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Synthesis of a series of new N-oxyamide-linked glycoglycer-

olipids and their assembly with gold nanoparticles for the 

receptor-targeting imaging and drug delivery are reported. 

Glycolipids are known to play crucial roles in a variety of im-

portant biological processes such as cell-cell interactions, viral 

and bacterial infections, activation and modulation of the im-

mune system, signal transduction and cell proliferation.1 Glyco-

lipids are composed of one or several monosaccharide residues 

linked by a glycosidic bond to a hydrophobic moiety, such as 

an acylglycerol (termed glycoglycerolipids – GGLs) or a 

ceramide (termed glycosphingolipids – GSLs). While the de-

sign of glycolipid mimics has been a useful strategy in drug 

discovery,2-4 we5 and others6-8 have also demonstrated the in-

teresting biological activities of synthetic glycolipids. Modifi-

cations have been made on the substitution and variation of the 

glycosyl moiety, the configuration and nature of the anomeric 

bond, the polar moieties of the ceramide or glycerol, and the 

length and location of the lipid chains. 

Recently, we have been interested in the N-oxyamide-

modified compounds because of their improved metabolic 

stability than the amide-linked counterparts,9 and their interest-

ing secondary structures produced by intramolecular H-bonding 

in N-oxyamide-linked peptides.10 We have developed a meth-

odology for the synthesis of N-oxyamide-linked glucoglycer-

olipids, by replacing the ester group in GGLs by an N-

oxyamide, as new analogues of both GGL and GSL.11 With 

continuing interest in N-oxyamide-modified biomolecules,12-20 

we report here the synthesis of a new series of galactoglycer-

olipids and glucoglycerolipids. Considering their amphiphilic 

properties and cellular targeting ability, the synthesized glyco-

glycerolipids have been used to self-assemble with a gold na-

noparticle (AuNP). The produced AuNPs coated with galacto-

glycerolipids have been proven effective for receptor-targeting 

hepatocellular imaging and drug delivery (Fig. 1). 

 
Fig. 1 Structure of the N-oxyamide-linked glycoglycerolipids used for bio-tests 

and schematic illustration of the self-assembly of a SH-PEG@AuNP with 17 for 

the receptor-targeting fluorophore/drug delivery. 

The galactoglycerolipids were prepared from D-galactose 

pentaacetate and (S)-1,2-di-O-benzyl-glycerol 1 according to 

our previous strategy.11 The D-galactose pentaacetate was con-

verted to galactosyl bromide, which was then treated with ben-

zylated glycerol 1 catalysed by HgBr2 and Hg(CN)2 in acetoni-

trile to give the β-D-galactopyranoside 2 in 75% yield (Scheme 

1). Hydrogenolysis followed by a selective silylation gave 

alcohol 4. Then, a Mitsunobu reaction with PhthN-OH 

smoothly produced the key N-phthaloyl oxyamine 5 in 97% 

yield. Subsequently, desilylation was carried out with catalytic 

AcCl in MeOH (instead of TBAF which led to partial 

deacetylation products). Then, a coupling with palmitic acid 

gave galactolipid 7, and the phthaloyl group was removed by a 

controlled hydrazinolysis (1.1 equiv. at 0 °C) to avoid 

deacetylation. Acylation of oxyamine 8 with different fatty 

acids produced the N-oxyamide-linked galactolipids 9-13 in 

good yields. The NH signals appeared in the range of 8.81-8.87 

ppm on the 1H NMR spactra in CDCl3 for these compounds. 
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Scheme 1 Synthesis of galactoglycerolipids.  

To obtain the deprotected galactoglycerolipids, we have tried dif-

ferent deacetylation conditions. The acetyl groups can be removed 

with 12 equivalents of hydrazine at 50 °C in EtOH, leading to the 

desired galactolipids 14-18. Surprisingly, deacetylation of com-

pounds 9 and 10 under Zemplan condition (Na/MeOH) gave the 

intramolecular transacylation products 19 and 20 in excellent yields, 

but this condition cleaved all the ester bonds of compound 12, af-

fording galactolipid 21.  

Using the similar protocol, we also prepared glucoglycerolipids 

with a single lipid chain by hydrazinolysis of a previously pre-

pared O-phthalimido glucoglycerol 22.11 A subsequent cou-

pling with fatty acids followed by removal of TBS and Zem-

plan deacetylation afforded the glucoglycerolipids 27-29 

(Scheme 2). 
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Scheme 2 Synthesis of glucoglycerolipids. 

With the N-oxyamide-linked glycoglycerolipids in hand, we tested 

their ability to self-assemble with an SH-PEG coated gold nanoparti-

cle (AuNP),21 producing a new class of glycoglycerolipid-based 

functional AuNPs. The glyconanoparticle formation was probably 

because of the insertion of amphiphilic glycolipids to the SH-PEG 

coated core-shell AuNP.21 Galactolipid 17 was used because of its 

suitable lipid chain length and the targeting ability of galactose for 

hepatocellular receptors.22-26 Shown in Fig. 2a are the scanning 

electron microscopic images of the AuNP and its ensemble with 17 

(CNAu). Both AuNP and CNAu were observed to be well dispersed, 

whereas the addition of a galactose-selective peanut agglutinin (PNA) 

caused aggregation of CNAu. This is in agreement with previous 

reports on the aggregation of glyco-AuNPs caused by sugar-lectin 

recognition.27-30 CNAu was determined to have good stability by a 

long-term incubation in a serum system (Fig. S1). 

 
Fig. 2 (a) Scanning electron microscopic (SEM) images of AuNP, CNAu and 

CNAu with PNA (0.3 µM) (Scale bar: 50 µm). UV-vis absorption spectra of 

CNAu in the presence of (b) increasing PNA (0-0.3 µM) and (c) PNA or other 

proteins including the mannose-selective lens culinaris lectin, GalNAc-selective 

soybean agglutinin, GlcNAc-selective wheat germ agglutinin, bovine serum 

albumin and pepsin (0.05 µM each). (d) Dynamic light scattering of (1) AuNP, (2) 

CNAu and (3) CNAu with PNA (0.3 µM). 

The aggregation was also corroborated by dynamic light scattering; 

the size of CNAu drastically increased in the presence of PNA (Fig. 

2d and Fig. S2). A large difference in Zeta potential was observed 

between AuNP and CNAu (Fig. S3), suggesting the presence of 17 

on the gold nanoparticles. The loading concentration of galactoglyc-

erolipid 17 was determined to be 21.6 µg/mg AuNP by an an-
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throne/sulfuric acid method (Fig. S4). UV-vis spectroscopy suggests 

that the absorption band of CNAu gradually red-shifted (which is a 

signature of AuNP aggregation)27-30 in the presence of increasing 

PNA (Fig. 2b), but not other unselective proteins (Fig. 2c). These 

data suggest the biospecificity of the CNAu. To test the generality of 

the glyco-AuNP formation with N-oxyamide-linked glycoglycer-

olipids, the mono-lipid galactoglycerolipid 21, mono-lipid gluco-

glycerolipid 28 and a previously synthesized di-lipid glucoglycer-

olipid 3011 (Fig. 1) were used. Likewise, we observed that the ab-

sorption band of the formed glyco-AuNPs red-shifted with a selec-

tive lectin in a concentration-dependent manner (Fig. S5). The limit 

of detection of the di-lipid AuNPs was found to be lower than the 

mono-lipid counterparts (Fig. S1). 

 
Fig. 3 (a) Fluorescence imaging of Hep-G2 (human liver cancer), HeLa (human 

cervix cancer) and A549 (human lung cancer) cells with DCM (1 µM) and 

DCM@CNAu (1/0.1 µM) (Scale bar: 100 µm; cell nucleus were stained by 

Hoechst 33342). Fluorescence quantification of different cells treated with (b) 

DCM and (c) DCM@CNAu. (d) Relative mRNA level of ASGPr of different 

cells determined by real-time quantitative polymerase chain reaction (***P < 

0.001). Normalized viability of different cells treated with (e) HCPT alone (1 

µM), (f) HCPT@CNAu (1/0.1 µM) and (g) CNAu alone (0.1 µM). 

Next, we tested the ability of CNAu for hepatocellular imaging 

and drug delivery considering the selective recognition between 

galactose and the asialoglycoprotein receptor (ASGPr) on hepato-

cytes.21-25 A red-emitting dicyanomethylene (DCM, Fig. S6)31 was 

used to load CNAu for the fluorescence imaging of Hep-G2 (human 

liver cancer cell line) using HeLa (human cervix cancer cell line) 

and A549 (human lung cancer cell line) as control. We observed that, 

while DCM alone (Fig. 3a and 3b) and DCM@AuNP (i.e. DCM 

loaded with bare SH-PEG coated AuNP, Fig. S6) produced a similar 

level of fluorescence after incubation with different cells, association 

of DCM with CNAu (DCM@CNAu) largely enhanced the fluores-

cence imaging of the resulting material for Hep-G2 (Fig. 3a and 3c). 

This result is in agreement with the ASGPr expression level of the 

cells as determined by real-time quantitative polymerase chain reac-

tion (Fig. 3d). Then, we used an anticancer drug, hydrocamptothecin 

(HCPT), to test the receptor-targeting drug delivery ability of CNAu. 

Interestingly, while a short-term (15 min) incubation of HCPT (Fig. 

3e) or CNAu (Fig. 3g) alone did not induce cell death, the associa-

tion of the drug with glyconanoparticle led to an evident suppression 

of the cell viability of Hep-G2, but not that of HeLa and A549 (Fig. 

3f). We also determined that the receptor-targeting HCPT delivery 

was both concentration- and time-dependent (Fig. S7). These data 

suggest the promise of galactoglycerolipid-coated AuNPs for target-

specific theranostics. 

In summary, we have synthesized a series of N-oxyamide-linked 

glycoglycerolipids, which could be used to form a new type of gly-

co-AuNP capable of receptor-targeting cell imaging and drug deliv-

ery. This study provides an insight into the construction of glyco-

materials for target-specific disease theranostics.32 
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