This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
A Stereoselective Construction of E- and Z-Δ-Ile from E-Dehydroamino Acid Ester: the Synthesis of Phomopsin A Tripeptide Side Chain

Yoko Yasuno, Akito Nishimura, Yoshifumi Yasukawa, Yuma Karita, Yasufumi Ohfune and Tetsuro Shinada*

Stereoselective synthesis of the phomopsin A tripeptide side chain was achieved by using methyl 2-(((benzyloxy)carbonyl)amino)-2-(diphenoxophosphoryl)acetate as a common synthetic precursor for the synthesis of E-Δ-dehydroisoleusine and E-Δ-aspartate.

Phomopsin A (1) was isolated from the fungus species Diaporthe toxica as the main mycotoxin of lupinosis (Fig. 1).1 Phomopsin A (1) and its natural congener, phomopsin B (2), are potent inhibitors of microtubule polymerization at <1 μM.2 Phomopsin A (1) and B (2) are consisted of four dehydroamino acids (Dhaas) and two highly oxidized unusual amino acids. Their characteristic structures and potent pharmacological activities have attracted much attention as a synthetic target.3,5 The first total synthesis of phomopsin B (2) was achieved by Wandless et al.5 Joullié et al. reported the synthesis of the tripeptide side chain.5 The total synthesis of the structurally more complex phomopsin A (1) has not been reported yet.

The stereoselective synthesis of the tripeptide side chain is one of the challenging synthetic tasks in view of their stereo control and linkage. Previously, the synthesis was accomplished by the stereoselective dehydration of β-hydroxyisoleucine 4 and β-hydroxyaspartate 5 as surrogates for the E-Δ-Ile and E-Δ-Asp moieties, respectively (Fig. 2).5,6 In the precedent route, the geometrical control depends on the reaction mode of the β-elimination and the stereochemistry of 4 and 5. To elaborate the requisite stereochemistry, 4 and 5 were selectively prepared in several steps. Herein, we would like to report a new synthetic route to access the tripeptide side chain. Our approach is characterized by simplifying the synthetic route with α- and β-elimination and the stereochemistry of 4 and 5.

Our strategy is outlined in Scheme 1. In consideration of the instability of the NH2-free dehydroamino acid ester,7 3 was sequentially introduced from the C-terminal of 6 and 8. Conversion of 7 to 8 involves the construction of the E-Δ-Ile8-12 moiety. To this challenging task, we tackled an unprecedented approach by a series of sequential transformations: i) E-selective olefination of 7, ii) Z-selective iodination of the resulting E-dehydroamino acid, and iii) the Negishi-cross coupling reaction. It was anticipated that the remaining E-Δ-Asp moiety would be stereoselectively prepared from 9 by our original synthetic method to access E-dehydroamino acid esters using 3.13

Fig. 1 Structures of phomopsin A and B.

---

Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x
The synthetic utility was successfully displayed in the synthesis of moieties were tolerated under the mild conditions. The NHCbz, methoxycarbonyl group, and N-acyl enamine provided a single isomer in 86% yield. The Negishi cross-coupling provided the thermodynamically stable Z-iodide as a single isomer in 86% yield. The Negishi cross-coupling reaction of Z-12 with Me₂Zn in the presence of 5 mol% of Pd(Ph₃)₂Cl₂ in THF at room temperature proceeded smoothly to give E-13 as a sole product in 93% yield. The stereochemistry of E-13 was confirmed by NOESY analysis and comparison with its authentic C-NMR data. It is noteworthy that the NHCbz, methoxycarbonyl group, and N-acyl enamine moieties were tolerated under the mild conditions. The synthetic utility was successfully displayed in the synthesis of Z-13 from 3. The E-selective olefination of 3 and acetaldehyde provided E-14, followed by the iodination reaction to give Z-15 in 63% yield.

A model study for the synthesis of E-8 from 7 was examined by the synthesis of E- and Z-3-ile 13 from 3 (Scheme 2). The E-selective Horner–Wadsworth–Emmons reaction of 3 with propanal in the presence of DBU and MgBr₂•OEt gave E-11 in 87% yield. Treatment of 11 with NIS and DABCO provided the thermodynamically stable Z-iodide as a single isomer in 86% yield. The Negishi cross-coupling reaction of Z-12 with Me₂Zn in the presence of 5 mol% of Pd(Ph₃)₂Cl₂ in THF at room temperature proceeded smoothly to give E-13 as a sole product in 93% yield. The stereochemistry of E-13 was confirmed by NOESY analysis and comparison with its authentic C-NMR data. It is noteworthy that the NHCbz, methoxycarbonyl group, and N-acyl enamine moieties were tolerated under the mild conditions.

The above new method is characterized by the mild reaction conditions and the use of E-11 as a superior substrate to Z-11 for the initial iodination reaction. The use of E-11 in the iodination reaction is quite rare. Supports for the synthetic advantage of E-Dhaas in the iodination reaction came from the following comparative experiments of E-11 and Z-11 (Scheme 3). Treatment of Z-11 with NIS gave a new spot on TLC which was supposed to be the imine intermediate. The starting material was consumed after 2 h. Without isolation of 16, the crude imine was subjected to the base-promoted isomerization reaction with DABCO to provide Z-12 in 74% yield. Under the conditions, no starting material was recovered. It was conceivable that undesired side reactions might compete during the course of the imine formation. To accelerate the rate of the imine formation, we turned our attention to E-11. It is anticipated that E-11 would be more reactive than Z-11 because of its higher torsional strain caused by the steric repulsion between the ethyl and methoxycarbonyl groups. To assess the reactivity of E-11 with NIS, iodination reactions of E-11 and Z-11 were conducted in CDCl₃. The conversion ratios were analysed by ¹H-NMR. We found that the conversion of E-11 to the imine intermediate 16 was superior to that of Z-11. Treatment of E-11 with NIS for 2 h followed by the DABCO-promoted isomerization gave Z-12 in 83% yields. These results indicated that the potential synthetic utility of E-Dhaas for the advanced iodination substrate. The synthetic advantage was proved by the synthesis of the tripeptide side chain shown in Scheme 4.

Scheme 1 Synthetic plan.

Scheme 2 Synthesis of E-Dhaas and Z-Dhaas.

Scheme 3 Comparative experiments of E-11 and Z-11.
The synthesis of the tripeptide side chain was commenced with the coupling reaction of 17 with 3,4-∆-Pro 6. Removal of the Cbz group of 3 under the hydrogenation reaction condition gave ammonium salt 17. Without isolation, 17 was linked with 6 to give 7 in 55% yield. The olefination reaction of 7 with propanal gave a 3:1 mixture of E-18 and Z-18 in 91% yield. After the separation, E-18 and Z-18 were separately subjected to the iodination reaction using NIS and DABCO. Iodide 19 was produced in 79% yield from E-18 and 51% yield from Z-18. These results revealed that E-18 was superior to Z-18 in the synthesis of 19. It is interesting to note that the iodination reaction occurred at the dehydroamino acid moieties without significant loss of the double bond in the ∆-Pro moiety due provably to the reactive enamine character of Dhaas. The Negishi coupling reaction of 19 with Me₂Zn in the presence of 3 mol% of Pd-PEPSI provided 8 in 94% yield.

It has been reported that the peptide bond forming reaction at the carb oxyamidic acid moiety of ∆-Ile requires the protection of the amide N-H to avoid the formation of the corresponding azlactone and its undesired olefin isomerization. Accordingly, the N-H of the coupling precursor 21 was protected with a Boc group prior to the peptide coupling reaction. Methyl ester 8 was converted to allyl ester 20 in 86% yield in 2 steps. The N-H group of 20 was protected with a Boc group, followed by the removal of the allyl group to give the appropriately protected coupling precursor 22. The peptide bond forming reaction of 22 with 17 provided 9 in 56% yield without any olefin isomerization. The synthesis of the phomopsin A tripeptide side chain E-23 was furnished by the E-selective Dhaa forming reaction developed by us. Phosphonate 9 was condensed with 10 in the presence of DBU/ZnCl₂ to afford E-23 in 80% yield. Removal of the Boc groups of 23 with TFA provided a 4.3:1 mixture of E-24 and Z-24. The mixture was purified by preparative TLC to give E-24 in 35% yield with the inseparable E/Z-mixture (18% yield). The E-geometry of the resulting ∆-Asp moiety was confirmed by comparison of the chemical shift values of the olefinic protons (E: 6.05 ppm, Z: 5.46 ppm).

In summary, we have developed a novel synthetic route to access the phomopsin A tripeptide side chain 24 in 12 steps from 3. The synthesis could be simplified by the use of α-(diphenylphosphono)glycine 3 as a common surrogate of E-∆-Ile and E-∆-Asp moieties. The carbon-carbon bond forming reactions on the peptide chain was successfully achieved under the mild conditions. Total synthesis of phomopsin A and ∆-Ile-containing natural products as well as studies from the view point of chemical biology of ∆-Ile-containing biologically active molecules are in progress.

Acknowledgement
TS gratefully acknowledges financial supports from Scientific Research of Innovative Areas, Chemical Biology of Natural Products, the Ministry of Education, Culture, Sports, Science and Technology (No. 23102009) and the Japan Society for the Promotion of Science (KAKENHI Nos. 23228001, 25282233). YY gratefully acknowledges financial supports by the Sasa gawa Scientific Research Grant from The Japan Science Society.

Notes and references


16 (a) A. P. Combs and R. W. Armstrong, Tetrahedron Lett. 1992, 33, 6419. (b) G. J. Roff, R. C. Lloyd and N. J. Turner, J. Am. Chem. Soc., 2004, 126, 4098. (c) P. M. Ferreira, L. S. Monteiro and G. Pereira, Eur. J. Org. Chem., 2008, 4676. (d) P. M. T. Ferreira, L. S. Monteiro and G. Pereira, Amino Acids, 2010, 39, 499. 1H-NMR data of 16: 1H NMR (400 MHz, CDCl3) δ 7.44-7.37 (m, 5 H), 5.26 (d, J = 12.0 Hz, 1 H), 5.22 (d, J = 12.0 Hz, 1 H), 5.07 (dd, J = 8.0, 6.4 Hz, 1 H), 3.70 (s, 3 H), 2.12-1.98 (m, 2 H), 1.05 (t, J = 7.4 Hz, 3 H).

17 TLC analysis revealed that E-18 and Z-18 were consumed within 30 min and 2.5 h, respectively.
