ChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemcomm

ChemComm

COMMUNICATION

Superior catalytic activity derived from two-dimensional Ti₃C₂ precursor towards the hydrogen storage reaction of magnesium hydride[†]

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Yongfeng Liu^{a,b}, Hufei Du^a, Xin Zhang^a, Yaxiong Yang,^a Mingxia Gao^a, Hongge Pan^{a,*}

www.rsc.org/chemcomm

The superior catalytic effects derived from a 2D Ti₃C₂ (MXene), synthesized by the exfoliation of Ti₃AlC₂ powders, towards the hydrogen storage reaction of MgH₂ were demonstrated. The 5 wt% Ti₃C₂-containing MgH₂ releases 6.2 wt% H₂ within 1 min at 300 °C and absorbs 6.1 wt% H₂ within 30 s at 150 °C, exhibiting excellent dehydrogenation/hydrogenation kinetics.

Magnesium hydride (MgH₂) has attracted intense interest as one of the most promising candidates for reversible hydrogen storage because of its high hydrogen capacity (7.6 wt%), good reversibility and low cost.¹ Unfortunately, reversible hydrogen storage with MgH₂ suffers from high operating temperatures and sluggish reaction kinetics that severely hinders its practical utilization, especially for mobile applications. Over the past few decades, numerous efforts have been devoted to overcoming these barriers through alloying, catalysing and nanostructuring.²⁻⁴ It has been proven that the introduction of catalysts, including transition metals (i.e. Ti, Nb, V, Co, Mo, Fe, Mn, Ni and Ce) and their compounds, to MgH₂ is quite effective in reducing the operating temperature and enhancing the reaction kinetics of hydrogen storage.^{3,5} Among these developed catalysts, Ti-based compounds have been found to possess very high activity.⁶⁻⁹ Cui et al.⁷ designed a multi valent Ti-containing Mg composite that starts releasing H₂ at approximately 175 °C, and the hydrogen release amounts to 5 wt% within 15 min at 250 °C. Shao et al.⁸ reported that TiH_2 is also a good catalytic additive to improve the hydrogen storage kinetics of MgH₂. Anastasopol et al.⁹ successfully synthesized Mg-Ti nanoparticles by spark discharge generation that show a

distinct reduction in the enthalpy of formation for hydride (-45 ± 3 kJ mol⁻¹). In addition to Ti-based species, nanoscaled metalcarbon composites are also a widely studied class of additives for further enhancement of the hydrogen sorption kinetics of MgH₂.¹⁰⁻¹³ Liu et al.¹¹ disclosed that the porous 5 wt% Ni@rGOcontaining MgH₂ rapidly desorbs 6.0 wt% H₂ within 10 min at 300 °C. Wang et al.¹² reported that a 10 wt% TiN@rGO-doped MgH₂ sample begins releasing hydrogen at approximately 167 °C, and 6.0 wt% hydrogen is released within 18 min, when isothermally heated at 300 °C. More encouragingly, Tan and co-workers¹³ demonstrated that the Mg₉₅Ni₅-TiO₂/MWCNT system absorbed 5.6 wt% H₂ within 60 s at 100 °C and released 6.08 wt% $\rm H_2$ within 600 s at 280 °C. The synergetic effects of metallic nanoparticles and carbon are believed to be responsible for the high catalytic activities of nanoscaled metal-carbon composites, which improve the hydrogen storage properties of MgH_2 .¹⁰⁻¹³

Recently, MXenes, a new class of 2D early-transition-metal carbides, have been successfully synthesized by exfoliation of ternary carbides, nitrides, or carbonitrides (MAX phase).^{14,15} The exfoliation process uses HF to selectively etch the A layers from the MAX phase and is accompanied by the surface replacement of OH and F groups. MXenes with a particular layered structure show promise for use as an anode material for Li-ion batteries.¹⁶ Considerations based on the similarity between MXenes and metal-carbon nanostructure composites reasonably suggest that the 2D Ti₃C₂ could possess superior catalytic activity towards the hydrogen storage reaction of MgH₂. Herein, we conduct the first attempt to promote the catalytic function of 2D Ti₃C₂ as a novel catalyst precursor for the reversible hydrogen storage behaviours of MgH₂.

The layered Ti_3C_2 was synthesized by the exfoliation of Ti_3AlC_2 with an HF solution for 72 h at room temperature. XRD (Fig. 1) proved the formation of Ti_3C_2 , which was accomplished by selectively removing Al from Ti_3AlC_2 , through the disappearance of the strongest diffraction peak of Ti_3AlC_2 at 2ϑ = 39° and the shift of the (002) and (004) peaks to lower angles.¹⁴ SEM observations indicated that the Ti_3C_2 basal

^a State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China. E-mail:

mselyf@zju.edu.cn, Fax: +86-571-87952615 ^{b.} Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China

Telectronic supplementary information (ESI) available: Material preparation and characterization; comparison of de-/hydrogenation kinetics of MgH₂ with various Ti-based catalysts; EDS of as-prepared Ti₃C₂; Isothermal de-/hydrogenation curves of pristine MgH₂; cycling performance of MgH₂-5 wt% Ti₃C₂; Kissinger plots of MgH₂ and MgH₂-5 wt% Ti₃C₂; XRD of as-milled MgH₂-20 wt% Ti₃C₂; SEM image and EDS of MgH₂-5 wt% Ti₃C₂. Se DOI: 10.1039/x0xx00000x

Communication

Fig. 1 XRD patterns of Ti_3AIC_2 and as-prepared Ti_3C_2 . The inset is an SEM image of Ti_3C_2 .

planes were effectively separated following the HF treatment and exhibit a multilayer morphology, as shown in the inset of Fig. 1. EDS analysis further revealed that the resultant product was composed mainly of Ti and C and contained a small amount of O and F, which is attributed to the replacement of Al layers with OH and/or F (Fig. S1, ESI⁺).

The as-prepared layered Ti_3C_2 was used as a catalyst precursor to improve the hydrogen storage properties of MgH₂. Five samples of MgH₂-x wt% Ti_3C_2 (x = 0, 1, 3, 5 and 7) were prepared by ball milling under 50 bar hydrogen for 24 h. Fig. 2a shows the volumetric release curves of the as-prepared MgH₂-x wt% Ti_3C_2 samples. As expected, adding small amounts of Ti_3C_2 significantly lowered the dehydrogenation temperatures with respect to MgH₂. The operating temperature for the rapid dehydrogenation of the MgH₂-5 wt% Ti_3C_2 composite was reduced from 278 °C (pristine MgH₂) to 185 °C, representing a

Fig. 2 Non-isothermal (a) and isothermal (b) dehydrogenation curves of the $MgH_2\text{-}x$ wt% Ti_3C_2 samples.

ChemComm

93 °C reduction. Further increasing the Ti₃C₂ content to 7 wt% caused the onset dehydrogenation temperature to decline slightly to 180 °C. Meanwhile, an approximately 3% decrease in the dehydrogenation capacity, from 7.2 wt% to 7.0 wt%, was also observed because of the dead weight of Ti₃C₂. When considering the observed effects to both the operating temperature and the hydrogen capacity, it is suggested that MgH₂-5 wt% Ti₃C₂ represents the optimal concentration. This configuration released approximately 7.1 wt% hydrogen with an onset temperature of 185 °C and a terminal temperature of 350 °C, upon dynamic heating. Further isothermal measurements presented remarkably enhanced kinetics for the release of hydrogen from the MgH₂-5 wt% Ti₃C₂ sample. As shown in Fig. 2b, the MgH₂-5 wt% Ti₃C₂ sample liberated approximately 5.0 wt% hydrogen within 10 min at 250 °C. However, no appreciable hydrogen release was detected for the pristine MgH₂ under identical conditions (Fig. S2, ESI⁺). When hydrogen desorption was performed at 300 °C, the MgH₂-5 wt% Ti₃C₂ sample released approximately 6.2 wt% hydrogen within only 1 min, while more than 80 min was required for pristine MgH₂ to release the same amount. Therefore, the dehydrogenation rate of MgH₂ is significantly improved (ca. 80 times faster) by the presence of the 2D Ti_3C_2 .

The effects of Ti₃C₂ on the hydrogen storage reversibility of MgH₂ were further evaluated by hydriding the fully dehydrogenated sample under 50 bar hydrogen pressure. Fig. 3a shows the non-isothermal hydrogenation curves for the dehydrogenated pristine MgH₂ and MgH₂-5 wt% Ti₃C₂ samples. It was observed that the dehydrogenated MgH₂-5 wt% Ti₃C₂ sample began absorbing hydrogen at room temperature, and the hydrogen uptake amounted to 5.5 wt% at 100 °C, which is distinctly superior to the uptake of pristine MgH_2 (< 1 wt%). While heating to 180 °C, approximately 6.7 wt% hydrogen was added to the MgH₂-5 wt% Ti₃C₂ complex, which exhibited good reversibility. The isothermal hydrogenation experiments showed that the dehydrogenated MgH₂-5 wt% Ti₃C₂ sample absorbed approximately 3.0 wt% hydrogen within 150 s at temperatures as low as 50 °C (Fig. 3b). However, under identical conditions, less than 0.5 wt% hydrogen was taken up

Fig. 3 Non-isothermal (a) and isothermal (b) hydrogenation curves of the dehydrogenated $MgH_2\text{-}x$ wt% Ti_3C_2 samples.

ChemComm

by the dehydrogenated pristine MgH₂ (Fig. S3, ESI⁺). At 150 °C, the dehydrogenated MgH₂-5 wt% Ti₃C₂ sample could take up 6.1 wt% hydrogen within 30 s, whereas only 4.2 wt% was stored by the dehydrogenated MgH₂ sample, even when the dwell time was extended to 2000 s. By analysing the tangent slope of the linear region of the hydrogen uptake at 150 °C, the rate constant for MgH_2 -5 wt% Ti_3C_2 was estimated as 23.09 wt% min⁻¹, which is approximately 115 times greater than that of the pristine MgH_2 sample (0.20 wt% min⁻¹). Apparently, the presence of Ti_3C_2 is also quite beneficial to the MgH₂ hydrogen absorption process. Further cycling measurements exhibited good stability over the first 10 cycles with a 6.4 wt% reversible capacity (> 95% capacity retention) for the MgH₂-5 wt% Ti_3C_2 composite (Fig. S4, ESI⁺). More importantly, the catalytic efficiency of Ti₃C₂ in enhancing the dehydrogenation/hydrogenation kinetics of MgH₂ exceeds most of the currently known Ti-based materials, as shown in Table S1 (ESI⁺).^{10,12,17} The apparent activation energy (E_a) was calculated as 98.9 kJ mol⁻¹ for the release of hydrogen from the MgH_2 -5 wt% Ti₃C₂ composite, which is a 36% reduction relative to that of the pristine MgH₂ (155.1 kJ mol⁻¹) (Fig. S5, ESI⁺). This explains the significantly reduced dehydrogenation temperatures and favourable dehydrogenation kinetics and is possibly attributable to the unique layered structure of Ti_3C_2 .

To understand the role played by Ti_3C_2 during the dehydrogenation chemical process, the structures and morphologies of composite samples were examined by XRD, SEM and XPS. MgH₂-5 wt% Ti_3C_2 samples were collected after ball milling and after full dehydrogenation. As shown in Fig. 4(a), the XRD profile of the as-milled MgH₂-5 wt% Ti_3C_2 composite displays reflections typical of β -MgH₂. Moreover, the MgO phase was also identified; its dominant peak was visible at 2ϑ = 42.8°. It is possible that this phase originated from the reaction between MgH₂ and the –OH that is distributed on the surface of Ti_3C_2 after washing, as seen in Fig. S1 (ESI⁺). However, it is noteworthy that no Ti- and C-

Fig. 4 (a) XRD patterns of the MgH₂-5 wt% Ti₃C₂ sample before and after dehydrogenation, (b) EDS mapping results of the as-milled MgH₂-5 wt% Ti₃C₂ sample, and (c, d) Ti 2p and C 1s XPS spectra of Ti₃C₂ and Ti₃C₂-containing MgH₂ samples at different states.

Communication

containing phases were detected by XRD, even when the level of Ti_3C_2 was increased to 20 wt% (Fig. S6, ESI⁺). This phenomenon is likely due to the poor crystallization of Ti₃C₂ and/or a chemical reaction between Ti₃C₂ and the MgH₂ matrix. To reveal the existing state of Ti_3C_2 , EDS and XPS analyses were further conducted, and the results are presented in Fig. 4(b-d). EDS mapping results (Fig. 4(b)) display a relatively homogeneous distribution of Ti and C in the Ti₃C₂containing MgH₂ sample, which remains nearly unchanged after dehydrogenation (Fig. S7, ESI⁺). As shown in Fig. 4(c), XPS peak fitting indicates that the Ti 2p spectrum of pristine Ti₃C₂ can be resolved into four sets of $2p_{3/2}-2p_{1/2}$ spin-orbit doublets at 454.6/460.3 eV, 456.4/461.5 eV, 457.0/462.4 eV and 458.8/464.4 eV that correspond to Ti-C, Ti^{2+} , Ti^{3+} and TiO_2 , respectively.¹⁸ A small amount of TiO₂ is likely originated from the reaction between ${\rm Ti}_3{\rm C}_2$ and the –OH caused by the local heat generated during HF treatment of MAX phase as reported previously.¹⁹ After ball-milling Ti_3C_2 with MgH₂, only the peaks assignable to Ti^{0} (453.7/459.8 eV)²⁰ and Ti^{2+} (456.4/461.5 eV) were observed along with the disappearance of the peaks of Ti-C, Ti^{3+} and TiO_2 . Meanwhile, the absence of Ti-C peaks was also identified in high-resolution C 1s XPS spectrum of Ti₃C₂containing MgH₂ sample after ball milling.²¹ Here, the appearance of the Ti^0 peaks indicates that the Ti_3C_2 was reduced to metallic Ti during ball milling. The in situ formed metallic Ti facilitates the dissociation and recombination of molecular hydrogen on its surface, consequently improving the dehydrogenation kinetics of MgH₂ as has been reported previously.22

After dehydrogenation, the hexagonal Mg phase was unambiguously identified in the XRD profile (Fig. 4(a)), along with an absence of the θ -MgH₂ phase. XPS results exhibited a quite identical spectrum to that of the as-milled sample (Fig. 4(c)), representing the preservation of the metallic Ti and Ti²⁺ states in the dehydrogenated product, that is, the metallic Ti and Ti²⁺ keep stable during dehydrogenation. Moreover, SEM revealed distinctly reduced particle sizes for the MgH₂-5 wt% Ti₃C₂ composite after 10 uptake/release cycles (Fig. S8), which is indicative of a pulverization process. This observation explains the progressive decrease in the onset of the dehydrogenation temperature for MgH₂-5 wt% Ti₃C₂ with cycling, as shown in Fig. S4(b) (ESI⁺).

In summary, the 2D Ti₃C₂ (MXene) synthesized by the exfoliation of the MAX phase of Ti₃AlC₂ exhibited superior catalytic effects as a catalyst precursor towards the hydrogen storage reaction of MgH₂. The onset of the dehydrogenation temperature for the MgH₂-5 wt% Ti₃C₂ sample was 185 °C, which marks a 93 °C reduction relative to the pristine sample. At 300 °C, approximately 6.2 wt% H₂ rapidly evolved from the MgH₂-5 wt% Ti₃C₂ composite within 1 min of heating. More importantly, the dehydrogenated sample initiated hydrogen absorption at room temperature, and the hydrogen uptake reached 6.1 wt% H₂ within 30 s at 150 °C. The dehydrogenation/hydrogenation kinetics of the Ti₃C₂-containing MgH₂ are superior to those samples doped with other Ti-based materials. The unique layered structure and the *in situ* formed metallic Ti are likely the most important reasons

for the high catalytic activity of Ti_3C_2 , which manifests in a reduction of the operating temperature and an enhancement of the reaction kinetics for hydrogen storage in MgH₂.

We gratefully acknowledge financial support received from the National Natural Science Foundation of China (51222101, 51171170), the Research Fund for the Doctoral Program of Higher Education of China (20130101110080,20130101130007), Zhejiang Provincial Natural Science Foundation of China (LR16E010002) and from the Fundamental Research Funds for the Central Universities (2014XZZX003-08, 2014XZZX005).

Notes and references

- B. Peng, J. Liang, Z. L. Tao and J. Chen, J. Mater. Chem., 2009, 19, 2877-2883; K. F. Aguey-Zinsou and J. R. Ares-Fernández, Energy Environ. Sci., 2010, 3, 526-543; I. P. Jain, C. Lal and A. Jain, Int. J. Hydrogen Energy, 2010, 35, 5133-5144; F. Schüth, B. Bogdanović and M. Felderhoff, Chem. Commun., 2004, 20, 2249-2258.
- M. Zhu, Y. S. Lu, L. Z. Ouyang and H. Wang, *Materials*, 2013, 6, 4654-4674; J. Huot, G. Liang and R. Schulz, *Appl. Phys. A*, 2001, 72, 187-195; S. Orimo and H. Fujii, *Appl. Phys. A*, 2001, 72, 167-186; E. Akiba, *Curr. Opin. Solid State Mater. Sci.*, 1999, 4, 267-272; B. Sakintunaa, F. Lamari-Darkrimb and M. Hirscher, *Int. J. Hydrogen Energy*, 2007, 32, 1121-1140.
- C. J. Webb, J. Phys. Chem. Solids, 2015, 84, 96–106; N. Bazzanella, R. Checchetto and A. Miotello, J. Nanomterials, 2011, 2011, 1-11; R. A. Varin, L. Zbroniec, M. Polanski and J. Bystrzycki, Energies, 2011, 4, 1-25.
- H. Y. Shao, G. B. Xin, J. Zheng, X. G. Li and E. Akiba, Nano Energy, 2012, 1, 590-601; Y. Jia, C. H. Sun, S. H. Shen, J. Zou, S. S. Mao and X. D. Yao, Renewable Sustainable Energy Rev., 2015, 44, 289-303; P. E. de Jongh and P. Adelhelm, ChemSusChem, 2010, 3, 1332-1348; T. K. Nielsen, F. Besenbacher and T. R. Jensen, Nanoscale, 2011, 3, 2086-2098; W. Y. Li, C. S. Li, H. Ma and J. Chen, J. Am. Chem. Soc., 2007, 129, 6710-6711; F. Y. Cheng, Z. L. Tao, J. Liang and J. Chen, Chem. Commun., 2012, 48, 7334-7343; Y. S. Au, M. K. Obbink, S. Srinivasan, P. C. M. M. Magusin, K. P. de Jong and P. E. de Jongh, Adv. Funct. Mater., 2014, 24, 3604-3611.
- M. Ismail, Int. J. Hydrogen Energy, 2014, **39**, 2567-2574; J. Cui, J. W. Liu, H. Wang, L. Z. Ouyang, D. L. Sun, M. Zhu and X. D. Yao, J. Mater. Chem. A, 2014, **2**, 9645-9655; J. G. Yuan, Y. F. Zhu and L. Q. Li, Chem. Commun., 2014, **50**, 6641-6644; L. Z. Ouyang, J. J. Tang, Y. J. Zhao, H. Wang, X. D. Yao, J. W. Liu, J. Zou and M. Zhu, Sci. Rep., 2015, **5**, 10776.
- M. Y. Song, S. N. Kwon, H. R. Park and J. L. Bobet, Int. J. Hydrogen Energy, 2011, 36, 12932-12938; N. Mahmoudi, A. Kaflou and A. Simchi, Mater. Lett., 2011, 65, 1120-1122; P. Vermeulen, E. F. M. J. van Thiel and P. H. L. Notten, Chem.-Eur. J., 2007, 13, 9892-9898; J. Lu, Y. J. Choi, Z. Z. Fang, H. Y. Sohn and E. Rönnebro, J. Am. Chem. Soc., 2009, 131, 15843-15852.
- 7 J. Cui, H. Wang, J. W. Liu, L. Z. Ouyang, Q. G. Zhang, D. L. Sun, X. D. Yao and M. Zhu, J. Mater. Chem. A, 2013, 1, 5603-5611.
- 8 H. Shao, M. Felderhoff, F. Schüth and C. Weidenthaler, Nanotechnology, 2011, 22, 235401.
- 9 A. Anastasopol, T. V. Pfeiffer, J. Middelkoop, U. Lafont, R. J. Canales-Perez, A. Schmidt-Ott, F. M. Mulder and S. W. H. Eijt, *J. Am. Chem. Soc.*, 2013, **135**, 7891-7900.
- 10 Y. Jia, L. Cheng, N. Pan, J. Zou, G. Q. Lu and X. D. Yao, Adv. Energy Mater., 2011, 1, 387-393; X. D. Yao, C. Z. Wu, A. J. Du,

J. Zou, Z. H. Zhu, P. Wang, H. M. Cheng, S. Smith and G. Q. Lu, J. Am. Chem. Soc., 2007, **129**, 15650-15654.

- 11 G. Liu, Y. J. Wang, F. Y. Qiu, L. Li, L. F. Jiao and H. T. Yuan, *J. Mater. Chem.*, 2012, **22**, 22542-22549.
- 12 Y. Wang, L. Li, C. H. An, Y. J. Wang, C. C. Chen, L. F. Jiao and H. T. Yuan, *Nanoscale*, 2014, **6**, 6684-6691.
- 13 Y. J. Tan, Y. F. Zhu and L. Q. Li, Chem. Commun., 2015, 51, 2368-2371.
- 14 M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. J. Niu, M. Heon, L. Hultman, Y. Gogotsi and M. W. Barsoum, *Adv. Mater.*, 2011, 23, 4248-4253.
- 15 M. Naguib, V. N. Mochalin, M. W. Barsoum and Yury Gogotsi, *Adv. Mater.*, 2014, **26**, 992-1005; J. C. Lei, X. Zhang and Z. Zhou, *Frontiers Phys.*, 2015, **10**, 276-286; X. F. Wang, S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, M. Okubo and A. Yamada, *Nat. Commun.*, 2015, **6**, 6544; Q. K. Hu, D. D. Sun, Q. H. Wu, H. Y. Wang, L. B. Wang, B. Z. Liu, A. G. Zhou and J. L. He, *J. Phys. Chem. A*, 2013, **117**, 14253-14260.
- M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi and M. W. Barsoum, ACS Nano, 2012, 6, 1322-1331; M. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall'Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum and Y. Gogotsi, Science, 2013, 341, 1502-1505; M. Ghidiu, M. Naguib, C. Shi, O. Mashtalir, L. M. Pan, B. Zhang, J. Yang, Y. Gogotsi, S. J. L. Billinge and M. W. Barsoum, Chem. Commun., 2014, 50, 9517-9520.
- R. R. Shahi, A. Bhatnagar, S. K. Pandey, V. Dixit and O. N. Srivastava, *Int. J. Hydrogen Energy*, 2014, **39**, 14255-14261;
 G. Liu, Y. J. Wang, L. F. Jiao and H. T. Yuan, *Int. J. Hydrogen Energy*, 2014, **39**, 3822-3829; H. Shao, M. Felderhoff and F. Schüth, *Int. J. Hydrogen Energy*, 2011, **36**, 10828-10833.
- 18 Y. Dall'Agnese, M. R. Lukatskaya, K.M. Cook, P. L. Taberna, Y. Gogotsi and P. Simon, *Electrochem. Commun.*, 2014, 48, 118-122.
- 19 R. B. Rakhi, B. Ahmed, M. N. Hedhili, D. H. Anjum and H.N. Alshareef, *Chem. Mater.*, 2015, **27**, 5314-5323.
- 20 J. Gu, M. X. Gao, H. G. Pan, Y. F. Liu, B. Li, Y. J. Yang, C. Liang,
 H. L. Fu and Z. X. Guo, *Energy Environ. Sci.*, 2013, 6, 847-858;
 X. Zhang, Y. F. Liu, K. Wang, M. X. Gao and H. G. Pan, *Nano Res.*, 2015, 8, 533-545.
- 21 A. A. Voevodin, M. A. Capano, S. J. P. Laube, M. S. Donley and J. S. Zabinski, *Thin Solid Films*, 1997, **298**, 107-115.
- 22 M. Y. Song, Y. J. Kwak, S. H. Lee, J. Song and D. R. Mumm, *Int. J. Hydrogen Energy*, 2012, **37**, 18133-18139.

4 | Chem. Commun., 2015, 00, 1-4