(5)	3.0908(9)	3.0650(9)	3.1104(9)
Bi(1)-I(1)₃	3.2733(5)	3.2630(9)	3.2384(9)	3.2820(9)
Bi(1)-I(1)₄	3.2733(5)	3.2630(9)	3.2384(9)	3.2820(9)

<table>
<thead>
<tr>
<th>Interatomic Bi–Bi distances</th>
</tr>
</thead>
<tbody>
<tr>
<td>In chain</td>
</tr>
<tr>
<td>Bi(1)¹–Bi(1)₄</td>
</tr>
<tr>
<td>Bi(1)¹–Bi(1)⁵</td>
</tr>
<tr>
<td>Between the chains</td>
</tr>
<tr>
<td>Bi(1)¹–Bi(1)₅</td>
</tr>
<tr>
<td>Bi(1)¹–Bi(1)⁶</td>
</tr>
</tbody>
</table>

Symmetry codes (for phase I and a basic structure of phase II): (1) -x,y,-z+1/2; (2) -x,-y+1,-z; (3) x,-y+1,z+1/2; (4) 1+x, y, z (5) 1/2+x, 1/2+y, z (6) 1/5-x, 1/5+y, -z; (7) x, y, 1+z

Bond valence sum for the Bi atom is only slightly higher than expected and oscillates around 3.06 additionally, for all t values it is lower than bond valence calculated for non-modulated structure. Selected bond lengths and interatomic distances in (2pMIm)BiI₄ at 330 and 150 K are presented in Table 1 and 2.

![Fig. 1](image1.png)

Fig. 1 The (x1, x4) section of the (3+1) dimensional superspace at the location of I(2) atom (a) observed electron density (b) difference Fourier map. The step 0.1 e/Å³ was used for negative and positive contours.

![Fig. 2](image2.png)

Fig 2 DSC traces for (2-MIm)BiI₄ (5K/min.).

Results and discussion

High temperature periodic phase and second order phase transition to incommensurately modulated crystal structure

Figure 2 shows DSC traces for (2-MIm)BiI₄ on cooling and heating scans. The calorimetric results clearly reveal the existence of one solid-solid reversible phase transition. The shapes of the peaks as
well as the temperature hysteresis (312 K on heating, 308 K on cooling) imply a first-order character of the transition. The non-modulated structure (phase I) of (2-MIm)BiI₄ consists of polymeric chains of [BiI₄]ₙ i odobismuthate(III) anions and stacks of 2-MIm⁺ counterions. The asymmetric unit contains one Bi atom that occupies C₂ symmetry site, two iodides I(1) and I(2) on general positions and 2-MIm⁺ molecule with site occupancy of 0.5. The cation is dynamically disordered over two equivalent positions that are related by the two-fold axis. Figure 3 presents the crystal packing together with the details of the crystal structure at 330 K in phase I. The polymeric [BiI₄]⁻ anion comprises of distorted BiI₆ octahedra that form one-dimensional zig-zag chains by sharing the cis edges. The chains propagate along [001] direction. The stacks of counter ions are embedded in the voids between the chains. 2-MIm⁺ cations are involved in weak hydrogen bond interactions with I⁻ ions that are too weak to overcome thermally induced in plane rotations. The donor to acceptor distances equal 3.76(1) Å for N₁-H…I₁ x, y, 1-z and 4.06(1) Å for N₂-H…I₂ x, y, z+1/2 bonds.

Fig. 3 (a) Packing of the (2-MIm)BiI₄ crystal structure in phase I (b), mutual arrangement of polymeric cis-[BiI₄]ₙ⁻ chains (c) disorder of the 2-MIm⁺ counterions, both positions are occupied with 50% probability. Hydrogen atoms have been skipped for the picture clarity.

Upon cooling the unit cell contracts in all directions. The largest decrease in distances (≈1.3 % between 330 and 150 K) concerns the c direction. The phase transition manifests in continuous decrease of the monoclinic beta angle and step-like anomaly in a direction with relative decrease equal only to 0.15%. The c lattice parameter along which the chains propagate seems to be undisturbed. It indicates that the main structural differences between the phases should be associated with the modification of mutual distances between the chains. Figure 4 shows the temperature evolution of lattice parameters through the phase transition. Together with the subtle contraction of the unit cell additional diffraction peaks appear in the b direction that can be indexed by the incommensurate propagation vector \(q = 0.575(2)b^* \). The relative coordinates of the modulation q-vector remain almost constant in the whole measured temperature range. The incommensurate phase extends down to 100 K.

Fig. 4 Temperature evolution of lattice parameters and modulation vector q in (2-MIm)BiI₄. The solid lines are the guides for the eyes, the dashed line separates periodic and modulated phase (\(T_c = 308 \) K on cooling).
Incommensurate phase II

The transformation induces two main structural features. The first one concerns the 2-MIm$^+$ counter ions that order in the incommensurate phase. In each cavity the 2-MIm$^+$ adopts one of the two positions that were equivalent in the high-temperature phase. At 220 and 150 K the reorientation movements between the sites are blocked which is confirmed by dielectric response, (see the next section). Figure 5 presents five-fold approximant of the modulated structure. The (3+1) dimensional symmetry operations: the two-fold rotation axis (-x1, x2, -x3+1/2, x4+1/2) and c-glidle plane (x1, x2, -x3+1/2, -x4+1/2) that induces the phase inversion of the modulation wave along the fourth dimension (-x1, -x2, -x3, -x4) give on average the same number of 2-MIm$^+$ cations oriented parallel and antiparallel with respect to each other in the cavities of a real crystal (physical space). Locally, however, on the length-scale of the basic cell, there are the uncompensated regions with different number of ions that are oriented in the same direction. The translations and rotations of cations are also modulated. Thus, despite the fact that the basic cell of the modulated phase is isotypic to the high temperature cell, the symmetry of the latter is broken in modulated phase. A number of I...N contacts appears that could be related to N-H...I hydrogen bond interactions. The possible acceptors are mostly terminal iodides (I(2) and I(21), see Table 2).

Table 2

<table>
<thead>
<tr>
<th></th>
<th>Average</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>I2-N1</td>
<td>3.702(12)</td>
<td>3.346(12)</td>
<td>3.882(11)</td>
</tr>
<tr>
<td>I2-N1a</td>
<td>3.570(11)</td>
<td>3.456(10)</td>
<td>3.784(11)</td>
</tr>
<tr>
<td>I2-N2ii</td>
<td>3.763(12)</td>
<td>3.545(14)</td>
<td>3.853(12)</td>
</tr>
<tr>
<td>I2-N2y</td>
<td>3.804(13)</td>
<td>3.659(11)</td>
<td>4.133(14)</td>
</tr>
<tr>
<td>I21-N1</td>
<td>3.708(15)</td>
<td>3.293(17)</td>
<td>3.872(12)</td>
</tr>
<tr>
<td>I21-N1a</td>
<td>3.667(13)</td>
<td>3.568(12)</td>
<td>3.966(15)</td>
</tr>
<tr>
<td>I21-N2iii</td>
<td>3.591(17)</td>
<td>3.246(16)</td>
<td>4.033(14)</td>
</tr>
<tr>
<td>I21-N2y</td>
<td>3.959(17)</td>
<td>3.610(15)</td>
<td>4.390(15)</td>
</tr>
</tbody>
</table>

Symmetry codes (for basic cell): (i) -x,-y+1,-z; (ii) -x,y,-z+1/2; (iii) -x,-y,-z+1/2 (iv) x,-y,z+1/2

The changes in cationic substructure are only a fingerprint of much serious structural modifications that concern the anionic framework.

Fig. 5 The view of the five-fold approximant of the modulated structure along the c direction at T=150 K. 2-MIm$^+$ counter-ions are ordered in the modulated phase.

Fig. 6 Sinusoidal waves of displacements for (a) Bi (b) I(1) and (c) I(2) atoms at 150 K.
The second and the main feature of transformation is a collective effect which is a sinusoidal displacement of bismuth and iodide atoms from their high-temperature positions (Figure 6). The apical iodides I(2) exhibit the largest shifts perpendicular to the chains with maximal amplitude of 0.32 Å, whereas bridging I(1) atoms move distinctively in all directions with the largest shifts along the chains. I(1) atoms ‘follow’ bismuth displacements that reach the amplitude of 0.22 Å along the z direction. The first-order components of the modulation wave of Bi displacement in the b direction are constrained to 0 due to the symmetry restrictions. Figure 7 illustrates the evolution of mutual Bi-I distances within the single octahedron for different t values. The picture exposes another characteristic feature of the modulated phase. For every t value there are six different Bi-I distances, which implies that the bismuth coordination sphere in modulated phase has C1 symmetry that is lower compared to C2 in phase I. The atoms displacements affect the shape of the structural voids as well as spatial orientation of the chains that are significantly distorted that is illustrated in Figure 8.

Fig. 7 (a) Bi-I distances and bond valence sum for BiI3+ (BV) for different t values in Phase II. The dashed lines stand for the non-modulated values (b) the chains of [BiI4]n• for t=0 (red) and t=0.6 (yellow), for t=0 the displacement ellipsoids are drawn, I(21) atom has been skipped for the picture clarity.

In (BiI4)n chains there are three types of Bi-I bonds, namely: bridging across from terminal bond, terminal across from bridging bond and bridging across from bridging bond. Due to the trans effect [31] that occurs in halobismuthates(III) and haloantimonates(III) the shortest bonds are found for terminal bonds across from the bridging bonds and the longest are the bridging bonds across from terminal bonds. In (2-MIm)BiI4 this trend is also observed. In the high temperature phase the difference between bridging across from terminal and terminal bonds is equal to 0.365 Å. This value is comparable to the differences in bond lengths in other iodobismuthates(III) with polymeric [BiI4]n chains. In [C2H9N2]BiI4 2H2O [32] the difference is equal to 0.423 Å, in [C10H15N2]BiI4 0.397 Å [33], in [C8H13N2]BiI4 0.349 Å [34] and in [C9H10 N1]BiI4 0.339 Å [35]. It is notable that the longer the bridging bonds the shorter the terminal are. Additionally, in all compounds the real values differ from theoretically calculated distances [36, 37]. The calculations resulted in 2.987 Å for terminal across from bridging bond and 3.130 Å for bridging across the terminal bonds in [BiI4]n anion, whereas in the real crystals the distances range from 2.891-2.915 Å for terminal bonds and 3.190-3.314 Å for bridging across from terminal bonds.

Fig. 8 (a) The view of the modulated crystal structure at T=150 K (five-fold approximant). The green and the blue chains are shifted along c direction relative to each other, the average Bi-Bi distances are drawn (b) distortion of the crystal voids which accommodate counter-ions in modulated phase.

In the modulated phase of (2-MIm)BiI4 the Bi-I(1) bond lengths oscillate around non-modulated distances for all t values whereas the Bi-I(2) bonds are longer compared to non-modulated values for the most values of t. As a result, the bond valence sum of Bi at low temperature is better fitted to the expected value of 3 for BiI3+ compared to the parent phase. The maximum Bi-I(2) distance reaches 2.948(3) Å for Bi-I(2) (2.989(7) Å for I(21)) and approaches the theoretically calculated value of 2.987 Å for terminal across for
the bridging bonds. The elongation of the Bi-I(2)/I(21) values may be a sign of the presence of hydrogen N-H...I bonds in the modulated phase. As it is listed in Table 2 possible bonding distances may be mostly found for I(2) and I(21) terminal iodides.

Intra-chain Bi···Bi distances oscillate within the range of 4.6198(6)-4.6500(6) Å and are shorter from the corresponding distance of 4.6686(2) Å noted in the high temperature phase. Modulation preserves the “trans” effect for BipI bonds, although the maximum and minimum values for Bi···I(1) bridging and Bi···I(2) terminal distances do not coincide exactly. Max. Bi···I(2) and min. Bi···I(1) distances are observed for different t values. It should be noted however that the intra-chain bonds in modulated phase do not differ considerably from their high temperature counterparts. Much significant deviations are observed between the chains. In modulated phase their relative spatial arrangement is altered since the Bi atoms shift along the c axis (perpendicularly to the modulation wave) with maximum amplitude of 0.22 Å causing mutual sliding of the chains along the c axis. The chains may be shifted up to ~0.4 Å relative to each other inducing substantial variations within the inter-chain Bi···Bi distances that may be crucial from the point of view of the semiconducting properties of this material. The shortest distance Bi(1)···Bi(10) between the chains (see Figure 8) which is equal to 9.0934(4) Å in Phase I can assume values ranging from 8.8042(12) Å to 9.2348(12) Å in the modulated structure, see also Table 1.

An important role in creation of collective properties of halobismuthates(III) and haloantimonates(III) play the lone pair electrons (6s² and 5s²) around the metal centers. The presence of the stereochemically active electron lone pair leads to an off-center displacements of the cation from the centroid of its coordination polyhedron while the change of the lone pair stereochemical activity with temperature may induce phase transitions and give rise to non-centrosymmetric crystal structures. Lone pair distortions are primarily driven by the cation-anion interactions [38] that concern mixing of cation s and anion p states mediated by the cation p states [39]. The asymmetric electron distribution exhibits strong anion dependence. Halobismuthates(III) reveal rather weak lone pair stereoactivity especially for the large iodide counter-ions thus the vast number of polar phases is encountered for the chlorides and bromides. Weak lone pair stereoactivity results in weakly distorted octahedra. The degree of distortion depends, however, also on the coordination environment and on the nature of organic counter-ions. As an example the coordination of Sn²⁺ in one dimensional SnI₆⁻ chains may change from regular octahedra to square pyramid when different counter ions are embedded into the crystal structure [40]. Alternatively BiI₅²⁻ units may form 0D structures with square pyramidal coordination of iodides and connected regular bi-octahedra Bi₂I₁₀⁺ [41]. In (2-MIm)BiI₄ coordination of the Bi³⁺ is significantly distorted. The terminal I(2) iodides that coordinate only to one bismuth ion are strongly bonding and attract the cation toward them, thus the bond distance is contracted compared to other atoms. This entails the bonds on the opposite side I(1) to become longer. The distance Bi···I(2) to the terminal iodide is equal to 2.9080(1) Å at 330 K and in modulated phase may be reduced to 2.879(5) Å at T=150 K. For comparison, the shortest distance in square pyramidal coordination of Bi³⁺ that is opposite to the active lone pair is equal to 2.872 Å [41]. Taking into account the criteria defining the activity of the lone pairs through the distortions of the bismuth(III) coordination sphere reported in [42] the difference (the difference in the shortest primary and secondary distances) and (the difference between the shortest distance in the coordination polyhedron of the compound under study and the known shortest distance in this element’s compounds that reveal the highest lone pair stereoactivity) it may be inferred that in both phases of (2-MIm)BiI₄ bismuth lone pair is active. The change of its activity may be a trigger factor for the structural phase transition to modulated phase.

Dielectric properties

Temperature dependence of the real and imaginary parts of the complex electric permittivity is presented in Figure 9. Over the low temperature phase (II) two dielectric relaxation processes are disclosed. The higher frequency relaxator with the dielectric increment (1.4-1.6) is seen over a wide temperature range, whereas the lower frequency one (3.5-5) is observed in a narrow temperature range, close to Tc. The higher frequency process seems to be strongly distributed (polydispersive character). In order to characterize the dynamic dielectric properties of (2-MIm)BiI₄ the Cole-Cole formalism has been applied. The temperature dependence of the macroscopic relaxation time (τ) and Arrhenius relation are given in Supplementary Materials (see Figure S2). The activation energy E_a of the thermally activated process was estimated to be ca. 126 and 3.5 kJ/mol for the lower frequency and the higher frequency relaxator, respectively. In the high temperature phase there is observed significant increase of the electric conductivity contributing to the complex electric permittivity, thus it was impossible to estimate the dielectric parameters of the expected relaxation process. Nevertheless, taking into account the frequency
characteristic of ε'' (T,ω) visible above 312 K this process may appear in the kilohertz frequency region.

Thermochromism and electronic properties of (2-MIm)BiI₄

(2-MIm)BiI₄ is a thermochromic material. It continuously changes the color with temperature from dark red at 330 K to light orange at 150 K that is illustrated in Figure 10. The color change is a clear indication of a modification of the electronic structure near the Fermi level. Thermochromic behavior in iodobismuthates(III) is primary linked with changes in interatomic Bi–I and Bi–Bi distances [45] since the absorption of the Bi³⁺ (6s²) ion strongly depends on the crystal structure. It varies from ultraviolet to red [44] and depends on the coordination of Bi³⁺, the more asymmetrical surrounding, the broader the absorption band [45]. Recently it has been shown that the degree of bonding between I⁻ intra-anionic pairs may influence the electronic structure as well [46]. Generally, the color changes are related mostly to the modification of anionic part because the cation electronic levels have only minor effects on the electronic structure around the Fermi level [12]. Calculated band gaps of discrete iodobismuthate polyedra and 1-D polymeric structures increase on shortening of Bi–Bi and Bi-I interatomic distances. Additionally, the energy gaps of anionic chains are lower than those of isolated ions [12, 43] thus iodobismuthates(III) experience a blue shift with reduction of dimensionality of anionic units.

Optical gap extracted from UV-vis spectroscopy at ambient temperature using the Kubelka-Munk method [47] is equal to 2 eV and is higher than band gap calculated by DFT methods (1.66 eV at 330 K). The tendency to underestimate the band gap is symptomatic in electronic band structure calculations and has been well documented in previous studies [48]. As expected from the brightening of the crystal from dark red to orange, the temperature decrease leads to an increase in the band gap. Though the change is rather slight (1.66 eV at 330K, 1.70 eV at 150K) the correct trend is preserved.

Because the cation-anion interactions are the driving force behind the lone pair distortions the DFT calculations have been performed for (2-MIm)BiI₄ for both phases to track the activity of the bismuth lone electron pair. The incommensurate structure was modeled by five-fold approximant of the modulated phase in P1 symmetry. Figure 11 illustrates the total density of states (DOS), exemplified by the grey area, with atomic-resolved DOS, in which the blue curve represents the states of I⁻ and the red curve represents the states of Bi³⁺. It is clear that in both phases the states near the Fermi level are dominated by I⁻, whereas both type of atoms make a significant contribution to the conduction band and lower part of the valence band. The main difference between the phases concerns the upper region of the valence band. In the incommensurate phase the contribution of bismuth states in total DOS increases denoting increase in mixing of I⁻ and Bi³⁺ states. This picture reminds the density of states calculated for the scheelite and fergusononite form of BiVO₄ [49]. In the scheelite structure the bismuth lone pair is inert whereas it is active for the fergusononite structure and the main differences in the density of states between the two concern the bottom half of the valence band with only a minor changes close to the Fermi level. Increased contribution of bismuth states in total DOS in incommensurate phase may be a sign of the change in activity of the bismuth lone pair electrons after the phase transition. This interpretation is consistent with structural data that show greater deformation of the bismuth coordination geometry in the modulated structure.

Summary

(2-MIm)BiI₄ undergoes structural first-order phase transition to incommensurately modulated phase at 308 K. The symmetry changes form C2/c to C2/c(0,1/2,0), the modulation wave vector q=0.575(2)b*. The incommensurate crystal packing is stable down to 100 K. The modulation particularly disturbs the spatial arrangement of the [BiI₄]⁻ chains which leads to deformation of the crystal voids and in consequence to ordering of 2-MIm⁺ counterions. The change of the lone pair activity may play the foreground role in the phase transition mechanism. The mixing of bismuth and iodide electronic states as well as asymmetrical coordination geometry of Bi³⁺ indicates that the 6s² lone pair electrons are active in both phases. (2-MIm)BiI₄ shows significant thermochromism that is consistent with increase of electronic band gap with temperature lowering, calculated by DFT methods.

Acknowledgements

Part of the research (synthesis, DSC and dielectric measurements) was supported by the National Science Centre (Poland) under grant No.
Crystal data and structure refinement results for (2-MIm)BiI₄:

- Experimental: C4 H7 N2 Bi I4, formula weight: 799.70, temperature 300 K (phase I)
- Empirical formula: C4 H7 N2 Bi I4, formula weight: 799.70, temperature 150 K (phase II)
- Wavelength: 0.71073 Å, crystal system monoclinic, space group C2/c, Unit cell dimensions a=13.7359(8) Å, b=13.0043(8) Å, c=7.8727(4) Å, β=94.636(6)°, volume 1401.66(14) Å³, Z=4, Calculated density 3.894, absorption coefficient 21.943 Å⁻¹ nm⁻¹, F(000) 1360, Crystal size: 0.15 x 0.12 x 0.10 mm,
- X-ray data collection: 6987/1342 [R(int)=0.0374], completeness to 2θ=29.78°, limiting indices h≤18, k≤18, l≤7, reflections collected/unique: 150 K (phase II)
- Data collection was done at T=220 and 150 K for the structure solution.
- Main and satellite reflections were separated and indexed using the DataRed software. An absorption correction was applied using the multi-scan approach implemented by ADSYM.

Crystal and structure refinement:

- **Phase I**
 - 330 K
 - Empirical formula: C4 H7 N2 Bi I4, formula weight: 799.70, temperature 330 K, Wavelength: 0.71073 Å, crystal system monoclinic, space group C2/c
 - Unit cell dimensions a=13.7359(8) Å, b=13.0043(8) Å, c=7.8727(4) Å, β=94.636(6)°, volume 1401.66(14) Å³, Z=4, Calculated density 3.894, absorption coefficient 21.349, F(000) 1360, Crystal size: 0.15 x 0.12 x 0.10 mm,
 - Calculated density 3.894, absorption coefficient 21.943 Å⁻¹ nm⁻¹, F(000) 1360, crystal size: 0.15 x 0.12 x 0.10 mm, θ range for data collection: 2.9 to 29.78°, limiting indices h≤18, k≤18, l≤7, reflections collected/unique: 1360, wR2 = 0.0343, R indices R1 = 0.0261, wR2 = 0.00533, R indices (all data, R=100(I)) R1 = 0.0360, wR2 = 0.0551, Largest diff. peak and hole: 0.939 and -1.383 e/Å³.

- **Phase II**
 - 150 K
 - Empirical formula: C4 H7 N2 Bi I4, formula weight: 799.70, temperature 150 K, Wavelength: 0.71073 Å, crystal system monoclinic, space group C2/c
 - Unit cell dimensions a=13.7359(8) Å, b=13.0043(8) Å, c=7.8727(4) Å, β=94.636(6)°, volume 1401.66(14) Å³, Z=4, Calculated density 3.894, absorption coefficient 21.943 Å⁻¹ nm⁻¹, F(000) 1360, Crystal size: 0.15 x 0.12 x 0.10 mm, θ range for data collection: 2.9 to 29.78°, limiting indices h≤18, k≤18, l≤7, reflections collected/unique: 1360, R indices R1 = 0.0261, wR2 = 0.00533, R indices (all data, R=100(I)) R1 = 0.0360, wR2 = 0.0551, Largest diff. peak and hole: 0.939 and -1.383 e/Å³.

Dielectric measurements:

The complex dielectric permittivity, \(\varepsilon^*(\omega) = \varepsilon'_\infty + \frac{\varepsilon'_0 - \varepsilon''_\infty}{1 + i\omega\tau} \), was measured between 100 and 360 K by the Agilent 4284A Precision LCR Meter in the frequency range between 2 kHz and 2 MHz. The overall error was less than 5%. The pressed-powder pellets deposited with silver conducting glue were used. The sample before measurements was kept at 350 K and blown dry with dry nitrogen for 1 h. The dielectric measurements were carried in a controlled atmosphere (N₂).

The complex electric permittivity was modeled with the Cole-Cole function:

\[
\varepsilon^*(\omega) = \varepsilon'_\infty + \frac{\varepsilon'_0 - \varepsilon''_\infty}{1 + (i\omega\tau)^{-\alpha}}
\]

where \(\varepsilon'_0 \) and \(\varepsilon'_\infty \) are the low and high frequency limits of the complex dielectric permittivity, respectively, \(\omega \) is angular frequency, \(\tau \) is the macroscopic relaxation time and the \(\alpha \) parameter represents a measure of the distribution of the relaxation time. The activation energy \(E_a \) was calculated according to the Arrhenius relation:

\[
\tau = C \exp \left(\frac{E_a}{kT} \right)
\]

References:

[38] P. Kubelka and F. Munk, Ein Beitrag zur Optik der Farbanstriche, 1931, 12, 593
Incommensurately modulated crystal structure of (2-methylimidazolium) tetraiodobismuthate(III) thermochromic organic-inorganic hybrid.