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Current virtual screening tools are fast, but reliable scoring is 

elusive. Here, we present the ‘SQM/COSMO filter’, a novel scoring 

function featuring quantitative semiempirical quantum 

mechanical (SQM) description of all types of noncovalent 

interactions coupled with implicit COSMO solvation. We show 

unequivocally that it outperforms eight widely used scoring 

functions. The accuracy and chemical generality of the 

SQM/COSMO filter make it a perfect tool for the late stages of 

virtual screening. 

Despite the enormous advances in method development for 

structure-based in silico drug design, reliable predictions of the 

structures (docking) and affinities (scoring) of protein–ligand 

(P–L) complexes still remain an unsolved task.1 A plethora of 

scoring functions (SFs) have been devised by utilising 

experimental data for regression analyses, by constructing 

knowledge-based potentials, or based on physical laws.2-3 As 

none of the SFs is general enough to perform equally strongly 

for a diverse set of P–L complexes, utilising several SFs at once 

(consensus scoring) holds promise.4 Regression-analysis and 

knowledge-based approaches to scoring are trained on a set of 

P–L complexes and rely on variable master equation terms. 

Their validity is limited to complexes similar to the training set. 

In principle, this problem has been overcome in physics-based 

methods. Because of computational cost, preference has been 

given to molecular mechanics (MM) methods, such as the 

combination of MM interaction energies with implicit solvation 

free energy terms (generalised Born, GB, or Poisson-

Boltzmann, PB) to estimate affinities.2 Additionally, the wide 

coverage of organic chemical space in the GAFF (general 

AMBER force field)5 has made the parameterisation of ligands 

for MM straightforward. However, an explicit description of 

quantum mechanical (QM) effects in P–L interactions, such as 

charge transfer, polarisation, covalent-bond formation or σ-

hole bonding, was missing. QM methods, which describe these 

effects qualitatively better than the energy functions used in 

MM-based SFs, were thus introduced into computational drug 

design.6,7 Recent developments in QM methods and algorithms 

as well as the availability of a powerful computing 

infrastructure have paved the way to apply them for P–L 

complexes in numerous setups: linear scaling or efficient 

parallelisation of semi-empirical QM (SQM) methods,7-10 

QM/MM,7,8,11,12 DFT-D3 on truncated P–L complexes13 or 

various fragmentation methods.11,14 Specifically, AM1, RM1, 

PM6 or DF-TB SQM methods have been used7-9,12,15 as such or 

with empirical corrections for dispersion, hydrogen- and 

halogen-bonding16 to describe the P-L noncovalent 

interactions. Merz et al. pioneered this area by introducing a 

QM-based SF (QMScore), a combination of the AM1 SQM 

method with an empirical dispersion (D) and the PB implicit 

solvent [Eq. 1].17 The method was useful for describing 

metalloprotein–ligand binding, but further corrections were 

needed, especially for a quantitative treatment of dispersion 

and hydrogen bonding.10  

 

)1.('

int EqSTGGEScore w

confsolv ∆−∆+∆∆+∆=

 
 

Equation 1. A general physics-based SF. The terms are: the gas-phase interaction 

energy (ΔEint), the change of solvation free energy upon complex formation (ΔΔGsolv), 

the change of conformational ‘free’ energy (ΔG’wconf) and the change of entropy upon 

ligand binding (-TΔS). 

Our approach is systematic. Using accurate calculations in 

small model systems as a benchmark, we developed 

corrections for SQM methods that provide reliable and 

accurate description of a wide range of noncovalent 
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interactions including dispersion, hydrogen and halogen 

bonding.16 Coupled with the PM6 SQM method18, the resulting 

PM6-D3H4X approach is applicable to wide chemical space and 

does not require any system-specific parameterisation. We use 

it here to calculate the ΔEint term. Subsequently, we compared 

MM-based (PB or GB) and QM-based (COSMO19 or SMD) 

implicit solvent models and found the latter group to be more 

accurate.20 These are therefore used for the ΔΔGsolv term. 

These two dominant terms, ΔEint and ΔΔGsolv, are at the heart 

of our SQM-based SF.15 We have demonstrated its generality 

in various noncovalent P–L complexes, such as aldose 

reductase or carbonic anhydrase and moreover extended it to 

treat covalent inhibitor binding (Refs. 15, 21, 22).  

In this work, we adapt our SQM-based SF to make it usable in 

virtual screening on the basis of our previous experience. By 

taking the two dominant terms only, ΔEint and ΔΔGsolv, we 

define the ‘SQM/COSMO filter’ energy. Its performance is 

tested here against eight widely used SFs. GlideScore XP 

(GlideXP)23, PLANTS PLP (PLP)24, AutoDock Vina (Vina)25, 

Chemscore (CS)26, Goldscore (GS)27 and ChemPLP24 are 

empirical, regression-based functions which use different 

terms to describe vdW contacts, lipophilic surface coverage, 

hydrogen bonding, ligand strain, and desolvation. The Astex 

Statistical Potential (ASP)28 is a knowledge-based potential. 

The classical physics-based AMBER/GB SF combines the ff03-

GAFF MM force fields with GB implicit solvent.5,29 

The goal is ‘cognate docking’30, i.e. the ability to identify 

sharply the known native X-ray P–L binding pose from a set of 

decoy structures generated by docking (Figure 1). To 

understand our results in detail, we have not opted for 

treating them in a statistical manner31 as in the pose decoy test 

sets available.32 Instead we cautiously selected four unrelated 

difficult-to-handle P–L systems, which comply with strict 

criteria for the selection of crystallographic structures for 

docking (details in SI).33 These systems are: acetylcholine 

esterase (AChE, PDB: 1E66)34, TNF-α converting enzyme (TACE, 

PDB: 3B92)35, aldose reductase (AR, PDB: 2IKJ)36 and HIV-1 

protease (HIV PR; PDB: 1NH0)37. For the latter, the protonation 

of the active site is inferred from ultra-high resolution X-ray 

crystallography. Based on these P–L crystal structures, we have 

created a set of non-redundant poses (2,865 in total) by 

docking with four popular docking programs (Glide, PLANTS, 

AutoDock Vina and GOLD) coupled to seven widely used SFs23-

28 (Figure 1, Table S2). 

All the poses were re-scored by all nine SFs. For the seven 

regression- and knowledge-based SFs, we used the 

recommended protocols. For the two physics-based SFs, only 

hydrogens and close contacts were relaxed by the AMBER/GB 

method. RMSD of the poses relative to the crystal were 

measured (details in S1.6). The scores were normalised and 

are shown relative to the score of the crystal pose. 

 

 

 

 

 

 
Figure 1. The ligand poses generated by the four docking programs. Ligand poses are 

color-coded by RMSD. 

The identification of the X-ray pose as the minimum-free-

energy structure is an unambiguous criterion for the 

performance of any SF. The ideal behaviour of such a score vs. 

the RMSD curve (Figure 2) is characterised by the positive 

values of energies for decoy poses. Small deviations (negative 

energies for very small RMSD values) are acceptable and might 

be explained by inaccuracies of the crystal structure. This 

condition is met by the SQM/COSMO filter, unlike the other 

SFs (Figure 2). The numbers of false-positive solutions as well 

as the maximum RMSD (RMSDmax) from the X-ray pose within a 

defined interval of the normalised score quantify the virtually 

ideal behaviour of the SQM/COSMO filter in comparison to the 

other SF. 

 

 
Figure 2. The plots of normalised scores against RMSD values for all four P–L systems.  
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Table 1: The numbers of false-positive solutions, i.e. solutions that are scored better than the X-ray pose and have RMSD > 0.5 Å. 

 Scoring function 

   Glide PLANTS AutoDock Gold 

 SQM/COSMO AMBER/GB XP PLP Vina ASP CS GS ChemPLP 

AChE 0 0 4 12 0 2 3 0 0 

AR 0 1 67 0 10 1 0 1 0 

TACE 39 171 181 294 63 56 49 78 111 

HIV PR 0 0 98 0 7 0 2 1 8 

Total 39 172 350 306 80 59 54 80 119 

Table 2: The maximum RMSD [Å] within all the poses in the defined range of the relative normalised score 

 Scoring function 

   Glide PLANTS AutoDock Gold 

 SQM/COSMO AMBER/GB XP PLP Vina ASP CS GS ChemPLP 

 Maximal RMSD within a window of 5 of the normalised Score 

AchE 0.47 0.57 2.13 0.78 0.78 1.78 1.43 1.14 0.78 
AR 0.19 0.19 7.54 1.14 3.54 2.32 1.15 2.21 1.49 

TACE 1.91 4.76 3.02 2.91 7.13 2.01 1.54 2.44 2.40 
HIV PR 0.94 0.94 17.26 12.60 11.62 1.00 1.01 12.60 11.62 

Average 0.88 1.62 7.49 4.61 5.77 1.78 1.28 4.60 4.55 
 

The number of false positives is lowest for the SQM/COSMO 

filter, even zero for three P–L systems (Table 1). CS and ASP 

perform slightly worse. AMBER/GB performs satisfyingly well 

for three systems but yields 171 false positives for TACE. For 

AChE, all the SFs perform satisfyingly well. For AR and HIV PR, 

GlideXP generates the highest number of false positive 

solutions and also shape-wise the free energy landscape looks 

ill-defined (Figure 2). In the case of AR, a plateau of negative 

relative scores is observed for GlideXP. The hardest case is the 

TACE metalloprotein. Here, all the SFs produce false-positive 

solutions but to a different extent. The SQM/COSMO filter 

performs best, followed by CS. This example in particular 

shows the strength of an electronic-structure theory 

description of P–L binding. The presence of the metal cation in 

this protein and the associated charge-transfer effects 

between the ligand and the cation are not adequately 

described by classical force-fields or statistical potentials, but 

they are well represented by the SQM/COSMO filter. 

The second criterion, RMSDmax, is shown for the interval of the 

normalised relative scores below 5 (Table 2). The SQM/COSMO 

filter shows the lowest RMSDmax of 0.88 Å on average. CS 

follows with 1.28 Å on average. ASP and AMBER/GB satisfy the 

condition of an averaged RMSDmax up to 2 Å. AMBER/GB, 

however, fails in the difficult case of TACE with RMSDmax of 

4.76 Å. Analogous analyses at greater intervals have revealed a 

similar ordering of the SFs (Table S4). 

The SQM/COSMO filter enables us not only to recognise the 

correct binding pose (RMSD below 2 Å) but also to go beyond 

this limit and evaluate even small changes in the geometry of 

the ligand binding.  

The price for such a high accuracy is the increased 

computational time requirements. The SQM/COSMO filter is 

ca. 100-times slower than the statistics- and knowledge-based 

SFs and about 10-times slower than the classical physics-based 

AMBER/GB. However, compared to the standard SQM-based 

SF, it is ca. 100-times faster. The speed can be further 

enhanced by parallelisation. 

To summarise, we have pushed the limits of the accuracy of 

SFs to judge the energetics of P–L noncovalent interactions. 

Based on our development and extensive experience with 

SQM-based scoring function21, the SQM/COSMO filter has 

been introduced. It features two dominant terms to describe 

P–L interaction, namely the ΔEint term at the PM6-D3H4X level 

for gas-phase noncovalent interactions and the ΔΔGsolv term at 

the COSMO level for implicit solvation. We showed previously 

that both these methods are very accurate at a reasonable 

speed.16,20 The SQM/COSMO energy is calculated in four 

unrelated P–L complexes. The SQM/COSMO filter is compared 

to eight widely used SFs, which are statistics-, knowledge- or 

force-field-based. The SQM/COSMO scheme exhibits a 

superior performance as judged by two criteria, the number of 

false positives and RMSDmax. In contrast to standard SFs, no 

fitting against data sets has been involved. Furthermore, it 

offers generality and comparability across the chemical space 

and no system-specific parameterisations have to be 

performed. The time requirements allow for calculations of 

thousands of docking poses as we have demonstrated in this 

pilot study. We propose the SQM/COSMO filter as a tool for 

accurate medium-throughput refinement in later stages of 

virtual screening or as a reference method to judge the 
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performance of other scoring functions. The proof of concept 

that reliable QM calculations can be now performed for tens of 

thousands of large biochemical entities opens way to progress 

in closely related disciplines such as materials design.  
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